/* SPDX-License-Identifier: GPL-2.0-only */ /* * Universal power supply monitor class * * Copyright © 2007 Anton Vorontsov * Copyright © 2004 Szabolcs Gyurko * Copyright © 2003 Ian Molton * * Modified: 2004, Oct Szabolcs Gyurko */ #ifndef __LINUX_POWER_SUPPLY_H__ #define __LINUX_POWER_SUPPLY_H__ #include #include #include #include #include /* * All voltages, currents, charges, energies, time and temperatures in uV, * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise * stated. It's driver's job to convert its raw values to units in which * this class operates. */ /* * For systems where the charger determines the maximum battery capacity * the min and max fields should be used to present these values to user * space. Unused/unknown fields will not appear in sysfs. */ enum { POWER_SUPPLY_STATUS_UNKNOWN = 0, POWER_SUPPLY_STATUS_CHARGING, POWER_SUPPLY_STATUS_DISCHARGING, POWER_SUPPLY_STATUS_NOT_CHARGING, POWER_SUPPLY_STATUS_FULL, }; /* What algorithm is the charger using? */ enum { POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0, POWER_SUPPLY_CHARGE_TYPE_NONE, POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */ POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */ POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */ POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */ POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */ POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */ }; enum { POWER_SUPPLY_HEALTH_UNKNOWN = 0, POWER_SUPPLY_HEALTH_GOOD, POWER_SUPPLY_HEALTH_OVERHEAT, POWER_SUPPLY_HEALTH_DEAD, POWER_SUPPLY_HEALTH_OVERVOLTAGE, POWER_SUPPLY_HEALTH_UNSPEC_FAILURE, POWER_SUPPLY_HEALTH_COLD, POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE, POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE, POWER_SUPPLY_HEALTH_OVERCURRENT, POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED, POWER_SUPPLY_HEALTH_WARM, POWER_SUPPLY_HEALTH_COOL, POWER_SUPPLY_HEALTH_HOT, POWER_SUPPLY_HEALTH_NO_BATTERY, }; enum { POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0, POWER_SUPPLY_TECHNOLOGY_NiMH, POWER_SUPPLY_TECHNOLOGY_LION, POWER_SUPPLY_TECHNOLOGY_LIPO, POWER_SUPPLY_TECHNOLOGY_LiFe, POWER_SUPPLY_TECHNOLOGY_NiCd, POWER_SUPPLY_TECHNOLOGY_LiMn, }; enum { POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0, POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL, POWER_SUPPLY_CAPACITY_LEVEL_LOW, POWER_SUPPLY_CAPACITY_LEVEL_NORMAL, POWER_SUPPLY_CAPACITY_LEVEL_HIGH, POWER_SUPPLY_CAPACITY_LEVEL_FULL, }; enum { POWER_SUPPLY_SCOPE_UNKNOWN = 0, POWER_SUPPLY_SCOPE_SYSTEM, POWER_SUPPLY_SCOPE_DEVICE, }; enum power_supply_property { /* Properties of type `int' */ POWER_SUPPLY_PROP_STATUS = 0, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_AUTHENTIC, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_MAX, POWER_SUPPLY_PROP_VOLTAGE_MIN, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_VOLTAGE_OCV, POWER_SUPPLY_PROP_VOLTAGE_BOOT, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CURRENT_BOOT, POWER_SUPPLY_PROP_POWER_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_EMPTY, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_AVG, POWER_SUPPLY_PROP_CHARGE_COUNTER, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT, POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX, POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */ POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */ POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT, POWER_SUPPLY_PROP_INPUT_POWER_LIMIT, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_EMPTY, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_ENERGY_AVG, POWER_SUPPLY_PROP_CAPACITY, /* in percents! */ POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */ POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */ POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */ POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TEMP_MAX, POWER_SUPPLY_PROP_TEMP_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_ALERT_MAX, POWER_SUPPLY_PROP_TEMP_AMBIENT, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */ POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_SCOPE, POWER_SUPPLY_PROP_PRECHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, POWER_SUPPLY_PROP_CALIBRATE, POWER_SUPPLY_PROP_MANUFACTURE_YEAR, POWER_SUPPLY_PROP_MANUFACTURE_MONTH, POWER_SUPPLY_PROP_MANUFACTURE_DAY, /* Properties of type `const char *' */ POWER_SUPPLY_PROP_MODEL_NAME, POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_SERIAL_NUMBER, }; enum power_supply_type { POWER_SUPPLY_TYPE_UNKNOWN = 0, POWER_SUPPLY_TYPE_BATTERY, POWER_SUPPLY_TYPE_UPS, POWER_SUPPLY_TYPE_MAINS, POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */ POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */ POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */ POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */ POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */ POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */ POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */ POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */ }; enum power_supply_usb_type { POWER_SUPPLY_USB_TYPE_UNKNOWN = 0, POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */ POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */ POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */ POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */ POWER_SUPPLY_USB_TYPE_C, /* Type C Port */ POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */ POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */ POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */ POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */ }; enum power_supply_notifier_events { PSY_EVENT_PROP_CHANGED, }; union power_supply_propval { int intval; const char *strval; }; struct device_node; struct power_supply; /* Run-time specific power supply configuration */ struct power_supply_config { struct device_node *of_node; struct fwnode_handle *fwnode; /* Driver private data */ void *drv_data; /* Device specific sysfs attributes */ const struct attribute_group **attr_grp; char **supplied_to; size_t num_supplicants; }; /* Description of power supply */ struct power_supply_desc { const char *name; enum power_supply_type type; const enum power_supply_usb_type *usb_types; size_t num_usb_types; const enum power_supply_property *properties; size_t num_properties; /* * Functions for drivers implementing power supply class. * These shouldn't be called directly by other drivers for accessing * this power supply. Instead use power_supply_*() functions (for * example power_supply_get_property()). */ int (*get_property)(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val); int (*set_property)(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val); /* * property_is_writeable() will be called during registration * of power supply. If this happens during device probe then it must * not access internal data of device (because probe did not end). */ int (*property_is_writeable)(struct power_supply *psy, enum power_supply_property psp); void (*external_power_changed)(struct power_supply *psy); void (*set_charged)(struct power_supply *psy); /* * Set if thermal zone should not be created for this power supply. * For example for virtual supplies forwarding calls to actual * sensors or other supplies. */ bool no_thermal; /* For APM emulation, think legacy userspace. */ int use_for_apm; }; struct power_supply { const struct power_supply_desc *desc; char **supplied_to; size_t num_supplicants; char **supplied_from; size_t num_supplies; struct device_node *of_node; /* Driver private data */ void *drv_data; /* private */ struct device dev; struct work_struct changed_work; struct delayed_work deferred_register_work; spinlock_t changed_lock; bool changed; bool initialized; bool removing; atomic_t use_cnt; #ifdef CONFIG_THERMAL struct thermal_zone_device *tzd; struct thermal_cooling_device *tcd; #endif #ifdef CONFIG_LEDS_TRIGGERS struct led_trigger *charging_full_trig; char *charging_full_trig_name; struct led_trigger *charging_trig; char *charging_trig_name; struct led_trigger *full_trig; char *full_trig_name; struct led_trigger *online_trig; char *online_trig_name; struct led_trigger *charging_blink_full_solid_trig; char *charging_blink_full_solid_trig_name; #endif }; /* * This is recommended structure to specify static power supply parameters. * Generic one, parametrizable for different power supplies. Power supply * class itself does not use it, but that's what implementing most platform * drivers, should try reuse for consistency. */ struct power_supply_info { const char *name; int technology; int voltage_max_design; int voltage_min_design; int charge_full_design; int charge_empty_design; int energy_full_design; int energy_empty_design; int use_for_apm; }; struct power_supply_battery_ocv_table { int ocv; /* microVolts */ int capacity; /* percent */ }; struct power_supply_resistance_temp_table { int temp; /* celsius */ int resistance; /* internal resistance percent */ }; #define POWER_SUPPLY_OCV_TEMP_MAX 20 /** * struct power_supply_battery_info - information about batteries * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum * @energy_full_design_uwh: energy content when fully charged in microwatt * hours * @charge_full_design_uah: charge content when fully charged in microampere * hours * @voltage_min_design_uv: minimum