/* auditfilter.c -- filtering of audit events * * Copyright 2003-2004 Red Hat, Inc. * Copyright 2005 Hewlett-Packard Development Company, L.P. * Copyright 2005 IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include "audit.h" /* There are three lists of rules -- one to search at task creation * time, one to search at syscall entry time, and another to search at * syscall exit time. */ struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { LIST_HEAD_INIT(audit_filter_list[0]), LIST_HEAD_INIT(audit_filter_list[1]), LIST_HEAD_INIT(audit_filter_list[2]), LIST_HEAD_INIT(audit_filter_list[3]), LIST_HEAD_INIT(audit_filter_list[4]), LIST_HEAD_INIT(audit_filter_list[5]), #if AUDIT_NR_FILTERS != 6 #error Fix audit_filter_list initialiser #endif }; static inline void audit_free_rule(struct audit_entry *e) { int i; if (e->rule.fields) for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; kfree(f->se_str); selinux_audit_rule_free(f->se_rule); } kfree(e->rule.fields); kfree(e); } static inline void audit_free_rule_rcu(struct rcu_head *head) { struct audit_entry *e = container_of(head, struct audit_entry, rcu); audit_free_rule(e); } /* Initialize an audit filterlist entry. */ static inline struct audit_entry *audit_init_entry(u32 field_count) { struct audit_entry *entry; struct audit_field *fields; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (unlikely(!entry)) return NULL; fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL); if (unlikely(!fields)) { kfree(entry); return NULL; } entry->rule.fields = fields; return entry; } /* Unpack a filter field's string representation from user-space * buffer. */ static char *audit_unpack_string(void **bufp, size_t *remain, size_t len) { char *str; if (!*bufp || (len == 0) || (len > *remain)) return ERR_PTR(-EINVAL); /* Of the currently implemented string fields, PATH_MAX * defines the longest valid length. */ if (len > PATH_MAX) return ERR_PTR(-ENAMETOOLONG); str = kmalloc(len + 1, GFP_KERNEL); if (unlikely(!str)) return ERR_PTR(-ENOMEM); memcpy(str, *bufp, len); str[len] = 0; *bufp += len; *remain -= len; return str; } /* Common user-space to kernel rule translation. */ static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) { unsigned listnr; struct audit_entry *entry; int i, err; err = -EINVAL; listnr = rule->flags & ~AUDIT_FILTER_PREPEND; switch(listnr) { default: goto exit_err; case AUDIT_FILTER_USER: case AUDIT_FILTER_TYPE: #ifdef CONFIG_AUDITSYSCALL case AUDIT_FILTER_ENTRY: case AUDIT_FILTER_EXIT: case AUDIT_FILTER_TASK: #endif ; } if (rule->action != AUDIT_NEVER && rule->action != AUDIT_POSSIBLE && rule->action != AUDIT_ALWAYS) goto exit_err; if (rule->field_count > AUDIT_MAX_FIELDS) goto exit_err; err = -ENOMEM; entry = audit_init_entry(rule->field_count); if (!entry) goto exit_err; entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; entry->rule.listnr = listnr; entry->rule.action = rule->action; entry->rule.field_count = rule->field_count; for (i = 0; i < AUDIT_BITMASK_SIZE; i++) entry->rule.mask[i] = rule->mask[i]; return entry; exit_err: return ERR_PTR(err); } /* Translate struct audit_rule to kernel's rule respresentation. * Exists for backward compatibility with userspace. */ static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule) { struct audit_entry *entry; int err = 0; int i; entry = audit_to_entry_common(rule); if (IS_ERR(entry)) goto exit_nofree; for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &entry->rule.fields[i]; f->op = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS); f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS); f->val = rule->values[i]; if (f->type & AUDIT_UNUSED_BITS || f->type == AUDIT_SE_USER || f->type == AUDIT_SE_ROLE || f->type == AUDIT_SE_TYPE || f->type == AUDIT_SE_SEN || f->type == AUDIT_SE_CLR) { err = -EINVAL; goto exit_free; } entry->rule.vers_ops = (f->op & AUDIT_OPERATORS) ? 