/* * linux/kernel/power/swsusp.c * * This file provides code to write suspend image to swap and read it back. * * Copyright (C) 1998-2001 Gabor Kuti * Copyright (C) 1998,2001-2005 Pavel Machek * * This file is released under the GPLv2. * * I'd like to thank the following people for their work: * * Pavel Machek : * Modifications, defectiveness pointing, being with me at the very beginning, * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. * * Steve Doddi : * Support the possibility of hardware state restoring. * * Raph : * Support for preserving states of network devices and virtual console * (including X and svgatextmode) * * Kurt Garloff : * Straightened the critical function in order to prevent compilers from * playing tricks with local variables. * * Andreas Mohr * * Alex Badea : * Fixed runaway init * * Rafael J. Wysocki * Added the swap map data structure and reworked the handling of swap * * More state savers are welcome. Especially for the scsi layer... * * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "power.h" /* * Preferred image size in MB (tunable via /sys/power/image_size). * When it is set to N, swsusp will do its best to ensure the image * size will not exceed N MB, but if that is impossible, it will * try to create the smallest image possible. */ unsigned int image_size = 500; #ifdef CONFIG_HIGHMEM unsigned int count_highmem_pages(void); int save_highmem(void); int restore_highmem(void); #else static int save_highmem(void) { return 0; } static int restore_highmem(void) { return 0; } static unsigned int count_highmem_pages(void) { return 0; } #endif extern char resume_file[]; #define SWSUSP_SIG "S1SUSPEND" static struct swsusp_header { char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)]; swp_entry_t image; char orig_sig[10]; char sig[10]; } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header; static struct swsusp_info swsusp_info; /* * Saving part... */ static unsigned short root_swap = 0xffff; static int mark_swapfiles(swp_entry_t start) { int error; rw_swap_page_sync(READ, swp_entry(root_swap, 0), virt_to_page((unsigned long)&swsusp_header)); if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) { memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); memcpy(swsusp_header.sig,SWSUSP_SIG, 10); swsusp_header.image = start; error = rw_swap_page_sync(WRITE, swp_entry(root_swap, 0), virt_to_page((unsigned long) &swsusp_header)); } else { pr_debug("swsusp: Partition is not swap space.\n"); error = -ENODEV; } return error; } /* * Check whether the swap device is the specified resume * device, irrespective of whether they are specified by * identical names. * * (Thus, device inode aliasing is allowed. You can say /dev/hda4 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs] * and they'll be considered the same device. This is *necessary* for * devfs, since the resume code can only recognize the form /dev/hda4, * but the suspend code would see the long name.) */ static inline int is_resume_device(const struct swap_info_struct *swap_info) { struct file *file = swap_info->swap_file; struct inode *inode = file->f_dentry->d_inode; return S_ISBLK(inode->i_mode) && swsusp_resume_device == MKDEV(imajor(inode), iminor(inode)); } static int swsusp_swap_check(void) /* This is called before saving image */ { int i; if (!swsusp_resume_device) return -ENODEV; spin_lock(&swap_lock); for (i = 0; i < MAX_SWAPFILES; i++) { if (!(swap_info[i].flags & SWP_WRITEOK)) continue; if (is_resume_device(swap_info + i)) { spin_unlock(&swap_lock); root_swap = i; return 0; } } spin_unlock(&swap_lock); return -ENODEV; } /** * write_page - Write one page to a fresh swap location. * @addr: Address we're writing. * @loc: Place to store the entry we used. * * Allocate a new swap entry and 'sync' it. Note we discard -EIO * errors. That is an artifact left over from swsusp. It did not * check the return of rw_swap_page_sync() at all, since most pages * written back to swap would return -EIO. * This is a partial improvement, since we will at least return