/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2011 Instituto Nokia de Tecnologia * Copyright (C) 2014 Marvell International Ltd. * * Authors: * Lauro Ramos Venancio * Aloisio Almeida Jr */ #ifndef __NET_NFC_H #define __NET_NFC_H #include #include #include #define nfc_dbg(dev, fmt, ...) dev_dbg((dev), "NFC: " fmt, ##__VA_ARGS__) #define nfc_info(dev, fmt, ...) dev_info((dev), "NFC: " fmt, ##__VA_ARGS__) #define nfc_err(dev, fmt, ...) dev_err((dev), "NFC: " fmt, ##__VA_ARGS__) struct nfc_phy_ops { int (*write)(void *dev_id, struct sk_buff *skb); int (*enable)(void *dev_id); void (*disable)(void *dev_id); }; struct nfc_dev; /** * data_exchange_cb_t - Definition of nfc_data_exchange callback * * @context: nfc_data_exchange cb_context parameter * @skb: response data * @err: If an error has occurred during data exchange, it is the * error number. Zero means no error. * * When a rx or tx package is lost or corrupted or the target gets out * of the operating field, err is -EIO. */ typedef void (*data_exchange_cb_t)(void *context, struct sk_buff *skb, int err); typedef void (*se_io_cb_t)(void *context, u8 *apdu, size_t apdu_len, int err); struct nfc_target; struct nfc_ops { int (*dev_up)(struct nfc_dev *dev); int (*dev_down)(struct nfc_dev *dev); int (*start_poll)(struct nfc_dev *dev, u32 im_protocols, u32 tm_protocols); void (*stop_poll)(struct nfc_dev *dev); int (*dep_link_up)(struct nfc_dev *dev, struct nfc_target *target, u8 comm_mode, u8 *gb, size_t gb_len); int (*dep_link_down)(struct nfc_dev *dev); int (*activate_target)(struct nfc_dev *dev, struct nfc_target *target, u32 protocol); void (*deactivate_target)(struct nfc_dev *dev, struct nfc_target *target, u8 mode); int (*im_transceive)(struct nfc_dev *dev, struct nfc_target *target, struct sk_buff *skb, data_exchange_cb_t cb, void *cb_context); int (*tm_send)(struct nfc_dev *dev, struct sk_buff *skb); int (*check_presence)(struct nfc_dev *dev, struct nfc_target *target); int (*fw_download)(struct nfc_dev *dev, const char *firmware_name); /* Secure Element API */ int (*discover_se)(struct nfc_dev *dev); int (*enable_se)(struct nfc_dev *dev, u32 se_idx); int (*disable_se)(struct nfc_dev *dev, u32 se_idx); int (*se_io) (struct nfc_dev *dev, u32 se_idx, u8 *apdu, size_t apdu_length, se_io_cb_t cb, void *cb_context); }; #define NFC_TARGET_IDX_ANY -1 #define NFC_MAX_GT_LEN 48 #define NFC_ATR_RES_GT_OFFSET 15 #define NFC_ATR_REQ_GT_OFFSET 14 /** * struct nfc_target - NFC target descriptiom * * @sens_res: 2 bytes describing the target SENS_RES response, if the target * is a type A one. The %sens_res most significant byte must be byte 2 * as described by the NFC Forum digital specification (i.e. the platform * configuration one) while %sens_res least significant byte is byte 1. */ struct nfc_target { u32 idx; u32 supported_protocols; u16 sens_res; u8 sel_res; u8 nfcid1_len; u8 nfcid1[NFC_NFCID1_MAXSIZE]; u8 nfcid2_len; u8 nfcid2[NFC_NFCID2_MAXSIZE]; u8 sensb_res_len; u8 sensb_res[NFC_SENSB_RES_MAXSIZE]; u8 sensf_res_len; u8 sensf_res[NFC_SENSF_RES_MAXSIZE]; u8 hci_reader_gate; u8 logical_idx; u8 is_iso15693; u8 iso15693_dsfid; u8 iso15693_uid[NFC_ISO15693_UID_MAXSIZE]; }; /** * nfc_se - A structure for NFC accessible secure elements. * * @idx: The secure element index. User space will enable or * disable a secure element by its index. * @type: The secure element type. It can be SE_UICC or * SE_EMBEDDED. * @state: The secure element state, either enabled or disabled. * */ struct nfc_se { struct list_head list; u32 idx; u16 type; u16 state; }; /** * nfc_evt_transaction - A struct for NFC secure element event transaction. * * @aid: The application identifier triggering the event * * @aid_len: The application identifier length [5:16] * * @params: The application parameters transmitted during the transaction * * @params_len: The applications parameters length [0:255] * */ #define NFC_MIN_AID_LENGTH 5 #define NFC_MAX_AID_LENGTH 16 #define NFC_MAX_PARAMS_LENGTH 255 #define NFC_EVT_TRANSACTION_AID_TAG 0x81 #define NFC_EVT_TRANSACTION_PARAMS_TAG 0x82 struct nfc_evt_transaction { u32 aid_len; u8 aid[NFC_MAX_AID_LENGTH]; u8 params_len; u8 params[0]; } __packed; struct nfc_genl_data { u32 poll_req_portid; struct mutex genl_data_mutex; }; struct nfc_vendor_cmd { __u32 vendor_id; __u32 subcmd; int (*doit)(struct nfc_dev *dev, void *data, size_t data_len); }; struct nfc_dev { int idx; u32 target_next_idx; struct nfc_target *targets; int n_targets; int targets_generation; struct device dev; bool dev_up; bool fw_download_in_progress; u8 rf_mode; bool polling; struct nfc_target *active_target; bool dep_link_up; struct