/* * drivers/power/process.c - Functions for starting/stopping processes on * suspend transitions. * * Originally from swsusp. */ #undef DEBUG #include #include #include #include #include /* * Timeout for stopping processes */ #define TIMEOUT (20 * HZ) #define FREEZER_KERNEL_THREADS 0 #define FREEZER_USER_SPACE 1 static inline int freezeable(struct task_struct * p) { if ((p == current) || (p->flags & PF_NOFREEZE) || (p->exit_state != 0)) return 0; return 1; } /* * freezing is complete, mark current process as frozen */ static inline void frozen_process(void) { if (!unlikely(current->flags & PF_NOFREEZE)) { current->flags |= PF_FROZEN; wmb(); } clear_freeze_flag(current); } /* Refrigerator is place where frozen processes are stored :-). */ void refrigerator(void) { /* Hmm, should we be allowed to suspend when there are realtime processes around? */ long save; task_lock(current); if (freezing(current)) { frozen_process(); task_unlock(current); } else { task_unlock(current); return; } save = current->state; pr_debug("%s entered refrigerator\n", current->comm); spin_lock_irq(¤t->sighand->siglock); recalc_sigpending(); /* We sent fake signal, clean it up */ spin_unlock_irq(¤t->sighand->siglock); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!frozen(current)) break; schedule(); } pr_debug("%s left refrigerator\n", current->comm); __set_current_state(save); } static void fake_signal_wake_up(struct task_struct *p, int resume) { unsigned long flags; spin_lock_irqsave(&p->sighand->siglock, flags); signal_wake_up(p, resume); spin_unlock_irqrestore(&p->sighand->siglock, flags); } static void send_fake_signal(struct task_struct *p) { if (p->state == TASK_STOPPED) force_sig_specific(SIGSTOP, p); fake_signal_wake_up(p, p->state == TASK_STOPPED); } static int has_mm(struct task_struct *p) { return (p->mm && !(p->flags & PF_BORROWED_MM)); } /** * freeze_task - send a freeze request to given task * @p: task to send the request to * @with_mm_only: if set, the request will only be sent if the task has its * own mm * Return value: 0, if @with_mm_only is set and the task has no mm of its * own or the task is frozen, 1, otherwise * * The freeze request is sent by seting the tasks's TIF_FREEZE flag and * either sending a fake signal to it or waking it up, depending on whether * or not it has its own mm (ie. it is a user land task). If @with_mm_only * is set and the task has no mm of its own (ie. it is a kernel thread), * its TIF_FREEZE flag should not be set. * * The task_lock() is necessary to prevent races with exit_mm() or * use_mm()/unuse_mm() from occuring. */ static int freeze_task(struct task_struct *p, int with_mm_only) { int ret = 1; task_lock(p); if (freezing(p)) { if (has_mm(p)) { if (!signal_pending(p)) fake_signal_wake_up(p, 0); } else { if (with_mm_only) ret = 0; else wake_up_state(p, TASK_INTERRUPTIBLE); } } else { rmb(); if (frozen(p)) { ret = 0; } else { if (has_mm(p)) { set_freeze_flag(p); send_fake_signal(p); } else { if (with_mm_only) { ret = 0; } else { set_freeze_flag(p); wake_up_state(p, TASK_INTERRUPTIBLE); } } } } task_unlock(p); return ret; } static void cancel_freezing(struct task_struct *p) { unsigned long flags; if (freezing(p)) { pr_debug(" clean up: %s\n", p->comm); clear_freeze_flag(p); spin_lock_irqsave(&p->sighand->siglock, flags); recalc_sigpending_and_wake(p); spin_unlock_irqrestore(&p->sighand->siglock, flags); } } static int try_to_freeze_tasks(int freeze_user_space) { struct task_struct *g, *p; unsigned long end_time; unsigned int todo; struct timeval start, end; s64 elapsed_csecs64; unsigned int elapsed_csecs; do_gettimeofday(&start); end_time = jiffies + TIMEOUT; do { todo = 0; read_lock(&tasklist_lock); do_each_thread(g, p) { if (frozen(p) || !freezeable(p)) continue; if (p->state == TASK_TRACED && frozen(p->parent)) { cancel_freezing(p); continue; } if (!freeze_task(p, freeze_user_space)) continue; if (!freezer_should_skip(p)) todo++; } while_each_thread(g, p); read_unlock(&tasklist_lock); yield(); /* Yield is okay here */ if (time_after(jiffies, end_time)) break; } while (todo); do_gettimeofday(&end); elapsed_csecs64 = timeval_to_ns(&end) - timeval_to_ns(&start); do_div(elapsed_csecs64, NSEC_PER_SEC / 100); elapsed_csecs = elapsed_csecs64; if (todo) { /* This does not unfreeze processes that are already frozen * (we have slightly ugly calling convention in that respect, * and caller must call thaw_processes() if something fails), * but it cleans up leftover PF_FREEZE requests. */ printk("\n"); printk(KERN_ERR "Freezing of tasks failed after %d.%02d seconds " "(%d tasks refusing to freeze):\n", elapsed_csecs / 100, elapsed_csecs % 100, todo); show_state(); read_lock(&tasklist_lock); do_each_thread(g, p) { task_lock(p); if (freezing(p) && !freezer_should_skip(p)) printk(KERN_ERR " %s\n", p->comm); cancel_freezing(p); task_unlock(p); } while_each_thread(g, p); read_unlock(&tasklist_lock); } else { printk("(elapsed %d.%02d seconds) ", elapsed_csecs / 100, elapsed_csecs % 100); } return todo ? -EBUSY : 0; } /** * freeze_processes - tell processes to enter the refrigerator */ int freeze_processes(void) { int error; printk("Freezing user space processes ... "); error = try_to_freeze_tasks(FREEZER_USER_SPACE); if (error) goto Exit; printk("done.\n"); printk("Freezing remaining freezable tasks ... "); error = try_to_freeze_tasks(FREEZER_KERNEL_THREADS); if (error) goto Exit; printk("done."); Exit: BUG_ON(in_atomic()); printk("\n"); return error; } static void thaw_tasks(int thaw_user_space) { struct task_struct *g, *p; read_lock(&tasklist_lock); do_each_thread(g, p) { if (!freezeable(p)) continue; if (!p->mm == thaw_user_space) continue; thaw_process(p); } while_each_thread(g, p); read_unlock(&tasklist_lock); } void thaw_processes(void) { printk("Restarting tasks ... "); thaw_tasks(FREEZER_KERNEL_THREADS); thaw_tasks(FREEZER_USER_SPACE); schedule(); printk("done.\n"); } EXPORT_SYMBOL(refrigerator);