other * errors, though we need to eventually fix the damn code. */ static int write_page(unsigned long addr, swp_entry_t *loc) { swp_entry_t entry; int error = -ENOSPC; entry = get_swap_page_of_type(root_swap); if (swp_offset(entry)) { error = rw_swap_page_sync(WRITE, entry, virt_to_page(addr)); if (!error || error == -EIO) *loc = entry; } return error; } /** * Swap map-handling functions * * The swap map is a data structure used for keeping track of each page * written to the swap. It consists of many swap_map_page structures * that contain each an array of MAP_PAGE_SIZE swap entries. * These structures are linked together with the help of either the * .next (in memory) or the .next_swap (in swap) member. * * The swap map is created during suspend. At that time we need to keep * it in memory, because we have to free all of the allocated swap * entries if an error occurs. The memory needed is preallocated * so that we know in advance if there's enough of it. * * The first swap_map_page structure is filled with the swap entries that * correspond to the first MAP_PAGE_SIZE data pages written to swap and * so on. After the all of the data pages have been written, the order * of the swap_map_page structures in the map is reversed so that they * can be read from swap in the original order. This causes the data * pages to be loaded in exactly the same order in which they have been * saved. * * During resume we only need to use one swap_map_page structure * at a time, which means that we only need to use two memory pages for * reading the image - one for reading the swap_map_page structures * and the second for reading the data pages from swap. */ #define MAP_PAGE_SIZE ((PAGE_SIZE - sizeof(swp_entry_t) - sizeof(void *)) \ / sizeof(swp_entry_t)) struct swap_map_page { swp_entry_t entries[MAP_PAGE_SIZE]; swp_entry_t next_swap; struct swap_map_page *next; }; static inline void free_swap_map(struct swap_map_page *swap_map) { struct swap_map_page *swp; while (swap_map) { swp = swap_map->next; free_page((unsigned long)swap_map); swap_map = swp; } } static struct swap_map_page *alloc_swap_map(unsigned int nr_pages) { struct swap_map_page *swap_map, *swp; unsigned n = 0; if (!nr_pages) return NULL; pr_debug("alloc_swap_map(): nr_pages = %d\n", nr_pages); swap_map = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); swp = swap_map; for (n = MAP_PAGE_SIZE; n < nr_pages; n += MAP_PAGE_SIZE) { swp->next = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); swp = swp->next; if (!swp) { free_swap_map(swap_map); return NULL; } } return swap_map; } /** * reverse_swap_map - reverse the order of pages in the swap map * @swap_map */ static inline struct swap_map_page *reverse_swap_map(struct swap_map_page *swap_map) { struct swap_map_page *prev, *next; prev = NULL; while (swap_map) { next = swap_map->next; swap_map->next = prev; prev = swap_map; swap_map = next; } return prev; } /** * free_swap_map_entries - free the swap entries allocated to store * the swap map @swap_map (this is only called in case of an error) */ static inline void free_swap_map_entries(struct swap_map_page *swap_map) { while (swap_map) { if (swap_map->next_swap.val) swap_free(swap_map->next_swap); swap_map = swap_map->next; } } /** * save_swap_map - save the swap map used for tracing the data pages * stored in the swap */ static int save_swap_map(struct swap_map_page *swap_map, swp_entry_t *start) { swp_entry_t entry = (swp_entry_t){0}; int error; while (swap_map) { swap_map->next_swap = entry; if ((error = write_page((unsigned long)swap_map, &entry))) return error; swap_map = swap_map->next; } *start = entry; return 0; } /** * free_image_entries - free the swap entries allocated to store * the image data pages (this is only called in case of an error) */ static inline void free_image_entries(struct swap_map_page *swp) { unsigned k; while (swp) { for (k = 0; k < MAP_PAGE_SIZE; k++) if (swp->entries[k].val) swap_free(swp->entries[k]); swp = swp->next; } } /** * The swap_map_handle structure is used for