nfc_genl_data genl_data; u32 supported_protocols; struct list_head secure_elements; int tx_headroom; int tx_tailroom; struct timer_list check_pres_timer; struct work_struct check_pres_work; bool shutting_down; struct rfkill *rfkill; struct nfc_vendor_cmd *vendor_cmds; int n_vendor_cmds; struct nfc_ops *ops; struct genl_info *cur_cmd_info; }; #define to_nfc_dev(_dev) container_of(_dev, struct nfc_dev, dev) extern struct class nfc_class; struct nfc_dev *nfc_allocate_device(struct nfc_ops *ops, u32 supported_protocols, int tx_headroom, int tx_tailroom); /** * nfc_free_device - free nfc device * * @dev: The nfc device to free */ static inline void nfc_free_device(struct nfc_dev *dev) { put_device(&dev->dev); } int nfc_register_device(struct nfc_dev *dev); void nfc_unregister_device(struct nfc_dev *dev); /** * nfc_set_parent_dev - set the parent device * * @nfc_dev: The nfc device whose parent is being set * @dev: The parent device */ static inline void nfc_set_parent_dev(struct nfc_dev *nfc_dev, struct device *dev) { nfc_dev->dev.parent = dev; } /** * nfc_set_drvdata - set driver specifc data * * @dev: The nfc device * @data: Pointer to driver specifc data */ static inline void nfc_set_drvdata(struct nfc_dev *dev, void *data) { dev_set_drvdata(&dev->dev, data); } /** * nfc_get_drvdata - get driver specifc data * * @dev: The nfc device */ static inline void *nfc_get_drvdata(struct nfc_dev *dev) { return dev_get_drvdata(&dev->dev); } /** * nfc_device_name - get the nfc device name * * @dev: The nfc device whose name to return */ static inline const char *nfc_device_name(struct nfc_dev *dev) { return dev_name(&dev->dev); } struct sk_buff *nfc_alloc_send_skb(struct nfc_dev *dev, struct sock *sk, unsigned int flags, unsigned int size, unsigned int *err); struct sk_buff *nfc_alloc_recv_skb(unsigned int size, gfp_t gfp); int nfc_set_remote_general_bytes(struct nfc_dev *dev, u8 *gt, u8 gt_len); u8 *nfc_get_local_general_bytes(struct nfc_dev *dev, size_t *gb_len); int nfc_fw_download_done(struct nfc_dev *dev, const char *firmware_name, u32 result); int nfc_targets_found(struct nfc_dev *dev, struct nfc_target *targets, int ntargets); int nfc_target_lost(struct nfc_dev *dev, u32 target_idx); int nfc_dep_link_is_up(struct nfc_dev *dev, u32 target_idx, u8 comm_mode, u8 rf_mode); int nfc_tm_activated(struct nfc_dev *dev, u32 protocol, u8 comm_mode, u8 *gb, size_t gb_len); int nfc_tm_deactivated(struct nfc_dev *dev); int nfc_tm_data_received(struct nfc_dev *dev, struct sk_buff *skb); void nfc_driver_failure(struct nfc_dev *dev, int err); int nfc_se_transaction(struct nfc_dev *dev, u8 se_idx, struct nfc_evt_transaction *evt_transaction); int nfc_se_connectivity(struct nfc_dev *dev, u8 se_idx); int nfc_add_se(struct nfc_dev *dev, u32 se_idx, u16 type); int nfc_remove_se(struct nfc_dev *dev, u32 se_idx); struct nfc_se *nfc_find_se(struct nfc_dev *dev, u32 se_idx); void nfc_send_to_raw_sock(struct nfc_dev *dev, struct sk_buff *skb, u8 payload_type, u8 direction); static inline int nfc_set_vendor_cmds(struct nfc_dev *dev, struct nfc_vendor_cmd *cmds, int n_cmds) { if (dev->vendor_cmds || dev->n_vendor_cmds) return -EINVAL; dev->vendor_cmds = cmds; dev->n_vendor_cmds = n_cmds; return 0; } struct sk_buff *__nfc_alloc_vendor_cmd_reply_skb(struct nfc_dev *dev, enum nfc_attrs attr, u32 oui, u32 subcmd, int approxlen); int nfc_vendor_cmd_reply(struct sk_buff *skb); /** * nfc_vendor_cmd_alloc_reply_skb - allocate vendor command reply * @dev: nfc device * @oui: vendor oui * @approxlen: an upper bound of the length of the data that will * be put into the skb * * This function allocates and pre-fills an skb for a reply to * a vendor command. Since it is intended for a reply, calling * it outside of a vendor command's doit() operation is invalid. * * The returned skb is pre-filled with some identifying data in * a way that any data that is put into the skb (with skb_put(), * nla_put() or similar) will end up being within the * %NFC_ATTR_VENDOR_DATA attribute, so all that needs to be done * with the skb is adding data for the corresponding userspace tool * which can then read that data out of the vendor data attribute. * You must not modify the skb in any other way. * * When done, call nfc_vendor_cmd_reply() with the skb and return * its error code as the result of the doit() operation. * * Return: An allocated and pre-filled skb. %NULL if any errors happen. */ static inline struct sk_buff * nfc_vendor_cmd_alloc_reply_skb(struct nfc_dev *dev, u32 oui, u32 subcmd, int approxlen) { return __nfc_alloc_vendor_cmd_reply_skb(dev, NFC_ATTR_VENDOR_DATA, oui, subcmd, approxlen); } #endif /* __NET_NFC_H */