// SPDX-License-Identifier: GPL-2.0+ /* * Read-Copy Update mechanism for mutual exclusion (tree-based version) * * Copyright IBM Corporation, 2008 * * Authors: Dipankar Sarma * Manfred Spraul * Paul E. McKenney * * Based on the original work by Paul McKenney * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU */ #define pr_fmt(fmt) "rcu: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../time/tick-internal.h" #include "tree.h" #include "rcu.h" #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "rcutree." /* Data structures. */ static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { #ifdef CONFIG_RCU_NOCB_CPU .cblist.flags = SEGCBLIST_RCU_CORE, #endif }; static struct rcu_state rcu_state = { .level = { &rcu_state.node[0] }, .gp_state = RCU_GP_IDLE, .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), .name = RCU_NAME, .abbr = RCU_ABBR, .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, }; /* Dump rcu_node combining tree at boot to verify correct setup. */ static bool dump_tree; module_param(dump_tree, bool, 0444); /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); #ifndef CONFIG_PREEMPT_RT module_param(use_softirq, bool, 0444); #endif /* Control rcu_node-tree auto-balancing at boot time. */ static bool rcu_fanout_exact; module_param(rcu_fanout_exact, bool, 0444); /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ static int rcu_fanout_leaf = RCU_FANOUT_LEAF; module_param(rcu_fanout_leaf, int, 0444); int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; /* Number of rcu_nodes at specified level. */ int num_rcu_lvl[] = NUM_RCU_LVL_INIT; int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ /* * The rcu_scheduler_active variable is initialized to the value * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, * RCU can assume that there is but one task, allowing RCU to (for example) * optimize synchronize_rcu() to a simple barrier(). When this variable * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required * to detect real grace periods. This variable is also used to suppress * boot-time false positives from lockdep-RCU error checking. Finally, it * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU * is fully initialized, including all of its kthreads having been spawned. */ int rcu_scheduler_active __read_mostly; EXPORT_SYMBOL_GPL(rcu_scheduler_active); /* * The rcu_scheduler_fully_active variable transitions from zero to one * during the early_initcall() processing, which is after the scheduler * is capable of creating new tasks. So RCU processing (for example, * creating tasks for RCU priority boosting) must be delayed until after * rcu_scheduler_fully_active transitions from zero to one. We also * currently delay invocation of any RCU callbacks until after this point. * * It might later prove better for people registering RCU callbacks during * early boot to take responsibility for these callbacks, but one step at * a time. */ static int rcu_scheduler_fully_active __read_mostly; static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, unsigned long gps, unsigned long flags); static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); static void invoke_rcu_core(void); static void rcu_report_exp_rdp(struct rcu_data *rdp); static void sync_sched_exp_online_cleanup(int cpu); static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); /* * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" * real-time priority(enabling/disabling) is controlled by * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. */ static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; module_param(kthread_prio, int, 0444); /* Delay in jiffies for grace-period initialization delays, debug only. */ static int gp_preinit_delay; module_param(gp_preinit_delay, int, 0444); static int gp_init_delay; module_param(gp_init_delay, int, 0444); static int gp_cleanup_delay; module_param(gp_cleanup_delay, int, 0444); // Add delay to rcu_read_unlock() for strict grace periods. static int rcu_unlock_delay; #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD module_param(rcu_unlock_delay, int, 0444); #endif /* * This rcu parameter is runtime-read-only. It reflects * a minimum allowed number of objects which can be cached * per-CPU. Object size is equal to one page. This value * can be changed at boot time. */ static int rcu_min_cached_objs = 5; module_param(rcu_min_cached_objs, int, 0444); // A page shrinker can ask for pages to be freed to make them // available for other parts of the system. This usually happens // under low memory conditions, and in that case we should also // defer page-cache filling for a short time period. // // The default