/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef KFD_IOCTL_H_INCLUDED #define KFD_IOCTL_H_INCLUDED #include #include /* * - 1.1 - initial version * - 1.3 - Add SMI events support * - 1.4 - Indicate new SRAM EDC bit in device properties * - 1.5 - Add SVM API * - 1.6 - Query clear flags in SVM get_attr API * - 1.7 - Checkpoint Restore (CRIU) API * - 1.8 - CRIU - Support for SDMA transfers with GTT BOs */ #define KFD_IOCTL_MAJOR_VERSION 1 #define KFD_IOCTL_MINOR_VERSION 8 struct kfd_ioctl_get_version_args { __u32 major_version; /* from KFD */ __u32 minor_version; /* from KFD */ }; /* For kfd_ioctl_create_queue_args.queue_type. */ #define KFD_IOC_QUEUE_TYPE_COMPUTE 0x0 #define KFD_IOC_QUEUE_TYPE_SDMA 0x1 #define KFD_IOC_QUEUE_TYPE_COMPUTE_AQL 0x2 #define KFD_IOC_QUEUE_TYPE_SDMA_XGMI 0x3 #define KFD_MAX_QUEUE_PERCENTAGE 100 #define KFD_MAX_QUEUE_PRIORITY 15 struct kfd_ioctl_create_queue_args { __u64 ring_base_address; /* to KFD */ __u64 write_pointer_address; /* from KFD */ __u64 read_pointer_address; /* from KFD */ __u64 doorbell_offset; /* from KFD */ __u32 ring_size; /* to KFD */ __u32 gpu_id; /* to KFD */ __u32 queue_type; /* to KFD */ __u32 queue_percentage; /* to KFD */ __u32 queue_priority; /* to KFD */ __u32 queue_id; /* from KFD */ __u64 eop_buffer_address; /* to KFD */ __u64 eop_buffer_size; /* to KFD */ __u64 ctx_save_restore_address; /* to KFD */ __u32 ctx_save_restore_size; /* to KFD */ __u32 ctl_stack_size; /* to KFD */ }; struct kfd_ioctl_destroy_queue_args { __u32 queue_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_update_queue_args { __u64 ring_base_address; /* to KFD */ __u32 queue_id; /* to KFD */ __u32 ring_size; /* to KFD */ __u32 queue_percentage; /* to KFD */ __u32 queue_priority; /* to KFD */ }; struct kfd_ioctl_set_cu_mask_args { __u32 queue_id; /* to KFD */ __u32 num_cu_mask; /* to KFD */ __u64 cu_mask_ptr; /* to KFD */ }; struct kfd_ioctl_get_queue_wave_state_args { __u64 ctl_stack_address; /* to KFD */ __u32 ctl_stack_used_size; /* from KFD */ __u32 save_area_used_size; /* from KFD */ __u32 queue_id; /* to KFD */ __u32 pad; }; /* For kfd_ioctl_set_memory_policy_args.default_policy and alternate_policy */ #define KFD_IOC_CACHE_POLICY_COHERENT 0 #define KFD_IOC_CACHE_POLICY_NONCOHERENT 1 struct kfd_ioctl_set_memory_policy_args { __u64 alternate_aperture_base; /* to KFD */ __u64 alternate_aperture_size; /* to KFD */ __u32 gpu_id; /* to KFD */ __u32 default_policy; /* to KFD */ __u32 alternate_policy; /* to KFD */ __u32 pad; }; /* * All counters are monotonic. They are used for profiling of compute jobs. * The profiling is done by userspace. * * In case of GPU reset, the counter should not be affected. */ struct kfd_ioctl_get_clock_counters_args { __u64 gpu_clock_counter; /* from KFD */ __u64 cpu_clock_counter; /* from KFD */ __u64 system_clock_counter; /* from KFD */ __u64 system_clock_freq; /* from KFD */ __u32 gpu_id; /* to KFD */ __u32 pad; }; struct kfd_process_device_apertures { __u64 lds_base; /* from KFD */ __u64 lds_limit; /* from KFD */ __u64 scratch_base; /* from KFD */ __u64 scratch_limit; /* from KFD */ __u64 gpuvm_base; /* from KFD */ __u64 gpuvm_limit; /* from