2 : 1; /* Support for legacy operators where * AUDIT_NEGATE bit signifies != and otherwise assumes == */ if (f->op & AUDIT_NEGATE) f->op = AUDIT_NOT_EQUAL; else if (!f->op) f->op = AUDIT_EQUAL; else if (f->op == AUDIT_OPERATORS) { err = -EINVAL; goto exit_free; } } exit_nofree: return entry; exit_free: audit_free_rule(entry); return ERR_PTR(err); } /* Translate struct audit_rule_data to kernel's rule respresentation. */ static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, size_t datasz) { int err = 0; struct audit_entry *entry; void *bufp; size_t remain = datasz - sizeof(struct audit_rule_data); int i; char *str; entry = audit_to_entry_common((struct audit_rule *)data); if (IS_ERR(entry)) goto exit_nofree; bufp = data->buf; entry->rule.vers_ops = 2; for (i = 0; i < data->field_count; i++) { struct audit_field *f = &entry->rule.fields[i]; err = -EINVAL; if (!(data->fieldflags[i] & AUDIT_OPERATORS) || data->fieldflags[i] & ~AUDIT_OPERATORS) goto exit_free; f->op = data->fieldflags[i] & AUDIT_OPERATORS; f->type = data->fields[i]; f->val = data->values[i]; f->se_str = NULL; f->se_rule = NULL; switch(f->type) { case AUDIT_SE_USER: case AUDIT_SE_ROLE: case AUDIT_SE_TYPE: case AUDIT_SE_SEN: case AUDIT_SE_CLR: str = audit_unpack_string(&bufp, &remain, f->val); if (IS_ERR(str)) goto exit_free; entry->rule.buflen += f->val; err = selinux_audit_rule_init(f->type, f->op, str, &f->se_rule); /* Keep currently invalid fields around in case they * become valid after a policy reload. */ if (err == -EINVAL) { printk(KERN_WARNING "audit rule for selinux " "\'%s\' is invalid\n", str); err = 0; } if (err) { kfree(str); goto exit_free; } else f->se_str = str; break; } } exit_nofree: return entry; exit_free: audit_free_rule(entry); return ERR_PTR(err); } /* Pack a filter field's string representation into data block. */ static inline size_t audit_pack_string(void **bufp, char *str) { size_t len = strlen(str); memcpy(*bufp, str, len); *bufp += len; return len; } /* Translate kernel rule respresentation to struct audit_rule. * Exists for backward compatibility with userspace. */ static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule) { struct audit_rule *rule; int i; rule = kmalloc(sizeof(*rule), GFP_KERNEL); if (unlikely(!rule)) return ERR_PTR(-ENOMEM); memset(rule, 0, sizeof(*rule)); rule->flags = krule->flags | krule->listnr; rule->action = krule->action; rule->field_count = krule->field_count; for (i = 0; i < rule->field_count; i++) { rule->values[i] = krule->fields[i].val; rule->fields[i] = krule->fields[i].type; if (krule->vers_ops == 1) { if (krule->fields[i].op & AUDIT_NOT_EQUAL) rule->fields[i] |= AUDIT_NEGATE; } else { rule->fields[i] |= krule->fields[i].op; } } for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i]; return rule; } /* Translate kernel rule respresentation to struct audit_rule_data. */ static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) { struct audit_rule_data *data; void *bufp; int i; data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); if (unlikely(!data)) return ERR_PTR(-ENOMEM); memset(data, 0, sizeof(*data)); data->flags = krule->flags | krule->listnr; data->action = krule->action; data->field_count = krule->field_count; bufp = data->buf; for (i = 0; i < data->field_count; i++) { struct audit_field *f = &krule->fields[i]; data->fields[i] = f->type; data->fieldflags[i] = f->op; switch(f->type) { case AUDIT_SE_USER: case AUDIT_SE_ROLE: case AUDIT_SE_TYPE: case AUDIT_SE_SEN: case AUDIT_SE_CLR: data->buflen += data->values[i] = audit_pack_string(&bufp, f->se_str); break; default: data->values[i] = f->val; } } for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; return data; } /* Compare two rules in kernel format. Considered