// SPDX-License-Identifier: GPL-2.0-only /* * Dynamic DMA mapping support. * * This implementation is a fallback for platforms that do not support * I/O TLBs (aka DMA address translation hardware). * Copyright (C) 2000 Asit Mallick * Copyright (C) 2000 Goutham Rao * Copyright (C) 2000, 2003 Hewlett-Packard Co * David Mosberger-Tang * * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid * unnecessary i-cache flushing. * 04/07/.. ak Better overflow handling. Assorted fixes. * 05/09/10 linville Add support for syncing ranges, support syncing for * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. * 08/12/11 beckyb Add highmem support */ #define pr_fmt(fmt) "software IO TLB: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DEBUG_FS #include #endif #ifdef CONFIG_DMA_RESTRICTED_POOL #include #include #include #include #include #endif #include #include #include #include #include #define CREATE_TRACE_POINTS #include #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) /* * Minimum IO TLB size to bother booting with. Systems with mainly * 64bit capable cards will only lightly use the swiotlb. If we can't * allocate a contiguous 1MB, we're probably in trouble anyway. */ #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) #define INVALID_PHYS_ADDR (~(phys_addr_t)0) enum swiotlb_force swiotlb_force; struct io_tlb_mem io_tlb_default_mem; /* * Max segment that we can provide which (if pages are contingous) will * not be bounced (unless SWIOTLB_FORCE is set). */ static unsigned int max_segment; static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; static int __init setup_io_tlb_npages(char *str) { if (isdigit(*str)) { /* avoid tail segment of size < IO_TLB_SEGSIZE */ default_nslabs = ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); } if (*str == ',') ++str; if (!strcmp(str, "force")) swiotlb_force = SWIOTLB_FORCE; else if (!strcmp(str, "noforce")) swiotlb_force = SWIOTLB_NO_FORCE; return 0; } early_param("swiotlb", setup_io_tlb_npages); unsigned int swiotlb_max_segment(void) { return io_tlb_default_mem.nslabs ? max_segment : 0; } EXPORT_SYMBOL_GPL(swiotlb_max_segment); void swiotlb_set_max_segment(unsigned int val) { if (swiotlb_force == SWIOTLB_FORCE) max_segment = 1; else max_segment = rounddown(val, PAGE_SIZE); } unsigned long swiotlb_size_or_default(void) { return default_nslabs << IO_TLB_SHIFT; } void __init swiotlb_adjust_size(unsigned long size) { /* * If swiotlb parameter has not been specified, give a chance to * architectures such as those supporting memory encryption to * adjust/expand SWIOTLB size for their use. */ if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) return; size = ALIGN(size, IO_TLB_SIZE); default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); } void swiotlb_print_info(void) { struct io_tlb_mem *mem = &io_tlb_default_mem; if (!mem->nslabs) { pr_warn("No low mem\n"); return; } pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, (mem->nslabs << IO_TLB_SHIFT) >> 20); } static inline unsigned long io_tlb_offset(unsigned long val) { return val & (IO_TLB_SEGSIZE - 1); } static inline unsigned long nr_slots(u64 val) { return DIV_ROUND_UP(val, IO_TLB_SIZE); } /* * Early SWIOTLB allocation may be too early to allow an architecture to * perform the desired operations. This function allows the architecture to * call SWIOTLB when the operations are possible. It needs to be called * before the SWIOTLB memory is used. */ void __init swiotlb_update_mem_attributes(void) { struct io_tlb_mem *mem = &io_tlb_default_mem; void *vaddr; unsigned long bytes; if (!mem->nslabs || mem->late_alloc) return; vaddr = phys_to_virt(mem->start); bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); memset(vaddr, 0, bytes); } static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, unsigned long nslabs, bool late_alloc) { void *vaddr = phys_to_virt(start); unsigned long bytes = nslabs << IO_TLB_SHIFT, i; mem->nslabs = nslabs; mem->start = start; mem->end = mem->start + bytes; mem->index = 0; mem->late_alloc = late_alloc; if (swiotlb_force == SWIOTLB_FORCE) mem->force_bounce = true; spin_lock_init(&mem->lock); for (i = 0; i < mem->nslabs; i++) { mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); mem->slots[i].orig_addr = INVALID_PHYS_ADDR; mem->slots[i].alloc_size = 0; } memset(vaddr, 0, bytes); } int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) { struct io_tlb_mem *mem = &io_tlb_default_mem; size_t alloc_size; if (swiotlb_force == SWIOTLB_NO_FORCE) return 0; /* protect against double initialization */ if (WARN_ON_ONCE(mem->nslabs)) return -ENOMEM; alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); if (!mem->slots) panic("%s: Failed to allocate %zu bytes align=0x%lx\n", __func__, alloc_size, PAGE_SIZE); swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false); if (verbose) swiotlb_print_info(); swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT); return 0; } /* * Statically reserve bounce buffer