// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io */ /* Devmaps primary use is as a backend map for XDP BPF helper call * bpf_redirect_map(). Because XDP is mostly concerned with performance we * spent some effort to ensure the datapath with redirect maps does not use * any locking. This is a quick note on the details. * * We have three possible paths to get into the devmap control plane bpf * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall * will invoke an update, delete, or lookup operation. To ensure updates and * deletes appear atomic from the datapath side xchg() is used to modify the * netdev_map array. Then because the datapath does a lookup into the netdev_map * array (read-only) from an RCU critical section we use call_rcu() to wait for * an rcu grace period before free'ing the old data structures. This ensures the * datapath always has a valid copy. However, the datapath does a "flush" * operation that pushes any pending packets in the driver outside the RCU * critical section. Each bpf_dtab_netdev tracks these pending operations using * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until * this list is empty, indicating outstanding flush operations have completed. * * BPF syscalls may race with BPF program calls on any of the update, delete * or lookup operations. As noted above the xchg() operation also keep the * netdev_map consistent in this case. From the devmap side BPF programs * calling into these operations are the same as multiple user space threads * making system calls. * * Finally, any of the above may race with a netdev_unregister notifier. The * unregister notifier must search for net devices in the map structure that * contain a reference to the net device and remove them. This is a two step * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) * check to see if the ifindex is the same as the net_device being removed. * When removing the dev a cmpxchg() is used to ensure the correct dev is * removed, in the case of a concurrent update or delete operation it is * possible that the initially referenced dev is no longer in the map. As the * notifier hook walks the map we know that new dev references can not be * added by the user because core infrastructure ensures dev_get_by_index() * calls will fail at this point. * * The devmap_hash type is a map type which interprets keys as ifindexes and * indexes these using a hashmap. This allows maps that use ifindex as key to be * densely packed instead of having holes in the lookup array for unused * ifindexes. The setup and packet enqueue/send code is shared between the two * types of devmap; only the lookup and insertion is different. */ #include #include #include #include #define DEV_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) struct xdp_dev_bulk_queue { struct xdp_frame *q[DEV_MAP_BULK_SIZE]; struct list_head flush_node; struct net_device *dev; struct net_device *dev_rx; unsigned int count; }; struct bpf_dtab_netdev { struct net_device *dev; /* must be first member, due to tracepoint */ struct hlist_node index_hlist; struct bpf_dtab *dtab; struct bpf_prog *xdp_prog; struct rcu_head rcu; unsigned int idx; struct bpf_devmap_val val; }; struct bpf_dtab { struct bpf_map map; struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ struct list_head list; /* these are only used for DEVMAP_HASH type maps */ struct hlist_head *dev_index_head; spinlock_t index_lock; unsigned int items; u32 n_buckets; }; static DEFINE_PER_CPU(struct list_head, dev_flush_list); static DEFINE_SPINLOCK(dev_map_lock); static LIST_HEAD(dev_map_list); static struct hlist_head *dev_map_create_hash(unsigned int entries) { int i; struct hlist_head *hash; hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL); if (hash != NULL) for (i = 0; i < entries; i++) INIT_HLIST_HEAD(&hash[i]); return hash; } static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, int idx) { return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; } static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) { u32 valsize = attr->value_size; u64 cost = 0; int err; /* check sanity of attributes. 