success if rules * don't match. */ static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) { int i; if (a->flags != b->flags || a->listnr != b->listnr || a->action != b->action || a->field_count != b->field_count) return 1; for (i = 0; i < a->field_count; i++) { if (a->fields[i].type != b->fields[i].type || a->fields[i].op != b->fields[i].op) return 1; switch(a->fields[i].type) { case AUDIT_SE_USER: case AUDIT_SE_ROLE: case AUDIT_SE_TYPE: case AUDIT_SE_SEN: case AUDIT_SE_CLR: if (strcmp(a->fields[i].se_str, b->fields[i].se_str)) return 1; break; default: if (a->fields[i].val != b->fields[i].val) return 1; } } for (i = 0; i < AUDIT_BITMASK_SIZE; i++) if (a->mask[i] != b->mask[i]) return 1; return 0; } /* Duplicate selinux field information. The se_rule is opaque, so must be * re-initialized. */ static inline int audit_dupe_selinux_field(struct audit_field *df, struct audit_field *sf) { int ret = 0; char *se_str; /* our own copy of se_str */ se_str = kstrdup(sf->se_str, GFP_KERNEL); if (unlikely(IS_ERR(se_str))) return -ENOMEM; df->se_str = se_str; /* our own (refreshed) copy of se_rule */ ret = selinux_audit_rule_init(df->type, df->op, df->se_str, &df->se_rule); /* Keep currently invalid fields around in case they * become valid after a policy reload. */ if (ret == -EINVAL) { printk(KERN_WARNING "audit rule for selinux \'%s\' is " "invalid\n", df->se_str); ret = 0; } return ret; } /* Duplicate an audit rule. This will be a deep copy with the exception * of the watch - that pointer is carried over. The selinux specific fields * will be updated in the copy. The point is to be able to replace the old * rule with the new rule in the filterlist, then free the old rule. */ static struct audit_entry *audit_dupe_rule(struct audit_krule *old) { u32 fcount = old->field_count; struct audit_entry *entry; struct audit_krule *new; int i, err = 0; entry = audit_init_entry(fcount); if (unlikely(!entry)) return ERR_PTR(-ENOMEM); new = &entry->rule; new->vers_ops = old->vers_ops; new->flags = old->flags; new->listnr = old->listnr; new->action = old->action; for (i = 0; i < AUDIT_BITMASK_SIZE; i++) new->mask[i] = old->mask[i]; new->buflen = old->buflen; new->field_count = old->field_count; memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); /* deep copy this information, updating the se_rule fields, because * the originals will all be freed when the old rule is freed. */ for (i = 0; i < fcount; i++) { switch (new->fields[i].type) { case AUDIT_SE_USER: case AUDIT_SE_ROLE: case AUDIT_SE_TYPE: case AUDIT_SE_SEN: case AUDIT_SE_CLR: err = audit_dupe_selinux_field(&new->fields[i], &old->fields[i]); } if (err) { audit_free_rule(entry); return ERR_PTR(err); } } return entry; } /* Add rule to given filterlist if not a duplicate. Protected by * audit_netlink_mutex. */ static inline int audit_add_rule(struct audit_entry *entry, struct list_head *list) { struct audit_entry *e; /* Do not use the _rcu iterator here, since this is the only * addition routine. */ list_for_each_entry(e, list, list) { if (!audit_compare_rule(&entry->rule, &e->rule)) return -EEXIST; } if (entry->rule.flags & AUDIT_FILTER_PREPEND) { list_add_rcu(&entry->list, list); } else { list_add_tail_rcu(&entry->list, list); } return 0; } /* Remove an existing rule from filterlist. Protected by * audit_netlink_mutex. */ static inline int audit_del_rule(struct audit_entry *entry, struct list_head *list) { struct audit_entry *e; /* Do not use the _rcu iterator here, since this is the only * deletion routine. */ list_for_each_entry(e, list, list) { if (!audit_compare_rule(&entry->rule, &e->rule)) { list_del_rcu(&e->list); call_rcu(&e->rcu, audit_free_rule_rcu); return 0; } } return -ENOENT; /* No matching rule */ } /* List rules using struct audit_rule. Exists for backward * compatibility with