handling the swap map in * a file-alike way */ struct swap_map_handle { struct swap_map_page *cur; unsigned int k; }; static inline void init_swap_map_handle(struct swap_map_handle *handle, struct swap_map_page *map) { handle->cur = map; handle->k = 0; } static inline int swap_map_write_page(struct swap_map_handle *handle, unsigned long addr) { int error; error = write_page(addr, handle->cur->entries + handle->k); if (error) return error; if (++handle->k >= MAP_PAGE_SIZE) { handle->cur = handle->cur->next; handle->k = 0; } return 0; } /** * save_image_data - save the data pages pointed to by the PBEs * from the list @pblist using the swap map handle @handle * (assume there are @nr_pages data pages to save) */ static int save_image_data(struct pbe *pblist, struct swap_map_handle *handle, unsigned int nr_pages) { unsigned int m; struct pbe *p; int error = 0; printk("Saving image data pages (%u pages) ... ", nr_pages); m = nr_pages / 100; if (!m) m = 1; nr_pages = 0; for_each_pbe (p, pblist) { error = swap_map_write_page(handle, p->address); if (error) break; if (!(nr_pages % m)) printk("\b\b\b\b%3d%%", nr_pages / m); nr_pages++; } if (!error) printk("\b\b\b\bdone\n"); return error; } static void dump_info(void) { pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code); pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages); pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname); pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename); pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release); pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version); pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine); pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname); pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus); pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages); pr_debug(" swsusp: Total: %ld Pages\n", swsusp_info.pages); } static void init_header(unsigned int nr_pages) { memset(&swsusp_info, 0, sizeof(swsusp_info)); swsusp_info.version_code = LINUX_VERSION_CODE; swsusp_info.num_physpages = num_physpages; memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname)); swsusp_info.cpus = num_online_cpus(); swsusp_info.image_pages = nr_pages; swsusp_info.pages = nr_pages + ((nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT) + 1; } /** * pack_orig_addresses - the .orig_address fields of the PBEs from the * list starting at @pbe are stored in the array @buf[] (1 page) */ static inline struct pbe *pack_orig_addresses(unsigned long *buf, struct pbe *pbe) { int j; for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { buf[j] = pbe->orig_address; pbe = pbe->next; } if (!pbe) for (; j < PAGE_SIZE / sizeof(long); j++) buf[j] = 0; return pbe; } /** * save_image_metadata - save the .orig_address fields of the PBEs * from the list @pblist using the swap map handle @handle */ static int save_image_metadata(struct pbe *pblist, struct swap_map_handle *handle) { unsigned long *buf; unsigned int n = 0; struct pbe *p; int error = 0; printk("Saving image metadata ... "); buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC); if (!buf) return -ENOMEM; p = pblist; while (p) { p = pack_orig_addresses(buf, p); error = swap_map_write_page(handle, (unsigned long)buf); if (error) break; n++; } free_page((unsigned long)buf); if (!error) printk("done (%u pages saved)\n", n); return error; } /** * enough_swap - Make sure we have enough swap to save the image. * * Returns TRUE or FALSE after checking the total amount of swap * space avaiable from the resume partition. */ static int enough_swap(unsigned int nr_pages) { unsigned int free_swap = swap_info[root_swap].pages - swap_info[root_swap].inuse_pages; pr_debug("swsusp: free swap pages: %u\n", free_swap); return free_swap > (nr_pages + PAGES_FOR_IO + (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); } /** * swsusp_write - Write entire image and metadata. * * It is important _NOT_ to umount filesystems at this point. We want * them synced (in case something goes wrong) but we DO not want to mark * filesystem clean: it is not. (And it does not matter, if we resume * correctly, we'll mark system clean, anyway.) */ int swsusp_write(struct pbe *pblist, unsigned int nr_pages) { struct swap_map_page *swap_map; struct swap_map_handle handle; swp_entry_t start; int error; if ((error = swsusp_swap_check())) { printk(KERN_ERR "swsusp: Cannot find swap device, try swapon -a.