space and initialize bounce buffer data * structures for the software IO TLB used to implement the DMA API. */ void __init swiotlb_init(int verbose) { size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT); void *tlb; if (swiotlb_force == SWIOTLB_NO_FORCE) return; /* Get IO TLB memory from the low pages */ tlb = memblock_alloc_low(bytes, PAGE_SIZE); if (!tlb) goto fail; if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose)) goto fail_free_mem; return; fail_free_mem: memblock_free(tlb, bytes); fail: pr_warn("Cannot allocate buffer"); } /* * Systems with larger DMA zones (those that don't support ISA) can * initialize the swiotlb later using the slab allocator if needed. * This should be just like above, but with some error catching. */ int swiotlb_late_init_with_default_size(size_t default_size) { unsigned long nslabs = ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); unsigned long bytes; unsigned char *vstart = NULL; unsigned int order; int rc = 0; if (swiotlb_force == SWIOTLB_NO_FORCE) return 0; /* * Get IO TLB memory from the low pages */ order = get_order(nslabs << IO_TLB_SHIFT); nslabs = SLABS_PER_PAGE << order; bytes = nslabs << IO_TLB_SHIFT; while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order); if (vstart) break; order--; } if (!vstart) return -ENOMEM; if (order != get_order(bytes)) { pr_warn("only able to allocate %ld MB\n", (PAGE_SIZE << order) >> 20); nslabs = SLABS_PER_PAGE << order; } rc = swiotlb_late_init_with_tbl(vstart, nslabs); if (rc) free_pages((unsigned long)vstart, order); return rc; } int swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) { struct io_tlb_mem *mem = &io_tlb_default_mem; unsigned long bytes = nslabs << IO_TLB_SHIFT; if (swiotlb_force == SWIOTLB_NO_FORCE) return 0; /* protect against double initialization */ if (WARN_ON_ONCE(mem->nslabs)) return -ENOMEM; mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(array_size(sizeof(*mem->slots), nslabs))); if (!mem->slots) return -ENOMEM; set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true); swiotlb_print_info(); swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT); return 0; } void __init swiotlb_exit(void) { struct io_tlb_mem *mem = &io_tlb_default_mem; unsigned long tbl_vaddr; size_t tbl_size, slots_size; if (!mem->nslabs) return; pr_info("tearing down default memory pool\n"); tbl_vaddr = (unsigned long)phys_to_virt(mem->start); tbl_size = PAGE_ALIGN(mem->end - mem->start); slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); if (mem->late_alloc) { free_pages(tbl_vaddr, get_order(tbl_size)); free_pages((unsigned long)mem->slots, get_order(slots_size)); } else { memblock_free_late(mem->start, tbl_size); memblock_free_late(__pa(mem->slots), slots_size); } memset(mem, 0, sizeof(*mem)); } /* * Return the offset into a iotlb slot required to keep the device happy. */ static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) { return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); } /* * Bounce: copy the swiotlb buffer from or back to the original dma location */ static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir) { struct io_tlb_mem *mem = dev->dma_io_tlb_mem; int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; phys_addr_t orig_addr = mem->slots[index].orig_addr; size_t alloc_size = mem->slots[index].alloc_size; unsigned long pfn = PFN_DOWN(orig_addr); unsigned char *vaddr = phys_to_virt(tlb_addr); unsigned int tlb_offset, orig_addr_offset; if (orig_addr == INVALID_PHYS_ADDR) return; tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); orig_addr_offset = swiotlb_align_offset(dev, orig_addr); if (tlb_offset < orig_addr_offset) { dev_WARN_ONCE(dev, 1, "Access before mapping start detected. orig offset %u, requested offset %u.\n", orig_addr_offset, tlb_offset); return; } tlb_offset -= orig_addr_offset; if (tlb_offset > alloc_size) { dev_WARN_ONCE(dev, 1, "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", alloc_size, size, tlb_offset); return; } orig_addr += tlb_offset; alloc_size -= tlb_offset; if (size > alloc_size) { dev_WARN_ONCE(dev, 1, "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", alloc_size, size); size = alloc_size; } if (PageHighMem(pfn_to_page(pfn))) { /* The buffer does not have a mapping. Map it in and copy */ unsigned int offset = orig_addr & ~PAGE_MASK; char *buffer; unsigned int sz = 0; unsigned long flags; while (size) { sz = min_t(size_t, PAGE_SIZE - offset, size); local_irq_save(flags); buffer = kmap_atomic(pfn_to_page(pfn)); if (dir == DMA_TO_DEVICE) memcpy(vaddr, buffer + offset, sz); else memcpy(buffer + offset, vaddr, sz); kunmap_atomic(buffer); local_irq_restore(flags); size -= sz; pfn++; vaddr += sz; offset = 0; } } else if (dir == DMA_TO_DEVICE) { memcpy(vaddr, phys_to_virt(orig_addr), size); } else { memcpy(phys_to_virt(orig_addr), vaddr, size); } } #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT)) /* * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. */ static inline unsigned long get_max_slots(unsigned long boundary_mask) { if (boundary_mask == ~0UL) return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); return nr_slots(boundary_mask + 1); } static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index) { if (index >= mem->nslabs) return 0; return index; } /* * Find a suitable number of IO TLB entries size that will fit this request and * allocate a buffer from that IO TLB pool. */ static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, size_t alloc_size, unsigned int alloc_align_mask) { struct io_tlb_mem *mem = dev->dma_io_tlb_mem; unsigned long boundary_mask = dma_get_seg_boundary(dev); dma_addr_t tbl_dma_addr = phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; unsigned long max_slots = get_max_slots(boundary_mask); unsigned int iotlb_align_mask = dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); unsigned int nslots = nr_slots(alloc_size), stride; unsigned int index, wrap, count = 0, i; unsigned int offset = swiotlb_align_offset(dev, orig_addr); unsigned long flags; BUG_ON(!nslots); /* * For mappings with an alignment requirement don't bother looping to * unaligned slots once we found an aligned one. For allocations of * PAGE_SIZE or larger only look for page aligned allocations. */ stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; if (alloc_size >= PAGE_SIZE) stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); spin_lock_irqsave(&mem->lock, flags); if (unlikely(nslots > mem->nslabs - mem->used)) goto not_found; index = wrap = wrap_index(mem, ALIGN(mem->index, stride)); do { if (orig_addr && (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { index = wrap_index(mem, index + 1); continue; } /* * If we find a slot that indicates we have 'nslots' number of * contiguous buffers, we allocate the buffers from that slot * and mark the entries as '0' indicating unavailable. */ if (!iommu_is_span_boundary(index, nslots, nr_slots(tbl_dma_addr), max_slots)) { if (mem->slots[index].list >= nslots) goto found; } index = wrap_index(mem, index + stride); } while (index != wrap); not_found: spin_unlock_irqrestore(&mem->lock, flags); return -1; found: for (i = index; i < index + nslots; i++) { mem->slots[i].list = 0; mem->slots[i].alloc_size = alloc_size - (offset + ((i - index) << IO_TLB_SHIFT)); } for (i = index - 1; io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; i--) mem->slots[i].list = ++count; /* * Update the indices to avoid searching in the next round. */ if (index + nslots < mem->nslabs) mem->index = index + nslots; else mem->index = 0; mem->used += nslots; spin_unlock_irqrestore(&mem->lock, flags); return index; } phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, size_t mapping_size, size_t alloc_size, unsigned int alloc_align_mask, enum dma_data_direction dir, unsigned long attrs) { struct io_tlb_mem *mem = dev->dma_io_tlb_mem; unsigned int offset = swiotlb_align_offset(dev, orig_addr); unsigned int i; int index; phys_addr_t tlb_addr; if (!mem) panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); if (mapping_size > alloc_size) { dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", mapping_size, alloc_size); return (phys_addr_t)DMA_MAPPING_ERROR; } index = swiotlb_find_slots(dev, orig_addr, alloc_size + offset, alloc_align_mask); if (index == -1) { if (!(attrs & DMA_ATTR_NO_WARN)) dev_warn_ratelimited(dev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", alloc_size, mem->nslabs, mem->used); return (phys_addr_t)DMA_MAPPING_ERROR; } /* * Save away the mapping from the original address to the DMA address. * This is needed when we sync the memory. Then we sync the buffer if * needed. */ for (i = 0; i < nr_slots(alloc_size + offset); i++) mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); tlb_addr = slot_addr(mem->start, index) + offset; if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); return tlb_addr; } static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) { struct io_tlb_mem *mem = dev->dma_io_tlb_mem; unsigned long flags; unsigned int offset = swiotlb_align_offset(dev, tlb_addr); int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; int nslots = nr_slots(mem->slots[index].alloc_size + offset); int count, i; /* * Return the buffer to the free list by setting the corresponding * entries to indicate the number of contiguous entries available. * While returning the entries to the free list, we merge the entries * with slots below and above the pool being returned. */ spin_lock_irqsave(&mem->lock, flags); if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) count = mem->slots[index + nslots].list; else count = 0; /* * Step 1: return the slots to the free list, merging the slots with * superceeding slots */ for (i = index + nslots - 1; i >= index; i--) { mem->slots[i].list = ++count; mem->slots[i].orig_addr = INVALID_PHYS_ADDR; mem->slots[i].alloc_size = 0; } /* * Step 2: merge the returned slots with the preceding