value is 5 seconds, which is long enough to reduce // interference with the shrinker while it asks other systems to // drain their caches. static int rcu_delay_page_cache_fill_msec = 5000; module_param(rcu_delay_page_cache_fill_msec, int, 0444); /* Retrieve RCU kthreads priority for rcutorture */ int rcu_get_gp_kthreads_prio(void) { return kthread_prio; } EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); /* * Number of grace periods between delays, normalized by the duration of * the delay. The longer the delay, the more the grace periods between * each delay. The reason for this normalization is that it means that, * for non-zero delays, the overall slowdown of grace periods is constant * regardless of the duration of the delay. This arrangement balances * the need for long delays to increase some race probabilities with the * need for fast grace periods to increase other race probabilities. */ #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ /* * Compute the mask of online CPUs for the specified rcu_node structure. * This will not be stable unless the rcu_node structure's ->lock is * held, but the bit corresponding to the current CPU will be stable * in most contexts. */ static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) { return READ_ONCE(rnp->qsmaskinitnext); } /* * Is the CPU corresponding to the specified rcu_data structure online * from RCU's perspective? This perspective is given by that structure's * ->qsmaskinitnext field rather than by the global cpu_online_mask. */ static bool rcu_rdp_cpu_online(struct rcu_data *rdp) { return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); } /* * Return true if an RCU grace period is in progress. The READ_ONCE()s * permit this function to be invoked without holding the root rcu_node * structure's ->lock, but of course results can be subject to change. */ static int rcu_gp_in_progress(void) { return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); } /* * Return the number of callbacks queued on the specified CPU. * Handles both the nocbs and normal cases. */ static long rcu_get_n_cbs_cpu(int cpu) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); if (rcu_segcblist_is_enabled(&rdp->cblist)) return rcu_segcblist_n_cbs(&rdp->cblist); return 0; } void rcu_softirq_qs(void) { rcu_qs(); rcu_preempt_deferred_qs(current); rcu_tasks_qs(current, false); } /* * Reset the current CPU's ->dynticks counter to indicate that the * newly onlined CPU is no longer in an extended quiescent state. * This will either leave the counter unchanged, or increment it * to the next non-quiescent value. * * The non-atomic test/increment sequence works because the upper bits * of the ->dynticks counter are manipulated only by the corresponding CPU, * or when the corresponding CPU is offline. */ static void rcu_dynticks_eqs_online(void) { if (ct_dynticks() & RCU_DYNTICKS_IDX) return; ct_state_inc(RCU_DYNTICKS_IDX); } /* * Snapshot the ->dynticks counter with full ordering so as to allow * stable comparison of this counter with past and future snapshots. */ static int rcu_dynticks_snap(int cpu) { smp_mb(); // Fundamental RCU ordering guarantee. return ct_dynticks_cpu_acquire(cpu); } /* * Return true if the snapshot returned from rcu_dynticks_snap() * indicates that RCU is in an extended quiescent state. */ static bool rcu_dynticks_in_eqs(int snap) { return !(snap & RCU_DYNTICKS_IDX); } /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ bool rcu_is_idle_cpu(int cpu) { return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)); } /* * Return true if the CPU corresponding to the specified rcu_data * structure has spent some time in an extended quiescent state since * rcu_dynticks_snap() returned the specified snapshot. */ static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) { return snap != rcu_dynticks_snap(rdp->cpu); } /* * Return true if the referenced integer is zero while the specified * CPU remains within a single extended quiescent state. */ bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { int snap; // If not quiescent, force back to earlier extended quiescent state. snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; smp_rmb(); // Order ->dynticks and *vp reads. if (READ_ONCE(*vp)) return false; // Non-zero, so report failure; smp_rmb(); // Order *vp read and ->dynticks re-read. // If still in the same extended quiescent state, we are good! return snap == ct_dynticks_cpu(cpu); } /* * Let the RCU core know that this CPU has gone through the scheduler, * which is a quiescent state. This is called when the need for a * quiescent state is urgent, so we burn an atomic operation and full * memory