KFD */ __u32 gpu_id; /* from KFD */ __u32 pad; }; /* * AMDKFD_IOC_GET_PROCESS_APERTURES is deprecated. Use * AMDKFD_IOC_GET_PROCESS_APERTURES_NEW instead, which supports an * unlimited number of GPUs. */ #define NUM_OF_SUPPORTED_GPUS 7 struct kfd_ioctl_get_process_apertures_args { struct kfd_process_device_apertures process_apertures[NUM_OF_SUPPORTED_GPUS];/* from KFD */ /* from KFD, should be in the range [1 - NUM_OF_SUPPORTED_GPUS] */ __u32 num_of_nodes; __u32 pad; }; struct kfd_ioctl_get_process_apertures_new_args { /* User allocated. Pointer to struct kfd_process_device_apertures * filled in by Kernel */ __u64 kfd_process_device_apertures_ptr; /* to KFD - indicates amount of memory present in * kfd_process_device_apertures_ptr * from KFD - Number of entries filled by KFD. */ __u32 num_of_nodes; __u32 pad; }; #define MAX_ALLOWED_NUM_POINTS 100 #define MAX_ALLOWED_AW_BUFF_SIZE 4096 #define MAX_ALLOWED_WAC_BUFF_SIZE 128 struct kfd_ioctl_dbg_register_args { __u32 gpu_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_dbg_unregister_args { __u32 gpu_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_dbg_address_watch_args { __u64 content_ptr; /* a pointer to the actual content */ __u32 gpu_id; /* to KFD */ __u32 buf_size_in_bytes; /*including gpu_id and buf_size */ }; struct kfd_ioctl_dbg_wave_control_args { __u64 content_ptr; /* a pointer to the actual content */ __u32 gpu_id; /* to KFD */ __u32 buf_size_in_bytes; /*including gpu_id and buf_size */ }; #define KFD_INVALID_FD 0xffffffff /* Matching HSA_EVENTTYPE */ #define KFD_IOC_EVENT_SIGNAL 0 #define KFD_IOC_EVENT_NODECHANGE 1 #define KFD_IOC_EVENT_DEVICESTATECHANGE 2 #define KFD_IOC_EVENT_HW_EXCEPTION 3 #define KFD_IOC_EVENT_SYSTEM_EVENT 4 #define KFD_IOC_EVENT_DEBUG_EVENT 5 #define KFD_IOC_EVENT_PROFILE_EVENT 6 #define KFD_IOC_EVENT_QUEUE_EVENT 7 #define KFD_IOC_EVENT_MEMORY 8 #define KFD_IOC_WAIT_RESULT_COMPLETE 0 #define KFD_IOC_WAIT_RESULT_TIMEOUT 1 #define KFD_IOC_WAIT_RESULT_FAIL 2 #define KFD_SIGNAL_EVENT_LIMIT 4096 /* For kfd_event_data.hw_exception_data.reset_type. */ #define KFD_HW_EXCEPTION_WHOLE_GPU_RESET 0 #define KFD_HW_EXCEPTION_PER_ENGINE_RESET 1 /* For kfd_event_data.hw_exception_data.reset_cause. */ #define KFD_HW_EXCEPTION_GPU_HANG 0 #define KFD_HW_EXCEPTION_ECC 1 /* For kfd_hsa_memory_exception_data.ErrorType */ #define KFD_MEM_ERR_NO_RAS 0 #define KFD_MEM_ERR_SRAM_ECC 1 #define KFD_MEM_ERR_POISON_CONSUMED 2 #define KFD_MEM_ERR_GPU_HANG 3 struct kfd_ioctl_create_event_args { __u64 event_page_offset; /* from KFD */ __u32 event_trigger_data; /* from KFD - signal events only */ __u32 event_type; /* to KFD */ __u32 auto_reset; /* to KFD */ __u32 node_id; /* to KFD - only valid for certain event types */ __u32 event_id; /* from KFD */ __u32 event_slot_index; /* from KFD */ }; struct kfd_ioctl_destroy_event_args { __u32 event_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_set_event_args { __u32 event_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_reset_event_args { __u32 event_id; /* to KFD */ __u32 pad; }; struct kfd_memory_exception_failure { __u32 NotPresent; /* Page not present or supervisor privilege */ __u32 