slots, if * available (non zero) */ for (i = index - 1; io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; i--) mem->slots[i].list = ++count; mem->used -= nslots; spin_unlock_irqrestore(&mem->lock, flags); } /* * tlb_addr is the physical address of the bounce buffer to unmap. */ void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, size_t mapping_size, enum dma_data_direction dir, unsigned long attrs) { /* * First, sync the memory before unmapping the entry */ if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); swiotlb_release_slots(dev, tlb_addr); } void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir) { if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); else BUG_ON(dir != DMA_FROM_DEVICE); } void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir) { if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); else BUG_ON(dir != DMA_TO_DEVICE); } /* * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing * to the device copy the data into it as well. */ dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t swiotlb_addr; dma_addr_t dma_addr; trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size, swiotlb_force); swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, attrs); if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) return DMA_MAPPING_ERROR; /* Ensure that the address returned is DMA'ble */ dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); dev_WARN_ONCE(dev, 1, "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(swiotlb_addr, size, dir); return dma_addr; } size_t swiotlb_max_mapping_size(struct device *dev) { return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE; } bool is_swiotlb_active(struct device *dev) { struct io_tlb_mem *mem = dev->dma_io_tlb_mem; return mem && mem->nslabs; } EXPORT_SYMBOL_GPL(is_swiotlb_active); #ifdef CONFIG_DEBUG_FS static struct dentry *debugfs_dir; static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem) { debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used); } static int __init swiotlb_create_default_debugfs(void) { struct io_tlb_mem *mem = &io_tlb_default_mem; debugfs_dir = debugfs_create_dir("swiotlb", NULL); if (mem->nslabs) { mem->debugfs = debugfs_dir; swiotlb_create_debugfs_files(mem); } return 0; } late_initcall(swiotlb_create_default_debugfs); #endif #ifdef CONFIG_DMA_RESTRICTED_POOL #ifdef CONFIG_DEBUG_FS static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem) { struct io_tlb_mem *mem = rmem->priv; mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir); swiotlb_create_debugfs_files(mem); } #else static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem) { } #endif struct page *swiotlb_alloc(struct device *dev, size_t size) { struct io_tlb_mem *mem = dev->dma_io_tlb_mem; phys_addr_t tlb_addr; int index; if (!mem) return NULL; index = swiotlb_find_slots(dev, 0, size, 0); if (index == -1) return NULL; tlb_addr = slot_addr(mem->start, index); return pfn_to_page(PFN_DOWN(tlb_addr)); } bool swiotlb_free(struct device *dev, struct page *page, size_t size) { phys_addr_t tlb_addr = page_to_phys(page); if (!is_swiotlb_buffer(dev, tlb_addr)) return false; swiotlb_release_slots(dev, tlb_addr); return true; } static int rmem_swiotlb_device_init(struct reserved_mem *rmem, struct device *dev) { struct io_tlb_mem *mem = rmem->priv; unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; /* * Since multiple devices can share the same pool, the private data, * io_tlb_mem struct, will be initialized by the first device attached * to it. */ if (!mem) { mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs), GFP_KERNEL); if (!mem->slots) { kfree(mem); return -ENOMEM; } set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), rmem->size >> PAGE_SHIFT); swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false); mem->force_bounce = true; mem->for_alloc = true; rmem->priv = mem; rmem_swiotlb_debugfs_init(rmem); } dev->dma_io_tlb_mem = mem; return 0; } static void rmem_swiotlb_device_release(struct reserved_mem *rmem, struct device *dev) { dev->dma_io_tlb_mem = &io_tlb_default_mem; } static const struct reserved_mem_ops rmem_swiotlb_ops = { .device_init = rmem_swiotlb_device_init, .device_release = rmem_swiotlb_device_release, }; static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) { unsigned long node = rmem->fdt_node; if (of_get_flat_dt_prop(node, "reusable", NULL) || of_get_flat_dt_prop(node, "linux,cma-default", NULL) || of_get_flat_dt_prop(node, "linux,dma-default", NULL) || of_get_flat_dt_prop(node, "no-map", NULL)) return -EINVAL; if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { pr_err("Restricted DMA pool must be accessible within the linear mapping."); return -EINVAL; } rmem->ops = &rmem_swiotlb_ops; pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", &rmem->base, (unsigned long)rmem->size / SZ_1M); return 0; } RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); #endif /* CONFIG_DMA_RESTRICTED_POOL */