\n"); return error; } if (!enough_swap(nr_pages)) { printk(KERN_ERR "swsusp: Not enough free swap\n"); return -ENOSPC; } init_header(nr_pages); swap_map = alloc_swap_map(swsusp_info.pages); if (!swap_map) return -ENOMEM; init_swap_map_handle(&handle, swap_map); error = swap_map_write_page(&handle, (unsigned long)&swsusp_info); if (!error) error = save_image_metadata(pblist, &handle); if (!error) error = save_image_data(pblist, &handle, nr_pages); if (error) goto Free_image_entries; swap_map = reverse_swap_map(swap_map); error = save_swap_map(swap_map, &start); if (error) goto Free_map_entries; dump_info(); printk( "S" ); error = mark_swapfiles(start); printk( "|\n" ); if (error) goto Free_map_entries; Free_swap_map: free_swap_map(swap_map); return error; Free_map_entries: free_swap_map_entries(swap_map); Free_image_entries: free_image_entries(swap_map); goto Free_swap_map; } /** * swsusp_shrink_memory - Try to free as much memory as needed * * ... but do not OOM-kill anyone * * Notice: all userland should be stopped before it is called, or * livelock is possible. */ #define SHRINK_BITE 10000 int swsusp_shrink_memory(void) { long size, tmp; struct zone *zone; unsigned long pages = 0; unsigned int i = 0; char *p = "-\\|/"; printk("Shrinking memory... "); do { size = 2 * count_highmem_pages(); size += size / 50 + count_data_pages(); size += (size + PBES_PER_PAGE - 1) / PBES_PER_PAGE + PAGES_FOR_IO; tmp = size; for_each_zone (zone) if (!is_highmem(zone)) tmp -= zone->free_pages; if (tmp > 0) { tmp = shrink_all_memory(SHRINK_BITE); if (!tmp) return -ENOMEM; pages += tmp; } else if (size > (image_size * 1024 * 1024) / PAGE_SIZE) { tmp = shrink_all_memory(SHRINK_BITE); pages += tmp; } printk("\b%c", p[i++%4]); } while (tmp > 0); printk("\bdone (%lu pages freed)\n", pages); return 0; } int swsusp_suspend(void) { int error; if ((error = arch_prepare_suspend())) return error; local_irq_disable(); /* At this point, device_suspend() has been called, but *not* * device_power_down(). We *must* device_power_down() now. * Otherwise, drivers for some devices (e.g. interrupt controllers) * become desynchronized with the actual state of the hardware * at resume time, and evil weirdness ensues. */ if ((error = device_power_down(PMSG_FREEZE))) { printk(KERN_ERR "Some devices failed to power down, aborting suspend\n"); goto Enable_irqs; } if ((error = save_highmem())) { printk(KERN_ERR "swsusp: Not enough free pages for highmem\n"); goto Restore_highmem; } save_processor_state(); if ((error = swsusp_arch_suspend())) printk(KERN_ERR "Error %d suspending\n", error); /* Restore control flow magically appears here */ restore_processor_state(); Restore_highmem: restore_highmem(); device_power_up(); Enable_irqs: local_irq_enable(); return error; } int swsusp_resume(void) { int error; local_irq_disable(); if (device_power_down(PMSG_FREEZE)) printk(KERN_ERR "Some devices failed to power down, very bad\n"); /* We'll ignore saved state, but this gets preempt count (etc) right */ save_processor_state(); error = swsusp_arch_resume(); /* Code below is only ever reached in case of failure. Otherwise * execution continues at place where swsusp_arch_suspend was called */ BUG_ON(!error); /* The only reason why swsusp_arch_resume() can fail is memory being * very tight, so we have to free it as soon as we can to avoid * subsequent failures */ swsusp_free(); restore_processor_state(); restore_highmem(); touch_softlockup_watchdog(); device_power_up(); local_irq_enable(); return error; } /** * mark_unsafe_pages - mark the pages that cannot be used for storing * the image during resume, because they conflict