userspace. */ static int audit_list(void *_dest) { int pid, seq; int *dest = _dest; struct audit_entry *entry; int i; pid = dest[0]; seq = dest[1]; kfree(dest); mutex_lock(&audit_netlink_mutex); /* The *_rcu iterators not needed here because we are always called with audit_netlink_mutex held. */ for (i=0; irule); if (unlikely(!rule)) break; audit_send_reply(pid, seq, AUDIT_LIST, 0, 1, rule, sizeof(*rule)); kfree(rule); } } audit_send_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); mutex_unlock(&audit_netlink_mutex); return 0; } /* List rules using struct audit_rule_data. */ static int audit_list_rules(void *_dest) { int pid, seq; int *dest = _dest; struct audit_entry *e; int i; pid = dest[0]; seq = dest[1]; kfree(dest); mutex_lock(&audit_netlink_mutex); /* The *_rcu iterators not needed here because we are always called with audit_netlink_mutex held. */ for (i=0; irule); if (unlikely(!data)) break; audit_send_reply(pid, seq, AUDIT_LIST_RULES, 0, 1, data, sizeof(*data)); kfree(data); } } audit_send_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); mutex_unlock(&audit_netlink_mutex); return 0; } /** * audit_receive_filter - apply all rules to the specified message type * @type: audit message type * @pid: target pid for netlink audit messages * @uid: target uid for netlink audit messages * @seq: netlink audit message sequence (serial) number * @data: payload data * @datasz: size of payload data * @loginuid: loginuid of sender * @sid: SE Linux Security ID of sender */ int audit_receive_filter(int type, int pid, int uid, int seq, void *data, size_t datasz, uid_t loginuid, u32 sid) { struct task_struct *tsk; int *dest; int err = 0; struct audit_entry *entry; switch (type) { case AUDIT_LIST: case AUDIT_LIST_RULES: /* We can't just spew out the rules here because we might fill * the available socket buffer space and deadlock waiting for * auditctl to read from it... which isn't ever going to * happen if we're actually running in the context of auditctl * trying to _send_ the stuff */ dest = kmalloc(2 * sizeof(int), GFP_KERNEL); if (!dest) return -ENOMEM; dest[0] = pid; dest[1] = seq; if (type == AUDIT_LIST) tsk = kthread_run(audit_list, dest, "audit_list"); else tsk = kthread_run(audit_list_rules, dest, "audit_list_rules"); if (IS_ERR(tsk)) { kfree(dest); err = PTR_ERR(tsk); } break; case AUDIT_ADD: case AUDIT_ADD_RULE: if (type == AUDIT_ADD) entry = audit_rule_to_entry(data); else entry = audit_data_to_entry(data, datasz); if (IS_ERR(entry)) return PTR_ERR(entry); err = audit_add_rule(entry, &audit_filter_list[entry->rule.listnr]); if (sid) { char *ctx = NULL; u32 len; if (selinux_ctxid_to_string(sid, &ctx, &len)) { /* Maybe call audit_panic? */ audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, "auid=%u ssid=%u add rule to list=%d res=%d", loginuid, sid, entry->rule.listnr, !err); } else audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, "auid=%u subj=%s add rule to list=%d res=%d", loginuid, ctx, entry->rule.listnr, !err); kfree(ctx); } else audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, "auid=%u add rule to list=%d res=%d", loginuid, entry->rule.listnr, !err); if (err) audit_free_rule(entry); break; case AUDIT_DEL: case AUDIT_DEL_RULE: if (type == AUDIT_DEL) entry = audit_rule_to_entry(data); else entry = audit_data_to_entry(data, datasz); if (IS_ERR(entry)) return PTR_ERR(entry); err = audit_del_rule(entry, &audit_filter_list[entry->rule.listnr]); if (sid) { char *ctx = NULL; u32 len; if (selinux_ctxid_to_string(sid, &ctx, &len)) { /* Maybe call audit_panic? */ audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, "auid=%u ssid=%u remove rule from list=%d res=%d", loginuid, sid, entry->rule.listnr, !err); } else audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, "auid=%u subj=%s remove