barriers to let the RCU core know about it, regardless of what * this CPU might (or might not) do in the near future. * * We inform the RCU core by emulating a zero-duration dyntick-idle period. * * The caller must have disabled interrupts and must not be idle. */ notrace void rcu_momentary_dyntick_idle(void) { int seq; raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); /* It is illegal to call this from idle state. */ WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); rcu_preempt_deferred_qs(current); } EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); /** * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle * * If the current CPU is idle and running at a first-level (not nested) * interrupt, or directly, from idle, return true. * * The caller must have at least disabled IRQs. */ static int rcu_is_cpu_rrupt_from_idle(void) { long nesting; /* * Usually called from the tick; but also used from smp_function_call() * for expedited grace periods. This latter can result in running from * the idle task, instead of an actual IPI. */ lockdep_assert_irqs_disabled(); /* Check for counter underflows */ RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, "RCU dynticks_nesting counter underflow!"); RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, "RCU dynticks_nmi_nesting counter underflow/zero!"); /* Are we at first interrupt nesting level? */ nesting = ct_dynticks_nmi_nesting(); if (nesting > 1) return false; /* * If we're not in an interrupt, we must be in the idle task! */ WARN_ON_ONCE(!nesting && !is_idle_task(current)); /* Does CPU appear to be idle from an RCU standpoint? */ return ct_dynticks_nesting() == 0; } #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) // Maximum callbacks per rcu_do_batch ... #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. static long blimit = DEFAULT_RCU_BLIMIT; #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. static long qhimark = DEFAULT_RCU_QHIMARK; #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. static long qlowmark = DEFAULT_RCU_QLOMARK; #define DEFAULT_RCU_QOVLD_MULT 2 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. static long qovld_calc = -1; // No pre-initialization lock acquisitions! module_param(blimit, long, 0444); module_param(qhimark, long, 0444); module_param(qlowmark, long, 0444); module_param(qovld, long, 0444); static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; static ulong jiffies_till_next_fqs = ULONG_MAX; static bool rcu_kick_kthreads; static int rcu_divisor = 7; module_param(rcu_divisor, int, 0644); /* Force an exit from rcu_do_batch() after 3 milliseconds. */ static long rcu_resched_ns = 3 * NSEC_PER_MSEC; module_param(rcu_resched_ns, long, 0644); /* * How long the grace period must be before we start recruiting * quiescent-state help from rcu_note_context_switch(). */ static ulong jiffies_till_sched_qs = ULONG_MAX; module_param(jiffies_till_sched_qs, ulong, 0444); static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ /* * Make sure that we give the grace-period kthread time to detect any * idle CPUs before taking active measures to force quiescent states. * However, don't go below 100 milliseconds, adjusted upwards for really * large systems. */ static void adjust_jiffies_till_sched_qs(void) { unsigned long j; /* If jiffies_till_sched_qs was specified, respect the request. */ if (jiffies_till_sched_qs != ULONG_MAX) { WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); return; } /* Otherwise, set to third fqs scan, but bound below on large system. */ j = READ_ONCE(jiffies_till_first_fqs) + 2 * READ_ONCE(jiffies_till_next_fqs); if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); WRITE_ONCE(jiffies_to_sched_qs, j); } static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) { ulong j; int ret = kstrtoul(val, 0, &j); if (!ret) { WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); adjust_jiffies_till_sched_qs(); } return ret; } static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) { ulong j; int ret = kstrtoul(val, 0, &j); if (!ret) { WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); adjust_jiffies_till_sched_qs(); } return ret; } static const struct kernel_param_ops first_fqs_jiffies_ops = { .set = param_set_first_fqs_jiffies, .get = param_get_ulong, }; static const struct kernel_param_ops next_fqs_jiffies_ops = { .set = param_set_next_fqs_jiffies, .get = param_get_ulong, }; module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); module_param(rcu_kick_kthreads, bool, 0644); static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); static int rcu_pending(int user); /* * Return the number of RCU GPs completed