ReadOnly; /* Write access to a read-only page */ __u32 NoExecute; /* Execute access to a page marked NX */ __u32 imprecise; /* Can't determine the exact fault address */ }; /* memory exception data */ struct kfd_hsa_memory_exception_data { struct kfd_memory_exception_failure failure; __u64 va; __u32 gpu_id; __u32 ErrorType; /* 0 = no RAS error, * 1 = ECC_SRAM, * 2 = Link_SYNFLOOD (poison), * 3 = GPU hang (not attributable to a specific cause), * other values reserved */ }; /* hw exception data */ struct kfd_hsa_hw_exception_data { __u32 reset_type; __u32 reset_cause; __u32 memory_lost; __u32 gpu_id; }; /* Event data */ struct kfd_event_data { union { struct kfd_hsa_memory_exception_data memory_exception_data; struct kfd_hsa_hw_exception_data hw_exception_data; }; /* From KFD */ __u64 kfd_event_data_ext; /* pointer to an extension structure for future exception types */ __u32 event_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_wait_events_args { __u64 events_ptr; /* pointed to struct kfd_event_data array, to KFD */ __u32 num_events; /* to KFD */ __u32 wait_for_all; /* to KFD */ __u32 timeout; /* to KFD */ __u32 wait_result; /* from KFD */ }; struct kfd_ioctl_set_scratch_backing_va_args { __u64 va_addr; /* to KFD */ __u32 gpu_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_get_tile_config_args { /* to KFD: pointer to tile array */ __u64 tile_config_ptr; /* to KFD: pointer to macro tile array */ __u64 macro_tile_config_ptr; /* to KFD: array size allocated by user mode * from KFD: array size filled by kernel */ __u32 num_tile_configs; /* to KFD: array size allocated by user mode * from KFD: array size filled by kernel */ __u32 num_macro_tile_configs; __u32 gpu_id; /* to KFD */ __u32 gb_addr_config; /* from KFD */ __u32 num_banks; /* from KFD */ __u32 num_ranks; /* from KFD */ /* struct size can be extended later if needed * without breaking ABI compatibility */ }; struct kfd_ioctl_set_trap_handler_args { __u64 tba_addr; /* to KFD */ __u64 tma_addr; /* to KFD */ __u32 gpu_id; /* to KFD */ __u32 pad; }; struct kfd_ioctl_acquire_vm_args { __u32 drm_fd; /* to KFD */ __u32 gpu_id; /* to KFD */ }; /* Allocation flags: memory types */ #define KFD_IOC_ALLOC_MEM_FLAGS_VRAM (1 << 0) #define KFD_IOC_ALLOC_MEM_FLAGS_GTT (1 << 1) #define KFD_IOC_ALLOC_MEM_FLAGS_USERPTR (1 << 2) #define KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL (1 << 3) #define KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP (1 << 4) /* Allocation flags: attributes/access options */ #define KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE (1 << 31) #define KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE (1 << 30) #define KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC (1 << 29) #define KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE (1 << 28) #define KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM (1 << 27) #define KFD_IOC_ALLOC_MEM_FLAGS_COHERENT (1 << 26) #define KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED (1 << 25) /* Allocate memory for later SVM (shared virtual memory) mapping. * * @va_addr: virtual address of the memory to be allocated * all later mappings on all GPUs