rule from list=%d res=%d", loginuid, ctx, entry->rule.listnr, !err); kfree(ctx); } else audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE, "auid=%u remove rule from list=%d res=%d", loginuid, entry->rule.listnr, !err); audit_free_rule(entry); break; default: return -EINVAL; } return err; } int audit_comparator(const u32 left, const u32 op, const u32 right) { switch (op) { case AUDIT_EQUAL: return (left == right); case AUDIT_NOT_EQUAL: return (left != right); case AUDIT_LESS_THAN: return (left < right); case AUDIT_LESS_THAN_OR_EQUAL: return (left <= right); case AUDIT_GREATER_THAN: return (left > right); case AUDIT_GREATER_THAN_OR_EQUAL: return (left >= right); } BUG(); return 0; } static int audit_filter_user_rules(struct netlink_skb_parms *cb, struct audit_krule *rule, enum audit_state *state) { int i; for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &rule->fields[i]; int result = 0; switch (f->type) { case AUDIT_PID: result = audit_comparator(cb->creds.pid, f->op, f->val); break; case AUDIT_UID: result = audit_comparator(cb->creds.uid, f->op, f->val); break; case AUDIT_GID: result = audit_comparator(cb->creds.gid, f->op, f->val); break; case AUDIT_LOGINUID: result = audit_comparator(cb->loginuid, f->op, f->val); break; } if (!result) return 0; } switch (rule->action) { case AUDIT_NEVER: *state = AUDIT_DISABLED; break; case AUDIT_POSSIBLE: *state = AUDIT_BUILD_CONTEXT; break; case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; } return 1; } int audit_filter_user(struct netlink_skb_parms *cb, int type) { struct audit_entry *e; enum audit_state state; int ret = 1; rcu_read_lock(); list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { if (audit_filter_user_rules(cb, &e->rule, &state)) { if (state == AUDIT_DISABLED) ret = 0; break; } } rcu_read_unlock(); return ret; /* Audit by default */ } int audit_filter_type(int type) { struct audit_entry *e; int result = 0; rcu_read_lock(); if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) goto unlock_and_return; list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], list) { int i; for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_MSGTYPE) { result = audit_comparator(type, f->op, f->val); if (!result) break; } } if (result) goto unlock_and_return; } unlock_and_return: rcu_read_unlock(); return result; } /* Check to see if the rule contains any selinux fields. Returns 1 if there are selinux fields specified in the rule, 0 otherwise. */ static inline int audit_rule_has_selinux(struct audit_krule *rule) { int i; for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &rule->fields[i]; switch (f->type) { case AUDIT_SE_USER: case AUDIT_SE_ROLE: case AUDIT_SE_TYPE: case AUDIT_SE_SEN: case AUDIT_SE_CLR: return 1; } } return 0; } /* This function will re-initialize the se_rule field of all applicable rules. * It will traverse the filter lists serarching for rules that contain selinux * specific filter fields. When such a rule is found, it is copied, the * selinux field is re-initialized, and the old rule is replaced with the * updated rule. */ int selinux_audit_rule_update(void) { struct audit_entry *entry, *n, *nentry; int i, err = 0; /* audit_netlink_mutex synchronizes the writers */ mutex_lock(&audit_netlink_mutex); for (i = 0; i < AUDIT_NR_FILTERS; i++) { list_for_each_entry_safe(entry, n, &audit_filter_list[i], list) { if (!audit_rule_has_selinux(&entry->rule)) continue; nentry = audit_dupe_rule(&entry->rule); if (unlikely(IS_ERR(nentry))) { /* save the first error encountered for the * return value */ if (!err) err = PTR_ERR(nentry); audit_panic("error updating selinux filters"); list_del_rcu(&entry->list); } else { list_replace_rcu(&entry->list, &nentry->list); } call_rcu(&entry->rcu, audit_free_rule_rcu); } } mutex_unlock(&audit_netlink_mutex); return err; }