/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RMAP_H #define _LINUX_RMAP_H /* * Declarations for Reverse Mapping functions in mm/rmap.c */ #include #include #include #include #include #include #include #include /* * The anon_vma heads a list of private "related" vmas, to scan if * an anonymous page pointing to this anon_vma needs to be unmapped: * the vmas on the list will be related by forking, or by splitting. * * Since vmas come and go as they are split and merged (particularly * in mprotect), the mapping field of an anonymous page cannot point * directly to a vma: instead it points to an anon_vma, on whose list * the related vmas can be easily linked or unlinked. * * After unlinking the last vma on the list, we must garbage collect * the anon_vma object itself: we're guaranteed no page can be * pointing to this anon_vma once its vma list is empty. */ struct anon_vma { struct anon_vma *root; /* Root of this anon_vma tree */ struct rw_semaphore rwsem; /* W: modification, R: walking the list */ /* * The refcount is taken on an anon_vma when there is no * guarantee that the vma of page tables will exist for * the duration of the operation. A caller that takes * the reference is responsible for clearing up the * anon_vma if they are the last user on release */ atomic_t refcount; /* * Count of child anon_vmas. Equals to the count of all anon_vmas that * have ->parent pointing to this one, including itself. * * This counter is used for making decision about reusing anon_vma * instead of forking new one. See comments in function anon_vma_clone. */ unsigned long num_children; /* Count of VMAs whose ->anon_vma pointer points to this object. */ unsigned long num_active_vmas; struct anon_vma *parent; /* Parent of this anon_vma */ /* * NOTE: the LSB of the rb_root.rb_node is set by * mm_take_all_locks() _after_ taking the above lock. So the * rb_root must only be read/written after taking the above lock * to be sure to see a valid next pointer. The LSB bit itself * is serialized by a system wide lock only visible to * mm_take_all_locks() (mm_all_locks_mutex). */ /* Interval tree of private "related" vmas */ struct rb_root_cached rb_root; }; /* * The copy-on-write semantics of fork mean that an anon_vma * can become associated with multiple processes. Furthermore, * each child process will have its own anon_vma, where new * pages for that process are instantiated. * * This structure allows us to find the anon_vmas associated * with a VMA, or the VMAs associated with an anon_vma. * The "same_vma" list contains the anon_vma_chains linking * all the anon_vmas associated with this VMA. * The "rb" field indexes on an interval tree the anon_vma_chains * which link all the VMAs associated with this anon_vma. */ struct anon_vma_chain { struct vm_area_struct *vma; struct anon_vma *anon_vma; struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ struct rb_node rb; /* locked by anon_vma->rwsem */ unsigned long rb_subtree_last; #ifdef CONFIG_DEBUG_VM_RB unsigned long cached_vma_start, cached_vma_last; #endif }; enum ttu_flags { TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */ TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible * and caller guarantees they will * do a final flush if necessary */ TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: * caller holds it */ }; #ifdef CONFIG_MMU static inline void get_anon_vma(struct anon_vma *anon_vma) { atomic_inc(&anon_vma->refcount); } void __put_anon_vma(struct anon_vma *anon_vma); static inline void put_anon_vma(struct anon_vma *anon_vma) { if (atomic_dec_and_test(&anon_vma->refcount)) __put_anon_vma(anon_vma); } static inline void anon_vma_lock_write(struct anon_vma *anon_vma) { down_write(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) { up_write(&anon_vma->root->rwsem); } static inline void anon_vma_lock_read(struct anon_vma *anon_vma) { down_read(&anon_vma->root->rwsem); } static inline int anon_vma_trylock_read(struct anon_vma *anon_vma) { return down_read_trylock(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) { up_read(&anon_vma->root->rwsem); } /* * anon_vma helper functions. */ void anon_vma_init(void); /* create anon_vma_cachep */ int __anon_vma_prepare(struct vm_area_struct *); void unlink_anon_vmas(struct vm_area_struct *); int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); static inline int anon_vma_prepare(struct vm_area_struct *vma) { if (likely(vma->anon_vma)) return 0; return __anon_vma_prepare(vma); } static inline void anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) { VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); unlink_anon_vmas(next); } struct anon_vma *folio_get_anon_vma(struct folio *folio); /* RMAP flags, currently only relevant for some anon rmap operations. */ typedef int __bitwise rmap_t; /* * No