2 value sizes supported: * 4 bytes: ifindex * 8 bytes: ifindex + prog fd */ if (attr->max_entries == 0 || attr->key_size != 4 || (valsize != offsetofend(struct bpf_devmap_val, ifindex) && valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || attr->map_flags & ~DEV_CREATE_FLAG_MASK) return -EINVAL; /* Lookup returns a pointer straight to dev->ifindex, so make sure the * verifier prevents writes from the BPF side */ attr->map_flags |= BPF_F_RDONLY_PROG; bpf_map_init_from_attr(&dtab->map, attr); if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); if (!dtab->n_buckets) /* Overflow check */ return -EINVAL; cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets; } else { cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); } /* if map size is larger than memlock limit, reject it */ err = bpf_map_charge_init(&dtab->map.memory, cost); if (err) return -EINVAL; if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets); if (!dtab->dev_index_head) goto free_charge; spin_lock_init(&dtab->index_lock); } else { dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *), dtab->map.numa_node); if (!dtab->netdev_map) goto free_charge; } return 0; free_charge: bpf_map_charge_finish(&dtab->map.memory); return -ENOMEM; } static struct bpf_map *dev_map_alloc(union bpf_attr *attr) { struct bpf_dtab *dtab; int err; if (!capable(CAP_NET_ADMIN)) return ERR_PTR(-EPERM); dtab = kzalloc(sizeof(*dtab), GFP_USER); if (!dtab) return ERR_PTR(-ENOMEM); err = dev_map_init_map(dtab, attr); if (err) { kfree(dtab); return ERR_PTR(err); } spin_lock(&dev_map_lock); list_add_tail_rcu(&dtab->list, &dev_map_list); spin_unlock(&dev_map_lock); return &dtab->map; } static void dev_map_free(struct bpf_map *map) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); int i; /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, * so the programs (can be more than one that used this map) were * disconnected from events. The following synchronize_rcu() guarantees * both rcu read critical sections complete and waits for * preempt-disable regions (NAPI being the relevant context here) so we * are certain there will be no further reads against the netdev_map and * all flush operations are complete. Flush operations can only be done * from NAPI context for this reason. */ spin_lock(&dev_map_lock); list_del_rcu(&dtab->list); spin_unlock(&dev_map_lock); bpf_clear_redirect_map(map); synchronize_rcu(); /* Make sure prior __dev_map_entry_free() have completed. */ rcu_barrier(); if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { for (i = 0; i < dtab->n_buckets; i++) { struct bpf_dtab_netdev *dev; struct hlist_head *head; struct hlist_node *next; head = dev_map_index_hash(dtab, i); hlist_for_each_entry_safe(dev, next, head, index_hlist) { hlist_del_rcu(&dev->index_hlist); if (dev->xdp_prog) bpf_prog_put(dev->xdp_prog); dev_put(dev->dev); kfree(dev); } } kfree(dtab->dev_index_head); } else { for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev; dev = dtab->netdev_map[i]; if (!dev) continue; if (dev->xdp_prog) bpf_prog_put(dev->xdp_prog); dev_put(dev->dev); kfree(dev); } bpf_map_area_free(dtab->netdev_map); } kfree(dtab); } static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = next_key; if (index >= dtab->map.max_entries) { *next = 0; return 0; } if (index == dtab->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct hlist_head *head = dev_map_index_hash(dtab, key); struct bpf_dtab_netdev *dev; hlist_for_each_entry_rcu(dev, head, index_hlist, lockdep_is_held(&dtab->index_lock)) if (dev->idx == key) return dev; return NULL; } static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); u32 idx, *next = next_key; struct bpf_dtab_netdev *dev, *next_dev; struct hlist_head *head; int i = 0; if (!key) goto find_first; idx = *(u32 *)key; dev = __dev_map_hash_lookup_elem(map, idx); if (!dev) goto find_first; next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), struct bpf_dtab_netdev, index_hlist); if (next_dev) { *next = next_dev->idx; return 0; } i = idx & (dtab->n_buckets - 