will use this address * @size: size in bytes * @handle: buffer handle returned to user mode, used to refer to * this allocation for mapping, unmapping and freeing * @mmap_offset: for CPU-mapping the allocation by mmapping a render node * for userptrs this is overloaded to specify the CPU address * @gpu_id: device identifier * @flags: memory type and attributes. See KFD_IOC_ALLOC_MEM_FLAGS above */ struct kfd_ioctl_alloc_memory_of_gpu_args { __u64 va_addr; /* to KFD */ __u64 size; /* to KFD */ __u64 handle; /* from KFD */ __u64 mmap_offset; /* to KFD (userptr), from KFD (mmap offset) */ __u32 gpu_id; /* to KFD */ __u32 flags; }; /* Free memory allocated with kfd_ioctl_alloc_memory_of_gpu * * @handle: memory handle returned by alloc */ struct kfd_ioctl_free_memory_of_gpu_args { __u64 handle; /* to KFD */ }; /* Map memory to one or more GPUs * * @handle: memory handle returned by alloc * @device_ids_array_ptr: array of gpu_ids (__u32 per device) * @n_devices: number of devices in the array * @n_success: number of devices mapped successfully * * @n_success returns information to the caller how many devices from * the start of the array have mapped the buffer successfully. It can * be passed into a subsequent retry call to skip those devices. For * the first call the caller should initialize it to 0. * * If the ioctl completes with return code 0 (success), n_success == * n_devices. */ struct kfd_ioctl_map_memory_to_gpu_args { __u64 handle; /* to KFD */ __u64 device_ids_array_ptr; /* to KFD */ __u32 n_devices; /* to KFD */ __u32 n_success; /* to/from KFD */ }; /* Unmap memory from one or more GPUs * * same arguments as for mapping */ struct kfd_ioctl_unmap_memory_from_gpu_args { __u64 handle; /* to KFD */ __u64 device_ids_array_ptr; /* to KFD */ __u32 n_devices; /* to KFD */ __u32 n_success; /* to/from KFD */ }; /* Allocate GWS for specific queue * * @queue_id: queue's id that GWS is allocated for * @num_gws: how many GWS to allocate * @first_gws: index of the first GWS allocated. * only support contiguous GWS allocation */ struct kfd_ioctl_alloc_queue_gws_args { __u32 queue_id; /* to KFD */ __u32 num_gws; /* to KFD */ __u32 first_gws; /* from KFD */ __u32 pad; }; struct kfd_ioctl_get_dmabuf_info_args { __u64 size; /* from KFD */ __u64 metadata_ptr; /* to KFD */ __u32 metadata_size; /* to KFD (space allocated by user) * from KFD (actual metadata size) */ __u32 gpu_id; /* from KFD */ __u32 flags; /* from KFD (KFD_IOC_ALLOC_MEM_FLAGS) */ __u32 dmabuf_fd; /* to KFD */ }; struct kfd_ioctl_import_dmabuf_args { __u64 va_addr; /* to KFD */ __u64 handle; /* from KFD */ __u32 gpu_id; /* to KFD */ __u32 dmabuf_fd; /* to KFD */ }; /* * KFD SMI(System Management Interface) events */ enum kfd_smi_event { KFD_SMI_EVENT_NONE = 0, /* not used */ KFD_SMI_EVENT_VMFAULT = 1, /* event start counting at 1 */ KFD_SMI_EVENT_THERMAL_THROTTLE = 2, KFD_SMI_EVENT_GPU_PRE_RESET = 3, KFD_SMI_EVENT_GPU_POST_RESET = 4, }; #define KFD_SMI_EVENT_MASK_FROM_INDEX(i) (1ULL << ((i) - 1)) #define KFD_SMI_EVENT_MSG_SIZE 96 struct kfd_ioctl_smi_events_args { __u32 gpuid; /* to KFD */ __u32 anon_fd; /* from KFD */ }; /************************************************************************************************** * CRIU IOCTLs (Checkpoint Restore In Userspace) * * When checkpointing a process, the userspace application will perform: * 1. PROCESS_INFO op to determine current process information. This pauses execution and evicts * all the queues. * 2. CHECKPOINT op to checkpoint process contents (BOs, queues, events, svm-ranges) * 3. UNPAUSE op to un-evict all the queues * * When restoring a process, the CRIU userspace application will perform: * * 1. RESTORE op to restore process contents * 2. RESUME op to start the process * * Note: Queues are forced into an evicted state after a successful PROCESS_INFO. User * application needs to perform an UNPAUSE operation after calling PROCESS_INFO. */ enum kfd_criu_op { KFD_CRIU_OP_PROCESS_INFO, KFD_CRIU_OP_CHECKPOINT, KFD_CRIU_OP_UNPAUSE, KFD_CRIU_OP_RESTORE, KFD_CRIU_OP_RESUME, }; /** * kfd_ioctl_criu_args - Arguments perform CRIU operation * @devices: [in/out] User pointer to memory location for devices information. * This is an array of type kfd_criu_device_bucket. * @bos: [in/out] User pointer to memory location for BOs information * This is an array of type kfd_criu_bo_bucket. * @priv_data: [in/out] User pointer to memory location for private data * @priv_data_size: [in/out] Size of priv_data in bytes * @num_devices: [in/out] Number of GPUs used by process. Size of @devices array. * @num_bos [in/out] Number of BOs used by process. Size of @bos array. * @num_objects: [in/out] Number of objects used by process. Objects are opaque to * user application. * @pid: [in/out] PID of the process being checkpointed * @op [in] Type of operation (kfd_criu_op) * * Return: 0 on success, -errno on failure */ struct kfd_ioctl_criu_args { __u64 devices; /* Used during ops: CHECKPOINT, RESTORE */ __u64 bos; /* Used during ops: CHECKPOINT, RESTORE */ __u64 priv_data; /* Used during ops: CHECKPOINT, RESTORE */ __u64 priv_data_size; /* Used during ops: PROCESS_INFO, RESTORE */ __u32 num_devices; /* Used during ops: PROCESS_INFO, RESTORE */ __u32 num_bos; /* Used during ops: PROCESS_INFO, RESTORE */ __u32 num_objects; /* Used during ops: PROCESS_INFO, RESTORE */ __u32 pid; /* Used during ops: PROCESS_INFO, RESUME */ __u32 op; }; struct kfd_criu_device_bucket { __u32 user_gpu_id; __u32 actual_gpu_id; __u32 drm_fd; __u32 pad; }; struct kfd_criu_bo_bucket { __u64 addr; __u64 size; __u64 offset; __u64 restored_offset; /* During restore, updated offset for BO */ __u32 gpu_id; /* This is the user_gpu_id */ __u32 alloc_flags; __u32 dmabuf_fd; __u32 pad; }; /* CRIU IOCTLs - END */ /**************************************************************************************************/ /* Register offset inside the remapped mmio page */ enum kfd_mmio_remap { KFD_MMIO_REMAP_HDP_MEM_FLUSH_CNTL = 0, KFD_MMIO_REMAP_HDP_REG_FLUSH_CNTL = 4, }; /* Guarantee host access to memory */ #define KFD_IOCTL_SVM_FLAG_HOST_ACCESS 0x00000001 /* Fine grained coherency between all devices with access */ #define KFD_IOCTL_SVM_FLAG_COHERENT 0x00000002 /* Use any GPU in same hive as preferred device */ #define KFD_IOCTL_SVM_FLAG_HIVE_LOCAL 0x00000004 /* GPUs only