voltage across the poles when the battery * is at minimum voltage level in microvolts. If the voltage drops below this * level the battery will need precharging when using CC/CV charging. * @voltage_max_design_uv: voltage across the poles when the battery is fully * charged in microvolts. This is the "nominal voltage" i.e. the voltage * printed on the label of the battery. * @tricklecharge_current_ua: the tricklecharge current used when trickle * charging the battery in microamperes. This is the charging phase when the * battery is completely empty and we need to carefully trickle in some * charge until we reach the precharging voltage. * @precharge_current_ua: current to use in the precharge phase in microamperes, * the precharge rate is limited by limiting the current to this value. * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in * microvolts. When we pass this voltage we will nominally switch over to the * CC (constant current) charging phase defined by constant_charge_current_ua * and constant_charge_voltage_max_uv. * @charge_term_current_ua: when the current in the CV (constant voltage) * charging phase drops below this value in microamperes the charging will * terminate completely and not restart until the voltage over the battery * poles reach charge_restart_voltage_uv unless we use maintenance charging. * @charge_restart_voltage_uv: when the battery has been fully charged by * CC/CV charging and charging has been disabled, and the voltage subsequently * drops below this value in microvolts, the charging will be restarted * (typically using CV charging). * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage * voltage_max_design_uv and we reach this voltage level, all charging must * stop and emergency procedures take place, such as shutting down the system * in some cases. * @constant_charge_current_max_ua: current in microamperes to use in the CC * (constant current) charging phase. The charging rate is limited * by this current. This is the main charging phase and as the current is * constant into the battery the voltage slowly ascends to * constant_charge_voltage_max_uv. * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of * the CC (constant current) charging phase and the beginning of the CV * (constant voltage) charging phase. * @factory_internal_resistance_uohm: the internal resistance of the battery * at fabrication time, expressed in microohms. This resistance will vary * depending on the lifetime and charge of the battery, so this is just a * nominal ballpark figure. * @ocv_temp: array indicating the open circuit voltage (OCV) capacity * temperature indices. This is an array of temperatures in degrees Celsius * indicating which capacity table to use for a certain temperature, since * the capacity for reasons of chemistry will be different at different * temperatures. Determining capacity is a multivariate problem and the * temperature is the first variable we determine. * @temp_ambient_alert_min: the battery will go outside of operating conditions * when the ambient temperature goes below this temperature in degrees * Celsius. * @temp_ambient_alert_max: the battery will go outside of operating conditions * when the ambient temperature goes above this temperature in degrees * Celsius. * @temp_alert_min: the battery should issue an alert if the internal * temperature goes below this temperature in degrees Celsius. * @temp_alert_max: the battery should issue an alert if the internal * temperature goes above this temperature in degrees Celsius. * @temp_min: the battery will go outside of operating conditions when * the internal temperature goes below this temperature in degrees Celsius. * Normally this means the system should shut down. * @temp_max: the battery will go outside of operating conditions when * the internal temperature goes above this temperature in degrees Celsius. * Normally this means the system should shut down. * @ocv_table: for each entry in ocv_temp there is a corresponding entry in * ocv_table and a size for each entry in ocv_table_size. These arrays * determine the capacity in percent in relation to the voltage in microvolts * at the indexed temperature. * @ocv_table_size: for each entry in ocv_temp this array is giving the size of * each entry in the array of capacity arrays in ocv_table. * @resist_table: this is a table that correlates a battery temperature to the * expected internal resistance at this temperature. The resistance is given * as a percentage of factory_internal_resistance_uohm. Knowing the * resistance of the battery is usually necessary for calculating the open * circuit voltage (OCV) that is then used with the ocv_table to calculate * the