/* SPDX-License-Identifier: GPL-2.0 */ /* * ChromeOS Embedded Controller protocol interface. * * Copyright (C) 2012 Google, Inc */ #ifndef __LINUX_CROS_EC_PROTO_H #define __LINUX_CROS_EC_PROTO_H #include #include #include #include #define CROS_EC_DEV_NAME "cros_ec" #define CROS_EC_DEV_FP_NAME "cros_fp" #define CROS_EC_DEV_ISH_NAME "cros_ish" #define CROS_EC_DEV_PD_NAME "cros_pd" #define CROS_EC_DEV_SCP_NAME "cros_scp" #define CROS_EC_DEV_TP_NAME "cros_tp" /* * The EC is unresponsive for a time after a reboot command. Add a * simple delay to make sure that the bus stays locked. */ #define EC_REBOOT_DELAY_MS 50 /* * Max bus-specific overhead incurred by request/responses. * I2C requires 1 additional byte for requests. * I2C requires 2 additional bytes for responses. * SPI requires up to 32 additional bytes for responses. */ #define EC_PROTO_VERSION_UNKNOWN 0 #define EC_MAX_REQUEST_OVERHEAD 1 #define EC_MAX_RESPONSE_OVERHEAD 32 /* * Command interface between EC and AP, for LPC, I2C and SPI interfaces. */ enum { EC_MSG_TX_HEADER_BYTES = 3, EC_MSG_TX_TRAILER_BYTES = 1, EC_MSG_TX_PROTO_BYTES = EC_MSG_TX_HEADER_BYTES + EC_MSG_TX_TRAILER_BYTES, EC_MSG_RX_PROTO_BYTES = 3, /* Max length of messages for proto 2*/ EC_PROTO2_MSG_BYTES = EC_PROTO2_MAX_PARAM_SIZE + EC_MSG_TX_PROTO_BYTES, EC_MAX_MSG_BYTES = 64 * 1024, }; /** * struct cros_ec_command - Information about a ChromeOS EC command. * @version: Command version number (often 0). * @command: Command to send (EC_CMD_...). * @outsize: Outgoing length in bytes. * @insize: Max number of bytes to accept from the EC. * @result: EC's response to the command (separate from communication failure). * @data: Where to put the incoming data from EC and outgoing data to EC. */ struct cros_ec_command { uint32_t version; uint32_t command; uint32_t outsize; uint32_t insize; uint32_t result; uint8_t data[0]; }; /** * struct cros_ec_device - Information about a ChromeOS EC device. * @phys_name: Name of physical comms layer (e.g. 'i2c-4'). * @dev: Device pointer for physical comms device * @was_wake_device: True if this device was set to wake the system from * sleep at the last suspend. * @cros_class: The class structure for this device. * @cmd_readmem: Direct read of the EC memory-mapped region, if supported. * @offset: Is within EC_LPC_ADDR_MEMMAP region. * @bytes: Number of bytes to read. zero means "read a string" (including * the trailing '\0'). At most only EC_MEMMAP_SIZE bytes can be * read. Caller must ensure that the buffer is large enough for the * result when reading a string. * @max_request: Max size of message requested. * @max_response: Max size of message response. * @max_passthru: Max sice of passthru message. * @proto_version: The protocol version used for this device. * @priv: Private data. * @irq: Interrupt to use. * @id: Device id. * @din: Input buffer (for data from EC). This buffer will always be * dword-aligned and include enough space for up to 7 word-alignment * bytes also, so we can ensure that the body of the message is always * dword-aligned (64-bit). We use this alignment to keep ARM and x86 * happy. Probably word alignment would be OK, there might be a small * performance advantage to using dword. * @dout: Output buffer (for data to EC). This buffer will always be * dword-aligned and include enough space for up to 7 word-alignment * bytes also, so we can ensure that the body of the message is always * dword-aligned (64-bit). We use this alignment to keep ARM and x86 * happy. Probably word alignment would be OK, there might be a small * performance advantage to using dword. * @din_size: Size of din buffer to allocate (zero to use static din). * @dout_size: Size of dout buffer to allocate (zero to use static dout). * @wake_enabled: True if this device can wake the system from sleep. * @suspended: True if this device had been suspended. * @cmd_xfer: Send command to EC and get response. * Returns the number of bytes received if the communication * succeeded, but that doesn't mean the EC was happy with the * command. The caller should check msg.result for the EC's result * code. * @pkt_xfer: Send packet to EC and get response. * @lock: One transaction at a time. * @mkbp_event_supported: True if this EC supports the MKBP event protocol. * @host_sleep_v1: True if this EC supports the sleep v1 command. * @event_notifier: Interrupt event notifier for transport devices. * @event_data: Raw payload transferred with the MKBP event. * @event_size: Size in bytes of the event data. * @host_event_wake_mask: Mask of host events that cause wake from suspend. * @ec: The platform_device used by the mfd driver to interface with the * main EC. * @pd: The platform_device used by the mfd driver to interface with the * PD behind an EC. */ struct cros_ec_device { /* These are used by other drivers that want to talk to the EC */ const char *phys_name; struct device *dev; bool was_wake_device; struct class *cros_class; int (*cmd_readmem)(struct cros_ec_device *ec, unsigned int offset, unsigned int bytes, void *dest); /* These are used to implement the platform-specific interface */ u16 max_request; u16 max_response; u16 max_passthru; u16 proto_version; void *priv; int irq; u8 *din; u8 *dout; int din_size; int dout_size; bool wake_enabled; bool suspended; int (*cmd_xfer)(struct cros_ec_device *ec, struct cros_ec_command *msg); int (*pkt_xfer)(struct cros_ec_device *ec, struct cros_ec_command *msg); struct mutex lock; bool mkbp_event_supported; bool host_sleep_v1; struct blocking_notifier_head event_notifier; struct ec_response_get_next_event_v1 event_data; int event_size; u32 host_event_wake_mask; u32 last_resume_result; /* The platform devices used by the mfd driver */ struct platform_device *ec; struct platform_device *pd; }; /** * struct cros_ec_sensor_platform - ChromeOS EC sensor platform information. * @sensor_num: Id of the sensor, as reported by the EC. */ struct cros_ec_sensor_platform { u8 sensor_num; }; /** * struct cros_ec_platform - ChromeOS EC platform information. * @ec_name: Name of EC device (e.g. 'cros-ec', 'cros-pd', ...) * used in /dev/ and sysfs. * @cmd_offset: Offset to apply for each command. Set when * registering a device behind another one. */ struct cros_ec_platform { const char *ec_name; u16 cmd_offset; }; /** * cros_ec_suspend() - Handle a suspend operation for the ChromeOS EC device. * @ec_dev: Device to suspend. * * This can be called by drivers to handle a suspend event. * * Return: 0 on success or negative error code. */ int cros_ec_suspend(struct cros_ec_device *ec_dev); /** * cros_ec_resume() - Handle a resume operation for the ChromeOS EC device. * @ec_dev: Device to resume. * * This can be called by drivers to handle a resume event. * * Return: 0 on success or negative error code. */ int cros_ec_resume(struct cros_ec_device *ec_dev); /** * cros_ec_prepare_tx() - Prepare an outgoing message in the output buffer. * @ec_dev: Device to register. * @msg: Message to write. * * This is intended to be used by all ChromeOS EC drivers, but at present * only SPI uses it. Once LPC uses the same protocol it can start using it. * I2C could use it now, with a refactor of the existing code. * * Return: 0 on success or negative error code. */ int cros_ec_prepare_tx(struct cros_ec_device *ec_dev, struct cros_ec_command *msg); /** * cros_ec_check_result() - Check ec_msg->result. * @ec_dev: EC device. * @msg: Message to check. * * This is used by ChromeOS EC drivers to check the ec_msg->result for * errors and to warn about them. * * Return: 0 on success or negative error code. */ int cros_ec_check_result(struct cros_ec_device *ec_dev, struct cros_ec_command *msg); /** * cros_ec_cmd_xfer() - Send a command to the ChromeOS EC. * @ec_dev: EC device. * @msg: Message to write. * * Call this to send a command to the ChromeOS EC. This should be used * instead of calling the EC's cmd_xfer() callback directly. * * Return: 0 on success or negative error code. */ int cros_ec_cmd_xfer(struct cros_ec_device *ec_dev, struct cros_ec_command *msg); /** * cros_ec_cmd_xfer_status() - Send a command to the ChromeOS EC. * @ec_dev: EC device. * @msg: Message to write. * * This function is identical to cros_ec_cmd_xfer, except it returns success * status only if both the command was transmitted successfully and the EC * replied with success status. It's not necessary to check msg->result when * using this function. * * Return: The number of bytes transferred on success or negative error code. */ int cros_ec_cmd_xfer_status(struct cros_ec_device *ec_dev, struct cros_ec_command *msg); /** * cros_ec_register() - Register a new ChromeOS EC, using the provided info. * @ec_dev: Device to register. * * Before calling this, allocate a pointer to a new device and then fill * in all the fields up to the --private-- marker. * * Return: 0 on success or negative error code. */ int cros_ec_register(struct cros_ec_device *ec_dev); /** * cros_ec_unregister() - Remove a ChromeOS EC. * @ec_dev: Device to unregister. * * Call this to deregister a ChromeOS EC, then clean up any private data. * * Return: 0 on success or negative error code. */ int cros_ec_unregister(struct cros_ec_device *ec_dev); /** * cros_ec_query_all() - Query the protocol version supported by the * ChromeOS EC. * @ec_dev: Device to register. * * Return: 0 on success or negative error code. */ int cros_ec_query_all(struct cros_ec_device *ec_dev); /** * cros_ec_get_next_event() - Fetch next event from the ChromeOS EC. * @ec_dev: Device to fetch event from. * @wake_event: Pointer to a bool set to true upon return if the event might be * treated as a wake event. Ignored if null. * * Return: negative error code on errors; 0 for no data; or else number of * bytes received (i.e., an event was retrieved successfully). Event types are * written out to @ec_dev->event_data.event_type on success. */ int cros_ec_get_next_event(struct cros_ec_device *ec_dev, bool *wake_event); /** * cros_ec_get_host_event() - Return a mask of event set by the ChromeOS EC. * @ec_dev: Device to fetch event from. * * When MKBP is supported, when the EC raises an interrupt, we collect the * events raised and call the functions in the ec notifier. This function * is a helper to know which events are raised. * * Return: 0 on error or non-zero bitmask of one or more EC_HOST_EVENT_*. */ u32 cros_ec_get_host_event(struct cros_ec_device *ec_dev); #endif /* __LINUX_CROS_EC_PROTO_H */