read, allows replication */ #define KFD_IOCTL_SVM_FLAG_GPU_RO 0x00000008 /* Allow execution on GPU */ #define KFD_IOCTL_SVM_FLAG_GPU_EXEC 0x00000010 /* GPUs mostly read, may allow similar optimizations as RO, but writes fault */ #define KFD_IOCTL_SVM_FLAG_GPU_READ_MOSTLY 0x00000020 /** * kfd_ioctl_svm_op - SVM ioctl operations * * @KFD_IOCTL_SVM_OP_SET_ATTR: Modify one or more attributes * @KFD_IOCTL_SVM_OP_GET_ATTR: Query one or more attributes */ enum kfd_ioctl_svm_op { KFD_IOCTL_SVM_OP_SET_ATTR, KFD_IOCTL_SVM_OP_GET_ATTR }; /** kfd_ioctl_svm_location - Enum for preferred and prefetch locations * * GPU IDs are used to specify GPUs as preferred and prefetch locations. * Below definitions are used for system memory or for leaving the preferred * location unspecified. */ enum kfd_ioctl_svm_location { KFD_IOCTL_SVM_LOCATION_SYSMEM = 0, KFD_IOCTL_SVM_LOCATION_UNDEFINED = 0xffffffff }; /** * kfd_ioctl_svm_attr_type - SVM attribute types * * @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: gpuid of the preferred location, 0 for * system memory * @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: gpuid of the prefetch location, 0 for * system memory. Setting this triggers an * immediate prefetch (migration). * @KFD_IOCTL_SVM_ATTR_ACCESS: * @KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: * @KFD_IOCTL_SVM_ATTR_NO_ACCESS: specify memory access for the gpuid given * by the attribute value * @KFD_IOCTL_SVM_ATTR_SET_FLAGS: bitmask of flags to set (see * KFD_IOCTL_SVM_FLAG_...) * @KFD_IOCTL_SVM_ATTR_CLR_FLAGS: bitmask of flags to clear * @KFD_IOCTL_SVM_ATTR_GRANULARITY: migration granularity * (log2 num pages) */ enum kfd_ioctl_svm_attr_type { KFD_IOCTL_SVM_ATTR_PREFERRED_LOC, KFD_IOCTL_SVM_ATTR_PREFETCH_LOC, KFD_IOCTL_SVM_ATTR_ACCESS, KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE, KFD_IOCTL_SVM_ATTR_NO_ACCESS, KFD_IOCTL_SVM_ATTR_SET_FLAGS, KFD_IOCTL_SVM_ATTR_CLR_FLAGS, KFD_IOCTL_SVM_ATTR_GRANULARITY }; /** * kfd_ioctl_svm_attribute - Attributes as pairs of type and value * * The meaning of the @value depends on the attribute type. * * @type: attribute type (see enum @kfd_ioctl_svm_attr_type) * @value: attribute value */ struct kfd_ioctl_svm_attribute { __u32 type; __u32 value; }; /** * kfd_ioctl_svm_args - Arguments for SVM ioctl * * @op specifies the operation to perform (see enum * @kfd_ioctl_svm_op). @start_addr and @size are common for all * operations. * * A variable number of attributes can be given in @attrs. * @nattr specifies the number of attributes. New attributes can be * added in the future without breaking the ABI. If unknown attributes * are given, the function returns -EINVAL. * * @KFD_IOCTL_SVM_OP_SET_ATTR sets attributes for a virtual address * range. It may overlap existing virtual address ranges. If it does, * the existing ranges will be split such that the attribute changes * only apply to the specified address range. * * @KFD_IOCTL_SVM_OP_GET_ATTR returns the intersection of attributes * over all memory in the given range and returns the result as the * attribute value. If different pages have different preferred or * prefetch locations, 0xffffffff will be returned for * @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC or * @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC resepctively. For * @KFD_IOCTL_SVM_ATTR_SET_FLAGS, flags of all pages will be * aggregated by bitwise AND. That means, a flag will be set in the * output, if that flag is set for all pages in the range. For * @KFD_IOCTL_SVM_ATTR_CLR_FLAGS, flags of all pages will be * aggregated by bitwise NOR. That means, a flag will be set in the * output, if that flag is clear for all pages in the range. * The minimum migration granularity throughout the range will be * returned for @KFD_IOCTL_SVM_ATTR_GRANULARITY. * * Querying of accessibility attributes works by initializing the * attribute type to @KFD_IOCTL_SVM_ATTR_ACCESS and the value to the * GPUID being queried. Multiple attributes can be given to allow * querying multiple GPUIDs. The ioctl function overwrites the * attribute type to indicate the access for the specified GPU. */ struct kfd_ioctl_svm_args { __u64 start_addr; __u64 size; __u32 op; __u32 nattr; /* Variable length array of attributes */ struct kfd_ioctl_svm_attribute attrs[]; }; /** * kfd_ioctl_set_xnack_mode_args - Arguments for set_xnack_mode * * @xnack_enabled: [in/out] Whether to enable XNACK mode for this process * * @xnack_enabled indicates whether recoverable page faults should be * enabled for the current process. 0 means disabled, positive means * enabled, negative means leave unchanged. If enabled, virtual address * translations on GFXv9 and later AMD GPUs can return XNACK and retry * the access until a valid PTE is available. This is used to implement * device page faults. * * On output, @xnack_enabled returns the (new) current mode (0 or * positive). Therefore, a negative input value can be used to query * the current mode without changing it. * * The XNACK mode fundamentally changes the way SVM managed memory works * in the driver, with subtle effects on application performance and * functionality. * * Enabling XNACK mode requires shader programs to be compiled * differently. Furthermore, not all GPUs support changing the mode * per-process. Therefore changing the mode is only allowed while no * user mode queues exist in the process. This ensure that no shader * code is running that may be compiled for the wrong mode. And GPUs * that cannot change to the requested mode will prevent the XNACK * mode from occurring. All GPUs used by the process must be in the * same XNACK mode. * * GFXv8 or older GPUs do not support 48 bit virtual addresses or SVM. * Therefore those GPUs are not considered for the XNACK mode switch. * * Return: 0 on success, -errno on failure */ struct kfd_ioctl_set_xnack_mode_args { __s32 xnack_enabled; }; #define AMDKFD_IOCTL_BASE 'K' #define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr) #define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type) #define AMDKFD_IOW(nr, type) _IOW(AMDKFD_IOCTL_BASE, nr, type) #define AMDKFD_IOWR(nr, type) _IOWR(AMDKFD_IOCTL_BASE, nr, type) #define AMDKFD_IOC_GET_VERSION \ AMDKFD_IOR(0x01, struct kfd_ioctl_get_version_args) #define AMDKFD_IOC_CREATE_QUEUE \ AMDKFD_IOWR(0x02, struct kfd_ioctl_create_queue_args) #define