capacity of the battery. The resist_table must be ordered descending * by temperature: highest temperature with lowest resistance first, lowest * temperature with highest resistance last. * @resist_table_size: the number of items in the resist_table. * * This is the recommended struct to manage static battery parameters, * populated by power_supply_get_battery_info(). Most platform drivers should * use these for consistency. * * Its field names must correspond to elements in enum power_supply_property. * The default field value is -EINVAL. * * The charging parameters here assume a CC/CV charging scheme. This method * is most common with Lithium Ion batteries (other methods are possible) and * looks as follows: * * ^ Battery voltage * | --- overvoltage_limit_uv * | * | ................................................... * | .. constant_charge_voltage_max_uv * | .. * | . * | . * | . * | . * | . * | .. precharge_voltage_max_uv * | .. * |. (trickle charging) * +------------------------------------------------------------------> time * * ^ Current into the battery * | * | ............. constant_charge_current_max_ua * | . . * | . . * | . . * | . . * | . .. * | . .... * | . ..... * | ... precharge_current_ua ....... charge_term_current_ua * | . . * | . . * |.... tricklecharge_current_ua . * | . * +-----------------------------------------------------------------> time * * These diagrams are synchronized on time and the voltage and current * follow each other. * * With CC/CV charging commence over time like this for an empty battery: * * 1. When the battery is completely empty it may need to be charged with * an especially small current so that electrons just "trickle in", * this is the tricklecharge_current_ua. * * 2. Next a small initial pre-charge current (precharge_current_ua) * is applied if the voltage is below precharge_voltage_max_uv until we * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred * to as "trickle charging" but the use in the Linux kernel is different * see below! * * 3. Then the main charging current is applied, which is called the constant * current (CC) phase. A current regulator is set up to allow * constant_charge_current_max_ua of current to flow into the battery. * The chemical reaction in the battery will make the voltage go up as * charge goes into the battery. This current is applied until we reach * the constant_charge_voltage_max_uv voltage. * * 4. At this voltage we switch over to the constant voltage (CV) phase. This * means we allow current to go into the battery, but we keep the voltage * fixed. This current will continue to charge the battery while keeping * the voltage the same. A chemical reaction in the battery goes on * storing energy without affecting the voltage. Over time the current * will slowly drop and when we reach charge_term_current_ua we will * end the constant voltage phase. * * After this the battery is fully charged, and if we do not support maintenance * charging, the charging will not restart until power dissipation makes the * voltage fall so that we reach charge_restart_voltage_uv and at this point * we restart charging at the appropriate phase, usually this will be inside * the CV phase. * * If we support maintenance charging the voltage is however kept high after * the CV phase with a very low current. This is meant to let the same charge * go in for usage while the charger is still connected, mainly for * dissipation for the power consuming entity while connected to the * charger. * * All charging MUST terminate if the overvoltage_limit_uv is ever reached. * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or * explosions. * * The power supply class itself doesn't use this struct as of now. */ struct power_supply_battery_info { unsigned int technology; int energy_full_design_uwh; int charge_full_design_uah; int voltage_min_design_uv; int voltage_max_design_uv; int tricklecharge_current_ua; int precharge_current_ua; int precharge_voltage_max_uv; int charge_term_current_ua; int charge_restart_voltage_uv; int overvoltage_limit_uv; int constant_charge_current_max_ua; int constant_charge_voltage_max_uv; int factory_internal_resistance_uohm; int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX]; int temp_ambient_alert_min; int temp_ambient_alert_max; int temp_alert_min; int temp_alert_max; int temp_min; int temp_max; struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX]; int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX]; struct power_supply_resistance_temp_table *resist_table; int resist_table_size; }; extern struct atomic_notifier_head power_supply_notifier; extern int power_supply_reg_notifier(struct notifier_block *nb); extern void