1); i++; find_first: for (; i < dtab->n_buckets; i++) { head = dev_map_index_hash(dtab, i); next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), struct bpf_dtab_netdev, index_hlist); if (next_dev) { *next = next_dev->idx; return 0; } } return -ENOENT; } bool dev_map_can_have_prog(struct bpf_map *map) { if ((map->map_type == BPF_MAP_TYPE_DEVMAP || map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) && map->value_size != offsetofend(struct bpf_devmap_val, ifindex)) return true; return false; } static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) { struct net_device *dev = bq->dev; int sent = 0, drops = 0, err = 0; int i; if (unlikely(!bq->count)) return 0; for (i = 0; i < bq->count; i++) { struct xdp_frame *xdpf = bq->q[i]; prefetch(xdpf); } sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); if (sent < 0) { err = sent; sent = 0; goto error; } drops = bq->count - sent; out: bq->count = 0; trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err); bq->dev_rx = NULL; __list_del_clearprev(&bq->flush_node); return 0; error: /* If ndo_xdp_xmit fails with an errno, no frames have been * xmit'ed and it's our responsibility to them free all. */ for (i = 0; i < bq->count; i++) { struct xdp_frame *xdpf = bq->q[i]; xdp_return_frame_rx_napi(xdpf); drops++; } goto out; } /* __dev_flush is called from xdp_do_flush() which _must_ be signaled * from the driver before returning from its napi->poll() routine. The poll() * routine is called either from busy_poll context or net_rx_action signaled * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the * net device can be torn down. On devmap tear down we ensure the flush list * is empty before completing to ensure all flush operations have completed. * When drivers update the bpf program they may need to ensure any flush ops * are also complete. Using synchronize_rcu or call_rcu will suffice for this * because both wait for napi context to exit. */ void __dev_flush(void) { struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); struct xdp_dev_bulk_queue *bq, *tmp; list_for_each_entry_safe(bq, tmp, flush_list, flush_node) bq_xmit_all(bq, XDP_XMIT_FLUSH); } /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or * update happens in parallel here a dev_put wont happen until after reading the * ifindex. */ struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *obj; if (key >= map->max_entries) return NULL; obj = READ_ONCE(dtab->netdev_map[key]); return obj; } /* Runs under RCU-read-side, plus in softirq under NAPI protection. * Thus, safe percpu variable access. */ static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx) { struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) bq_xmit_all(bq, 0); /* Ingress dev_rx will be the same for all xdp_frame's in * bulk_queue, because bq stored per-CPU and must be flushed * from net_device drivers NAPI func end. */ if (!bq->dev_rx) bq->dev_rx = dev_rx; bq->q[bq->count++] = xdpf; if (!bq->flush_node.prev) list_add(&bq->flush_node, flush_list); return 0; } static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, struct net_device *dev_rx) { struct xdp_frame *xdpf; int err; if (!dev->netdev_ops->ndo_xdp_xmit) return -EOPNOTSUPP; err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); if (unlikely(err)) return err; xdpf = xdp_convert_buff_to_frame(xdp); if (unlikely(!xdpf)) return -EOVERFLOW; return bq_enqueue(dev, xdpf, dev_rx); } static struct xdp_buff *dev_map_run_prog(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct xdp_txq_info txq = { .dev = dev }; u32 act; xdp_set_data_meta_invalid(xdp); xdp->txq = &txq; act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: return xdp; case XDP_DROP: break; default: bpf_warn_invalid_xdp_action(act); fallthrough; case XDP_ABORTED: trace_xdp_exception(dev, xdp_prog, act); break; } xdp_return_buff(xdp); return NULL; } int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, struct net_device *dev_rx) { return __xdp_enqueue(dev, xdp, dev_rx); } int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, struct net_device *dev_rx) { struct