special request: if the page is a subpage of a compound page, it is * mapped via a PTE. The mapped (sub)page is possibly shared between processes. */ #define RMAP_NONE ((__force rmap_t)0) /* The (sub)page is exclusive to a single process. */ #define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0)) /* * The compound page is not mapped via PTEs, but instead via a single PMD and * should be accounted accordingly. */ #define RMAP_COMPOUND ((__force rmap_t)BIT(1)) /* * rmap interfaces called when adding or removing pte of page */ void page_move_anon_rmap(struct page *, struct vm_area_struct *); void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long address, rmap_t flags); void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long address); void page_add_file_rmap(struct page *, struct vm_area_struct *, bool compound); void page_remove_rmap(struct page *, struct vm_area_struct *, bool compound); void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long address, rmap_t flags); void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long address); static inline void __page_dup_rmap(struct page *page, bool compound) { atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); } static inline void page_dup_file_rmap(struct page *page, bool compound) { __page_dup_rmap(page, compound); } /** * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped * anonymous page * @page: the page to duplicate the mapping for * @compound: the page is mapped as compound or as a small page * @vma: the source vma * * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq. * * Duplicating the mapping can only fail if the page may be pinned; device * private pages cannot get pinned and consequently this function cannot fail. * * If duplicating the mapping succeeds, the page has to be mapped R/O into * the parent and the child. It must *not* get mapped writable after this call. * * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise. */ static inline int page_try_dup_anon_rmap(struct page *page, bool compound, struct vm_area_struct *vma) { VM_BUG_ON_PAGE(!PageAnon(page), page); /* * No need to check+clear for already shared pages, including KSM * pages. */ if (!PageAnonExclusive(page)) goto dup; /* * If this page may have been pinned by the parent process, * don't allow to duplicate the mapping but instead require to e.g., * copy the page immediately for the child so that we'll always * guarantee the pinned page won't be randomly replaced in the * future on write faults. */ if (likely(!is_device_private_page(page) && unlikely(page_needs_cow_for_dma(vma, page)))) return -EBUSY; ClearPageAnonExclusive(page); /* * It's okay to share the anon page between both processes, mapping * the page R/O into both processes. */ dup: __page_dup_rmap(page, compound); return 0; } /** * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly * shared to prepare for KSM or temporary unmapping * @page: the exclusive anonymous page to try marking possibly shared * * The caller needs to hold the PT lock and has to have the page table entry * cleared/invalidated. * * This is similar to page_try_dup_anon_rmap(), however, not used during fork() * to duplicate a mapping, but instead to prepare for KSM or temporarily * unmapping a page (swap, migration) via page_remove_rmap(). * * Marking the page shared can only fail if the page may be pinned; device * private pages cannot get pinned and consequently this function cannot fail. * * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY * otherwise. */ static inline int page_try_share_anon_rmap(struct page *page) { VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page); /* device private pages cannot get pinned via GUP. */ if (unlikely(is_device_private_page(page))) { ClearPageAnonExclusive(page); return 0; } /* * We have to make sure that when we clear PageAnonExclusive, that * the page is not pinned and that concurrent GUP-fast won't succeed in * concurrently pinning the page. * * Conceptually, PageAnonExclusive clearing consists of: * (A1) Clear PTE * (A2) Check if the page is pinned; back off if so. * (A3) Clear PageAnonExclusive * (A4) Restore PTE (optional, but certainly not writable) * * When clearing PageAnonExclusive, we cannot possibly map the page * writable again, because anon pages that may be shared must never * be writable. So in any case, if the PTE was writable it cannot * be writable anymore afterwards and there would be a PTE change. Only * if the PTE wasn't writable, there might not be a PTE change. * * Conceptually, GUP-fast pinning of an anon page consists of: * (B1) Read the PTE * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so. * (B3) Pin the mapped page * (B4) Check if the PTE changed by re-reading it; back off if so. * (B5) If the original PTE is not writable, check if * PageAnonExclusive is not set; back off if so. * * If the PTE was writable, we only have to make sure that GUP-fast * observes a PTE change and properly backs off. * * If the PTE was not writable, we have to make sure that GUP-fast either * detects a (temporary) PTE change or that PageAnonExclusive is cleared * and properly backs off. * * Consequently, when clearing PageAnonExclusive(), we have to make * sure that (A1), (A2)/(A3) and (A4) happen in the right memory * order. In GUP-fast pinning code, we have to make sure that (B3),(B4) * and (B5) happen in the right memory order. * * We assume that there might not be a memory barrier after * clearing/invalidating the PTE (A1) and before restoring the PTE (A4), * so we use explicit ones here. */ /* Paired with the memory barrier in try_grab_folio(). */ if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) smp_mb(); if (unlikely(page_maybe_dma_pinned(page))) return -EBUSY; ClearPageAnonExclusive(page); /* * This is conceptually a smp_wmb() paired with the smp_rmb() in * gup_must_unshare(). */ if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) smp_mb__after_atomic(); return 0; } /* * Called from mm/vmscan.c to handle paging out */ int folio_referenced(struct folio *, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags); void try_to_migrate(struct folio *folio, enum ttu_flags flags); void try_to_unmap(struct folio *, enum ttu_flags flags); int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct page **pages, void *arg); /* Avoid racy checks */ #define PVMW_SYNC (1 << 0) /* Look for migration entries rather than present PTEs */ #define PVMW_MIGRATION (1 << 1) struct page_vma_mapped_walk { unsigned long pfn; unsigned long nr_pages; pgoff_t pgoff; struct vm_area_struct *vma; unsigned long address; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; unsigned int flags; }; #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \ struct page_vma_mapped_walk name = { \ .pfn = page_to_pfn(_page), \ .nr_pages = compound_nr(_page), \ .pgoff = page_to_pgoff(_page), \ .vma = _vma, \ .address = _address, \ .flags = _flags, \ } #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \ struct page_vma_mapped_walk name = { \ .pfn = folio_pfn(_folio), \ .nr_pages = folio_nr_pages(_folio), \ .pgoff = folio_pgoff(_folio), \ .vma = _vma, \ .address = _address, \ .flags = _flags, \ } static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) { /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma)) pte_unmap(pvmw->pte); if (pvmw->ptl) spin_unlock(pvmw->ptl); } bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); /* * Used by swapoff to help locate where page is expected in vma. */ unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); /* * Cleans the PTEs of shared mappings. * (and since clean PTEs should also be readonly, write protects them too) * * returns the number of cleaned PTEs. */ int folio_mkclean(struct folio *); int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, struct vm_area_struct *vma); void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked); int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); /* * rmap_walk_control: To control rmap traversing for specific needs * * arg: passed to rmap_one() and invalid_vma() * try_lock: bail out if the rmap lock is contended * contended: indicate the rmap traversal bailed out due to lock contention * rmap_one: executed on each vma where page is mapped * done: for checking traversing termination condition * anon_lock: for getting anon_lock by optimized way rather than default * invalid_vma: for skipping uninterested vma */ struct rmap_walk_control { void *arg; bool try_lock; bool contended; /* * Return false if page table scanning in rmap_walk should be stopped. * Otherwise, return true. */ bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma, unsigned long addr, void *arg); int (*done)(struct folio *folio); struct anon_vma *(*anon_lock)(struct folio *folio, struct rmap_walk_control *rwc); bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); }; void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc); void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc); struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, struct rmap_walk_control *rwc); #else /* !CONFIG_MMU */ #define anon_vma_init() do {} while (0) #define anon_vma_prepare(vma) (0) #define anon_vma_link(vma) do {} while (0) static inline int folio_referenced(struct folio *folio, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { *vm_flags = 0; return 0; } static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags) { } static inline int folio_mkclean(struct folio *folio) { return 0; } #endif /* CONFIG_MMU */ static inline int page_mkclean(struct page *page) { return folio_mkclean(page_folio(page)); } #endif /* _LINUX_RMAP_H */