with the pages that * had been used before suspend */ static void mark_unsafe_pages(struct pbe *pblist) { struct zone *zone; unsigned long zone_pfn; struct pbe *p; if (!pblist) /* a sanity check */ return; /* Clear page flags */ for_each_zone (zone) { for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) if (pfn_valid(zone_pfn + zone->zone_start_pfn)) ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); } /* Mark orig addresses */ for_each_pbe (p, pblist) SetPageNosaveFree(virt_to_page(p->orig_address)); } static void copy_page_backup_list(struct pbe *dst, struct pbe *src) { /* We assume both lists contain the same number of elements */ while (src) { dst->orig_address = src->orig_address; dst = dst->next; src = src->next; } } /* * Using bio to read from swap. * This code requires a bit more work than just using buffer heads * but, it is the recommended way for 2.5/2.6. * The following are to signal the beginning and end of I/O. Bios * finish asynchronously, while we want them to happen synchronously. * A simple atomic_t, and a wait loop take care of this problem. */ static atomic_t io_done = ATOMIC_INIT(0); static int end_io(struct bio *bio, unsigned int num, int err) { if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) panic("I/O error reading memory image"); atomic_set(&io_done, 0); return 0; } static struct block_device *resume_bdev; /** * submit - submit BIO request. * @rw: READ or WRITE. * @off physical offset of page. * @page: page we're reading or writing. * * Straight from the textbook - allocate and initialize the bio. * If we're writing, make sure the page is marked as dirty. * Then submit it and wait. */ static int submit(int rw, pgoff_t page_off, void *page) { int error = 0; struct bio *bio; bio = bio_alloc(GFP_ATOMIC, 1); if (!bio) return -ENOMEM; bio->bi_sector = page_off * (PAGE_SIZE >> 9); bio_get(bio); bio->bi_bdev = resume_bdev; bio->bi_end_io = end_io; if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) { printk("swsusp: ERROR: adding page to bio at %ld\n",page_off); error = -EFAULT; goto Done; } if (rw == WRITE) bio_set_pages_dirty(bio); atomic_set(&io_done, 1); submit_bio(rw | (1 << BIO_RW_SYNC), bio); while (atomic_read(&io_done)) yield(); Done: bio_put(bio); return error; } static int bio_read_page(pgoff_t page_off, void *page) { return submit(READ, page_off, page); } static int bio_write_page(pgoff_t page_off, void *page) { return submit(WRITE, page_off, page); } /** * The following functions allow us to read data using a swap map * in a file-alike way */ static inline void release_swap_map_reader(struct swap_map_handle *handle) { if (handle->cur) free_page((unsigned long)handle->cur); handle->cur = NULL; } static inline int get_swap_map_reader(struct swap_map_handle *handle, swp_entry_t start) { int error; if (!swp_offset(start)) return -EINVAL; handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); if (!handle->cur) return -ENOMEM; error = bio_read_page(swp_offset(start), handle->cur); if (error) { release_swap_map_reader(handle); return error; } handle->k = 0; return 0; } static inline int swap_map_read_page(struct swap_map_handle *handle, void *buf) { unsigned long offset; int error; if (!handle->cur) return -EINVAL; offset = swp_offset(handle->cur->entries[handle->k]); if (!offset) return -EINVAL; error = bio_read_page(offset, buf); if (error) return error; if (++handle->k >= MAP_PAGE_SIZE) { handle->k = 0; offset = swp_offset(handle->cur->next_swap); if (!offset) release_swap_map_reader(handle); else error = bio_read_page(offset, handle->cur); } return error; } static int check_header(void) { char *reason = NULL; dump_info(); if (swsusp_info.version_code != LINUX_VERSION_CODE) reason = "kernel version"; if (swsusp_info.num_physpages != num_physpages) reason = "memory size"; if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname)) reason = "system type"; if (strcmp(swsusp_info.uts.release,system_utsname.release)) reason = "kernel release"; if (strcmp(swsusp_info.uts.version,system_utsname.version)) reason = "version"; if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) reason = "machine"; if (reason) { printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); return -EPERM; } return 0; } /** * load_image_data - load the image data using the swap map handle * @handle and store them using the page backup list @pblist * (assume there are @nr_pages pages to load) */ static int load_image_data(struct pbe *pblist, struct swap_map_handle *handle, unsigned int nr_pages) { int error; unsigned int m; struct pbe *p; if (!pblist) return -EINVAL; printk("Loading image data pages (%u pages) ... ", nr_pages); m = nr_pages / 100; if (!m) m = 1; nr_pages = 0; p = pblist; while (p) { error = swap_map_read_page(handle, (void *)p->address); if (error) break; p = p->next; if (!(nr_pages % m)) printk("\b\b\b\b%3d%%", nr_pages / m); nr_pages++; } if (!error) printk("\b\b\b\bdone\n"); return error; } /** * unpack_orig_addresses - copy the elements of @buf[] (1 page) to * the PBEs in the list starting at @pbe */ static inline struct pbe *unpack_orig_addresses(unsigned long *buf, struct pbe *pbe) { int j; for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { pbe->orig_address = buf[j]; pbe = pbe->next; } return pbe; } /** * load_image_metadata - load the image metadata using the swap map * handle @handle and put them into the PBEs in the list @pblist */ static int load_image_metadata(struct pbe *pblist, struct swap_map_handle *handle) { struct pbe *p; unsigned long *buf; unsigned int n = 0; int error = 0; printk("Loading image metadata ... "); buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC); if (!buf) return -ENOMEM; p = pblist; while (p) { error = swap_map_read_page(handle, buf); if (error) break; p = unpack_orig_addresses(buf, p); n++; } free_page((unsigned long)buf); if (!error) printk("done (%u pages loaded)\n", n); return error; } int swsusp_read(struct pbe **pblist_ptr) { int error; struct pbe *p, *pblist; struct swap_map_handle handle; unsigned int nr_pages; if (IS_ERR(resume_bdev)) { pr_debug("swsusp: block device not initialised\n"); return PTR_ERR(resume_bdev); } error = get_swap_map_reader(&handle, swsusp_header.image); if (!error) error = swap_map_read_page(&handle, &swsusp_info); if (!error) error = check_header(); if (error) return error; nr_pages = swsusp_info.image_pages; p = alloc_pagedir(nr_pages, GFP_ATOMIC, 0); if (!p) return -ENOMEM; error = load_image_metadata(p, &handle); if (!error) { mark_unsafe_pages(p); pblist = alloc_pagedir(nr_pages, GFP_ATOMIC, 1); if (pblist) copy_page_backup_list(pblist, p); free_pagedir(p); if (!pblist) error = -ENOMEM; /* Allocate memory for the image and read the data from swap */ if (!error) error = alloc_data_pages(pblist, GFP_ATOMIC, 1); if (!error) { release_eaten_pages(); error = load_image_data(pblist, &handle, nr_pages); } if (!error) *pblist_ptr = pblist; } release_swap_map_reader(&handle); blkdev_put(resume_bdev); if (!error) pr_debug("swsusp: Reading resume file was successful\n"); else pr_debug("swsusp: Error %d resuming\n", error); return error; } /** * swsusp_check - Check for swsusp signature in the resume device */ int swsusp_check(void) { int error; resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); if (!IS_ERR(resume_bdev)) { set_blocksize(resume_bdev, PAGE_SIZE); memset(&swsusp_header, 0, sizeof(swsusp_header)); if ((error = bio_read_page(0, &swsusp_header))) return error; if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) { memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10); /* Reset swap signature now */ error = bio_write_page(0, &swsusp_header); } else { return -EINVAL; } if (error) blkdev_put(resume_bdev); else pr_debug("swsusp: Signature found, resuming\n"); } else { error = PTR_ERR(resume_bdev); } if (error) pr_debug("swsusp: Error %d check for resume file\n", error); return error; } /** * swsusp_close - close swap device. */ void swsusp_close(void) { if (IS_ERR(resume_bdev)) { pr_debug("swsusp: block device not initialised\n"); return; } blkdev_put(resume_bdev); }