net_device *dev = dst->dev; if (dst->xdp_prog) { xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog); if (!xdp) return 0; } return __xdp_enqueue(dev, xdp, dev_rx); } int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog) { int err; err = xdp_ok_fwd_dev(dst->dev, skb->len); if (unlikely(err)) return err; skb->dev = dst->dev; generic_xdp_tx(skb, xdp_prog); return 0; } static void *dev_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); return obj ? &obj->val : NULL; } static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, *(u32 *)key); return obj ? &obj->val : NULL; } static void __dev_map_entry_free(struct rcu_head *rcu) { struct bpf_dtab_netdev *dev; dev = container_of(rcu, struct bpf_dtab_netdev, rcu); if (dev->xdp_prog) bpf_prog_put(dev->xdp_prog); dev_put(dev->dev); kfree(dev); } static int dev_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *old_dev; int k = *(u32 *)key; if (k >= map->max_entries) return -EINVAL; /* Use call_rcu() here to ensure any rcu critical sections have * completed as well as any flush operations because call_rcu * will wait for preempt-disable region to complete, NAPI in this * context. And additionally, the driver tear down ensures all * soft irqs are complete before removing the net device in the * case of dev_put equals zero. */ old_dev = xchg(&dtab->netdev_map[k], NULL); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; } static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *old_dev; int k = *(u32 *)key; unsigned long flags; int ret = -ENOENT; spin_lock_irqsave(&dtab->index_lock, flags); old_dev = __dev_map_hash_lookup_elem(map, k); if (old_dev) { dtab->items--; hlist_del_init_rcu(&old_dev->index_hlist); call_rcu(&old_dev->rcu, __dev_map_entry_free); ret = 0; } spin_unlock_irqrestore(&dtab->index_lock, flags); return ret; } static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, struct bpf_dtab *dtab, struct bpf_devmap_val *val, unsigned int idx) { struct bpf_prog *prog = NULL; struct bpf_dtab_netdev *dev; dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, dtab->map.numa_node); if (!dev) return ERR_PTR(-ENOMEM); dev->dev = dev_get_by_index(net, val->ifindex); if (!dev->dev) goto err_out; if (val->bpf_prog.fd > 0) { prog = bpf_prog_get_type_dev(val->bpf_prog.fd, BPF_PROG_TYPE_XDP, false); if (IS_ERR(prog)) goto err_put_dev; if (prog->expected_attach_type != BPF_XDP_DEVMAP) goto err_put_prog; } dev->idx = idx; dev->dtab = dtab; if (prog) { dev->xdp_prog = prog; dev->val.bpf_prog.id = prog->aux->id; } else { dev->xdp_prog = NULL; dev->val.bpf_prog.id = 0; } dev->val.ifindex = val->ifindex; return dev; err_put_prog: bpf_prog_put(prog); err_put_dev: dev_put(dev->dev); err_out: kfree(dev); return ERR_PTR(-EINVAL); } static int __dev_map_update_elem(struct net *net, struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dev, *old_dev; struct bpf_devmap_val val = {}; u32 i = *(u32 *)key; if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; if (unlikely(i >= dtab->map.max_entries)) return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) return -EEXIST; /* already verified value_size <= sizeof val */ memcpy(&val, value, map->value_size); if (!val.ifindex) { dev = NULL; /* can not specify fd if ifindex is 0 */ if (val.bpf_prog.fd > 0) return -EINVAL; } else { dev = __dev_map_alloc_node(net, dtab, &val, i); if (IS_ERR(dev)) return PTR_ERR(dev); } /* Use call_rcu() here to ensure rcu critical sections have completed * Remembering the driver side flush operation will happen before the * net device is removed. */ old_dev = xchg(&dtab->netdev_map[i], dev); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; } static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __dev_map_update_elem(current->nsproxy->net_ns, map, key, value, map_flags); } static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); struct bpf_dtab_netdev *dev, *old_dev; struct bpf_devmap_val val = {}; u32 idx = *(u32 *)key; unsigned long flags; int err = -EEXIST; /* already verified value_size <= sizeof val */ memcpy(&val, value, map->value_size); if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) return -EINVAL; spin_lock_irqsave(&dtab->index_lock, flags); old_dev = __dev_map_hash_lookup_elem(map, idx); if (old_dev && (map_flags & BPF_NOEXIST)) goto out_err; dev = __dev_map_alloc_node(net, dtab, &val, idx); if (IS_ERR(dev)) { err = PTR_ERR(dev); goto out_err; } if (old_dev) { hlist_del_rcu(&old_dev->index_hlist); } else { if (dtab->items >= dtab->map.max_entries) { spin_unlock_irqrestore(&dtab->index_lock, flags); call_rcu(&dev->rcu, __dev_map_entry_free); return -E2BIG; } dtab->items++; } hlist_add_head_rcu(&dev->index_hlist, dev_map_index_hash(dtab, idx)); spin_unlock_irqrestore(&dtab->index_lock, flags); if (old_dev) call_rcu(&old_dev->rcu, __dev_map_entry_free); return 0; out_err: spin_unlock_irqrestore(&dtab->index_lock, flags); return err; } static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __dev_map_hash_update_elem(current->nsproxy->net_ns, map, key, value, map_flags); } static int dev_map_btf_id; const struct bpf_map_ops dev_map_ops = { .map_alloc = dev_map_alloc, .map_free = dev_map_free, .map_get_next_key = dev_map_get_next_key, .map_lookup_elem = dev_map_lookup_elem, .map_update_elem = dev_map_update_elem, .map_delete_elem = dev_map_delete_elem, .map_check_btf = map_check_no_btf, .map_btf_name = "bpf_dtab", .map_btf_id = &dev_map_btf_id, }; static int dev_map_hash_map_btf_id; const struct bpf_map_ops dev_map_hash_ops = { .map_alloc = dev_map_alloc, .map_free = dev_map_free, .map_get_next_key = dev_map_hash_get_next_key, .map_lookup_elem = dev_map_hash_lookup_elem, .map_update_elem = dev_map_hash_update_elem, .map_delete_elem = dev_map_hash_delete_elem, .map_check_btf = map_check_no_btf, .map_btf_name = "bpf_dtab", .map_btf_id = &dev_map_hash_map_btf_id, }; static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, struct net_device *netdev) { unsigned long flags; u32 i; spin_lock_irqsave(&dtab->index_lock, flags); for (i = 0; i < dtab->n_buckets; i++) { struct bpf_dtab_netdev *dev; struct hlist_head *head; struct hlist_node *next; head = dev_map_index_hash(dtab, i); hlist_for_each_entry_safe(dev, next, head, index_hlist) { if (netdev != dev->dev) continue; dtab->items--; hlist_del_rcu(&dev->index_hlist); call_rcu(&dev->rcu, __dev_map_entry_free); } } spin_unlock_irqrestore(&dtab->index_lock, flags); } static int dev_map_notification(struct notifier_block *notifier, ulong event, void *ptr) { struct net_device *netdev = netdev_notifier_info_to_dev(ptr); struct bpf_dtab *dtab; int i, cpu; switch (event) { case NETDEV_REGISTER: if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) break; /* will be freed in free_netdev() */ netdev->xdp_bulkq = __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue), sizeof(void *), GFP_ATOMIC); if (!netdev->xdp_bulkq) return NOTIFY_BAD; for_each_possible_cpu(cpu) per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; break; case NETDEV_UNREGISTER: /* This rcu_read_lock/unlock pair is needed because * dev_map_list is an RCU list AND to ensure a delete * operation does not free a netdev_map entry while we * are comparing it against the netdev being unregistered. */ rcu_read_lock(); list_for_each_entry_rcu(dtab, &dev_map_list, list) { if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { dev_map_hash_remove_netdev(dtab, netdev); continue; } for (i = 0; i < dtab->map.max_entries; i++) { struct bpf_dtab_netdev *dev, *odev; dev = READ_ONCE(dtab->netdev_map[i]); if (!dev || netdev != dev->dev) continue; odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); if (dev == odev) call_rcu(&dev->rcu, __dev_map_entry_free); } } rcu_read_unlock(); break; default: break; } return NOTIFY_OK; } static struct notifier_block dev_map_notifier = { .notifier_call = dev_map_notification, }; static int __init dev_map_init(void) { int cpu; /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != offsetof(struct _bpf_dtab_netdev, dev)); register_netdevice_notifier(&dev_map_notifier); for_each_possible_cpu(cpu) INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); return 0; } subsys_initcall(dev_map_init);