/* SPDX-License-Identifier: GPL-2.0-only */ /* * Wait-Die: * The newer transactions are killed when: * It (the new transaction) makes a request for a lock being held * by an older transaction. * * Wound-Wait: * The newer transactions are wounded when: * An older transaction makes a request for a lock being held by * the newer transaction. */ /* * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired * it. */ static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) { #ifdef CONFIG_DEBUG_MUTEXES /* * If this WARN_ON triggers, you used ww_mutex_lock to acquire, * but released with a normal mutex_unlock in this call. * * This should never happen, always use ww_mutex_unlock. */ DEBUG_LOCKS_WARN_ON(ww->ctx); /* * Not quite done after calling ww_acquire_done() ? */ DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); if (ww_ctx->contending_lock) { /* * After -EDEADLK you tried to * acquire a different ww_mutex? Bad! */ DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); /* * You called ww_mutex_lock after receiving -EDEADLK, * but 'forgot' to unlock everything else first? */ DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); ww_ctx->contending_lock = NULL; } /* * Naughty, using a different class will lead to undefined behavior! */ DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); #endif ww_ctx->acquired++; ww->ctx = ww_ctx; } /* * Determine if context @a is 'after' context @b. IOW, @a is a younger * transaction than @b and depending on algorithm either needs to wait for * @b or die. */ static inline bool __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) { return (signed long)(a->stamp - b->stamp) > 0; } /* * Wait-Die; wake a younger waiter context (when locks held) such that it can * die. * * Among waiters with context, only the first one can have other locks acquired * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and * __ww_mutex_check_kill() wake any but the earliest context. */ static bool __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, struct ww_acquire_ctx *ww_ctx) { if (!ww_ctx->is_wait_die) return false; if (waiter->ww_ctx->acquired > 0 && __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { debug_mutex_wake_waiter(lock, waiter); wake_up_process(waiter->task); } return true; } /* * Wound-Wait; wound a younger @hold_ctx if it holds the lock. * * Wound the lock holder if there are waiters with older transactions than * the lock holders. Even if multiple waiters may wound the lock holder, * it's sufficient that only one does. */ static bool __ww_mutex_wound(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, struct ww_acquire_ctx *hold_ctx) { struct task_struct *owner = __mutex_owner(lock); lockdep_assert_held(&lock->wait_lock); /* * Possible through __ww_mutex_add_waiter() when we race with * ww_mutex_set_context_fastpath(). In that case we'll get here again * through __ww_mutex_check_waiters(). */ if (!hold_ctx) return false; /* * Can have !owner because of __mutex_unlock_slowpath(), but if owner, * it cannot go away because we'll have FLAG_WAITERS set and hold * wait_lock. */ if (!owner) return false; if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { hold_ctx->wounded = 1; /* * wake_up_process() paired with set_current_state() * inserts sufficient barriers to make sure @owner either sees * it's wounded in __ww_mutex_check_kill() or has a * wakeup pending to re-read the wounded state. */ if (owner != current) wake_up_process(owner); return true; } return false; } /* * We just acquired @lock under @ww_ctx, if there are later contexts waiting * behind us on the wait-list, check if they need to die, or wound us. * * See __ww_mutex_add_waiter() for the list-order construction; basically the * list is ordered by stamp, smallest (oldest) first. * * This relies on never mixing wait-die/wound-wait on the same wait-list; * which is currently ensured by that being a ww_class property. * * The current task must not be on the wait list. */ static void __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) { struct mutex_waiter *cur; lockdep_assert_held(&lock->wait_lock); list_for_each_entry(cur, &lock->wait_list, list) { if (!cur->ww_ctx) continue; if (__ww_mutex_die(lock, cur, ww_ctx) || __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) break; } } /* * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx * and wake up any waiters so they can recheck. */ static __always_inline void ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { ww_mutex_lock_acquired(lock, ctx); /* * The lock->ctx update should be visible on all cores before * the WAITERS check is done, otherwise contended waiters might be * missed. The contended waiters will either see ww_ctx == NULL * and keep spinning, or it will acquire wait_lock, add itself * to waiter list and sleep. */ smp_mb(); /* See comments above and below. */ /* * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS * MB MB * [R] MUTEX_FLAG_WAITERS [R] ww->ctx * * The memory barrier above pairs with the memory barrier in * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx * and/or !empty list. */ if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) return; /* * Uh oh, we raced in fastpath, check if any of the waiters need to * die or wound us. */ raw_spin_lock(&lock->base.wait_lock); __ww_mutex_check_waiters(&lock->base, ctx); raw_spin_unlock(&lock->base.wait_lock); } static __always_inline int __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) { if (ww_ctx->acquired > 0) { #ifdef CONFIG_DEBUG_MUTEXES struct ww_mutex *ww; ww = container_of(lock, struct ww_mutex, base); DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); ww_ctx->contending_lock = ww; #endif return -EDEADLK; } return 0; } /* * Check the wound condition for the current lock acquire. * * Wound-Wait: If we're wounded, kill ourself. * * Wait-Die: If we're trying to acquire a lock already held by an older * context, kill ourselves. * * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to * look at waiters before us in the wait-list. */ static inline int __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, struct ww_acquire_ctx *ctx) { struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); struct mutex_waiter *cur; if (ctx->acquired == 0) return 0; if (!ctx->is_wait_die) { if (ctx->wounded) return __ww_mutex_kill(lock, ctx); return 0; } if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) return __ww_mutex_kill(lock, ctx); /* * If there is a waiter in front of us that has a context, then its * stamp is earlier than ours and we must kill ourself. */ cur = waiter; list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { if (!cur->ww_ctx) continue; return __ww_mutex_kill(lock, ctx); } return 0; } /* * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest * first. Such that older contexts are preferred to acquire the lock over * younger contexts. * * Waiters without context are interspersed in FIFO order. * * Furthermore, for Wait-Die kill ourself immediately when possible (there are * older contexts already waiting) to avoid unnecessary waiting and for * Wound-Wait ensure we wound the owning context when it is younger. */ static inline int __ww_mutex_add_waiter(struct mutex_waiter *waiter, struct mutex *lock, struct ww_acquire_ctx *ww_ctx) { struct mutex_waiter *cur; struct list_head *pos; bool is_wait_die; if (!ww_ctx) { __mutex_add_waiter(lock, waiter, &lock->wait_list); return 0; } is_wait_die = ww_ctx->is_wait_die; /* * Add the waiter before the first waiter with a higher stamp. * Waiters without a context are skipped to avoid starving * them. Wait-Die waiters may die here. Wound-Wait waiters * never die here, but they are sorted in stamp order and * may wound the lock holder. */ pos = &lock->wait_list; list_for_each_entry_reverse(cur, &lock->wait_list, list) { if (!cur->ww_ctx) continue; if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { /* * Wait-Die: if we find an older context waiting, there * is no point in queueing behind it, as we'd have to * die the moment it would acquire the lock. */ if (is_wait_die) { int ret = __ww_mutex_kill(lock, ww_ctx); if (ret) return ret; } break; } pos = &cur->list; /* Wait-Die: ensure younger waiters die. */ __ww_mutex_die(lock, cur, ww_ctx); } __mutex_add_waiter(lock, waiter, pos); /* * Wound-Wait: if we're blocking on a mutex owned by a younger context, * wound that such that we might proceed. */ if (!is_wait_die) { struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); /* * See ww_mutex_set_context_fastpath(). Orders setting * MUTEX_FLAG_WAITERS vs the ww->ctx load, * such that either we or the fastpath will wound @ww->ctx. */ smp_mb(); __ww_mutex_wound(lock, ww_ctx, ww->ctx); } return 0; } static inline void __ww_mutex_unlock(struct ww_mutex *lock) { if (lock->ctx) { #ifdef CONFIG_DEBUG_MUTEXES DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); #endif if (lock->ctx->acquired > 0) lock->ctx->acquired--; lock->ctx = NULL; } }