AMDKFD_IOC_DESTROY_QUEUE \ AMDKFD_IOWR(0x03, struct kfd_ioctl_destroy_queue_args) #define AMDKFD_IOC_SET_MEMORY_POLICY \ AMDKFD_IOW(0x04, struct kfd_ioctl_set_memory_policy_args) #define AMDKFD_IOC_GET_CLOCK_COUNTERS \ AMDKFD_IOWR(0x05, struct kfd_ioctl_get_clock_counters_args) #define AMDKFD_IOC_GET_PROCESS_APERTURES \ AMDKFD_IOR(0x06, struct kfd_ioctl_get_process_apertures_args) #define AMDKFD_IOC_UPDATE_QUEUE \ AMDKFD_IOW(0x07, struct kfd_ioctl_update_queue_args) #define AMDKFD_IOC_CREATE_EVENT \ AMDKFD_IOWR(0x08, struct kfd_ioctl_create_event_args) #define AMDKFD_IOC_DESTROY_EVENT \ AMDKFD_IOW(0x09, struct kfd_ioctl_destroy_event_args) #define AMDKFD_IOC_SET_EVENT \ AMDKFD_IOW(0x0A, struct kfd_ioctl_set_event_args) #define AMDKFD_IOC_RESET_EVENT \ AMDKFD_IOW(0x0B, struct kfd_ioctl_reset_event_args) #define AMDKFD_IOC_WAIT_EVENTS \ AMDKFD_IOWR(0x0C, struct kfd_ioctl_wait_events_args) #define AMDKFD_IOC_DBG_REGISTER_DEPRECATED \ AMDKFD_IOW(0x0D, struct kfd_ioctl_dbg_register_args) #define AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED \ AMDKFD_IOW(0x0E, struct kfd_ioctl_dbg_unregister_args) #define AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED \ AMDKFD_IOW(0x0F, struct kfd_ioctl_dbg_address_watch_args) #define AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED \ AMDKFD_IOW(0x10, struct kfd_ioctl_dbg_wave_control_args) #define AMDKFD_IOC_SET_SCRATCH_BACKING_VA \ AMDKFD_IOWR(0x11, struct kfd_ioctl_set_scratch_backing_va_args) #define AMDKFD_IOC_GET_TILE_CONFIG \ AMDKFD_IOWR(0x12, struct kfd_ioctl_get_tile_config_args) #define AMDKFD_IOC_SET_TRAP_HANDLER \ AMDKFD_IOW(0x13, struct kfd_ioctl_set_trap_handler_args) #define AMDKFD_IOC_GET_PROCESS_APERTURES_NEW \ AMDKFD_IOWR(0x14, \ struct kfd_ioctl_get_process_apertures_new_args) #define AMDKFD_IOC_ACQUIRE_VM \ AMDKFD_IOW(0x15, struct kfd_ioctl_acquire_vm_args) #define AMDKFD_IOC_ALLOC_MEMORY_OF_GPU \ AMDKFD_IOWR(0x16, struct kfd_ioctl_alloc_memory_of_gpu_args) #define AMDKFD_IOC_FREE_MEMORY_OF_GPU \ AMDKFD_IOW(0x17, struct kfd_ioctl_free_memory_of_gpu_args) #define AMDKFD_IOC_MAP_MEMORY_TO_GPU \ AMDKFD_IOWR(0x18, struct kfd_ioctl_map_memory_to_gpu_args) #define AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU \ AMDKFD_IOWR(0x19, struct kfd_ioctl_unmap_memory_from_gpu_args) #define AMDKFD_IOC_SET_CU_MASK \ AMDKFD_IOW(0x1A, struct kfd_ioctl_set_cu_mask_args) #define AMDKFD_IOC_GET_QUEUE_WAVE_STATE \ AMDKFD_IOWR(0x1B, struct kfd_ioctl_get_queue_wave_state_args) #define AMDKFD_IOC_GET_DMABUF_INFO \ AMDKFD_IOWR(0x1C, struct kfd_ioctl_get_dmabuf_info_args) #define AMDKFD_IOC_IMPORT_DMABUF \ AMDKFD_IOWR(0x1D, struct kfd_ioctl_import_dmabuf_args) #define AMDKFD_IOC_ALLOC_QUEUE_GWS \ AMDKFD_IOWR(0x1E, struct kfd_ioctl_alloc_queue_gws_args) #define AMDKFD_IOC_SMI_EVENTS \ AMDKFD_IOWR(0x1F, struct kfd_ioctl_smi_events_args) #define AMDKFD_IOC_SVM AMDKFD_IOWR(0x20, struct kfd_ioctl_svm_args) #define AMDKFD_IOC_SET_XNACK_MODE \ AMDKFD_IOWR(0x21, struct kfd_ioctl_set_xnack_mode_args) #define AMDKFD_IOC_CRIU_OP \ AMDKFD_IOWR(0x22, struct kfd_ioctl_criu_args) #define AMDKFD_COMMAND_START 0x01 #define AMDKFD_COMMAND_END 0x23 #endif