power_supply_unreg_notifier(struct notifier_block *nb); #if IS_ENABLED(CONFIG_POWER_SUPPLY) extern struct power_supply *power_supply_get_by_name(const char *name); extern void power_supply_put(struct power_supply *psy); #else static inline void power_supply_put(struct power_supply *psy) {} static inline struct power_supply *power_supply_get_by_name(const char *name) { return NULL; } #endif #ifdef CONFIG_OF extern struct power_supply *power_supply_get_by_phandle(struct device_node *np, const char *property); extern struct power_supply *devm_power_supply_get_by_phandle( struct device *dev, const char *property); #else /* !CONFIG_OF */ static inline struct power_supply * power_supply_get_by_phandle(struct device_node *np, const char *property) { return NULL; } static inline struct power_supply * devm_power_supply_get_by_phandle(struct device *dev, const char *property) { return NULL; } #endif /* CONFIG_OF */ extern int power_supply_get_battery_info(struct power_supply *psy, struct power_supply_battery_info **info_out); extern void power_supply_put_battery_info(struct power_supply *psy, struct power_supply_battery_info *info); extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, int table_len, int ocv); extern struct power_supply_battery_ocv_table * power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, int temp, int *table_len); extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, int ocv, int temp); extern int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, int table_len, int temp); extern void power_supply_changed(struct power_supply *psy); extern int power_supply_am_i_supplied(struct power_supply *psy); extern int power_supply_set_input_current_limit_from_supplier( struct power_supply *psy); extern int power_supply_set_battery_charged(struct power_supply *psy); #ifdef CONFIG_POWER_SUPPLY extern int power_supply_is_system_supplied(void); #else static inline int power_supply_is_system_supplied(void) { return -ENOSYS; } #endif extern int power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val); #if IS_ENABLED(CONFIG_POWER_SUPPLY) extern int power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val); #else static inline int power_supply_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { return 0; } #endif extern int power_supply_property_is_writeable(struct power_supply *psy, enum power_supply_property psp); extern void power_supply_external_power_changed(struct power_supply *psy); extern struct power_supply *__must_check power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg); extern struct power_supply *__must_check power_supply_register_no_ws(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg); extern struct power_supply *__must_check devm_power_supply_register(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg); extern struct power_supply *__must_check devm_power_supply_register_no_ws(struct device *parent, const struct power_supply_desc *desc, const struct power_supply_config *cfg); extern void power_supply_unregister(struct power_supply *psy); extern int power_supply_powers(struct power_supply *psy, struct device *dev); #define to_power_supply(device) container_of(device, struct power_supply, dev) extern void *power_supply_get_drvdata(struct power_supply *psy); /* For APM emulation, think legacy userspace. */ extern struct class *power_supply_class; static inline bool power_supply_is_amp_property(enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_EMPTY: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CHARGE_AVG: case POWER_SUPPLY_PROP_CHARGE_COUNTER: case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: case POWER_SUPPLY_PROP_CURRENT_MAX: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_CURRENT_AVG: case POWER_SUPPLY_PROP_CURRENT_BOOT: return true; default: break; } return false; } static inline bool power_supply_is_watt_property(enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_EMPTY: case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_AVG: case POWER_SUPPLY_PROP_VOLTAGE_MAX: case POWER_SUPPLY_PROP_VOLTAGE_MIN: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_VOLTAGE_AVG: case POWER_SUPPLY_PROP_VOLTAGE_OCV: case POWER_SUPPLY_PROP_VOLTAGE_BOOT: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: case POWER_SUPPLY_PROP_POWER_NOW: return true; default: break; } return false; } #ifdef CONFIG_POWER_SUPPLY_HWMON int power_supply_add_hwmon_sysfs(struct power_supply *psy); void power_supply_remove_hwmon_sysfs(struct power_supply *psy); #else static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy) { return 0; } static inline void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {} #endif #endif /* __LINUX_POWER_SUPPLY_H__ */