thus far for debug & stats. */ unsigned long rcu_get_gp_seq(void) { return READ_ONCE(rcu_state.gp_seq); } EXPORT_SYMBOL_GPL(rcu_get_gp_seq); /* * Return the number of RCU expedited batches completed thus far for * debug & stats. Odd numbers mean that a batch is in progress, even * numbers mean idle. The value returned will thus be roughly double * the cumulative batches since boot. */ unsigned long rcu_exp_batches_completed(void) { return rcu_state.expedited_sequence; } EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); /* * Return the root node of the rcu_state structure. */ static struct rcu_node *rcu_get_root(void) { return &rcu_state.node[0]; } /* * Send along grace-period-related data for rcutorture diagnostics. */ void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, unsigned long *gp_seq) { switch (test_type) { case RCU_FLAVOR: *flags = READ_ONCE(rcu_state.gp_flags); *gp_seq = rcu_seq_current(&rcu_state.gp_seq); break; default: break; } } EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) /* * An empty function that will trigger a reschedule on * IRQ tail once IRQs get re-enabled on userspace/guest resume. */ static void late_wakeup_func(struct irq_work *work) { } static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = IRQ_WORK_INIT(late_wakeup_func); /* * If either: * * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. * * In these cases the late RCU wake ups aren't supported in the resched loops and our * last resort is to fire a local irq_work that will trigger a reschedule once IRQs * get re-enabled again. */ noinstr void rcu_irq_work_resched(void) { struct rcu_data *rdp = this_cpu_ptr(&rcu_data); if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) return; if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) return; instrumentation_begin(); if (do_nocb_deferred_wakeup(rdp) && need_resched()) { irq_work_queue(this_cpu_ptr(&late_wakeup_work)); } instrumentation_end(); } #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ #ifdef CONFIG_PROVE_RCU /** * rcu_irq_exit_check_preempt - Validate that scheduling is possible */ void rcu_irq_exit_check_preempt(void) { lockdep_assert_irqs_disabled(); RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, "RCU dynticks_nesting counter underflow/zero!"); RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != DYNTICK_IRQ_NONIDLE, "Bad RCU dynticks_nmi_nesting counter\n"); RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), "RCU in extended quiescent state!"); } #endif /* #ifdef CONFIG_PROVE_RCU */ #ifdef CONFIG_NO_HZ_FULL /** * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. * * The scheduler tick is not normally enabled when CPUs enter the kernel * from nohz_full userspace execution. After all, nohz_full userspace * execution is an RCU quiescent state and the time executing in the kernel * is quite short. Except of course when it isn't. And it is not hard to * cause a large system to spend tens of seconds or even minutes looping * in the kernel, which can cause a number of problems, include RCU CPU * stall warnings. * * Therefore, if a nohz_full CPU fails to report a quiescent state * in a timely manner, the RCU grace-period kthread sets that CPU's * ->rcu_urgent_qs flag with the expectation that the next interrupt or * exception will invoke this function, which will turn on the scheduler * tick, which will enable RCU to detect that CPU's quiescent states, * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. * The tick will be disabled once a quiescent state is reported for * this CPU. * * Of course, in carefully tuned systems, there might never be an * interrupt or exception. In that case, the RCU grace-period kthread * will eventually cause one to happen. However, in less carefully * controlled environments, this function allows RCU to get what it * needs without creating otherwise useless interruptions. */ void __rcu_irq_enter_check_tick(void) { struct rcu_data *rdp = this_cpu_ptr(&rcu_data); // If we're here from NMI there's nothing to do. if (in_nmi()) return; RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); if (!tick_nohz_full_cpu(rdp->cpu) || !READ_ONCE(rdp->rcu_urgent_qs) || READ_ONCE(rdp->rcu_forced_tick)) { // RCU doesn't need nohz_full help from this CPU, or it is // already getting that help. return; } // We get here only when not in an extended quiescent state and // from interrupts (as opposed to NMIs). Therefore, (1) RCU is // already watching and (2) The fact that we are in an interrupt // handler and that the rcu_node lock is an irq-disabled lock // prevents self-deadlock. So we can safely recheck under the lock. // Note that the nohz_full state currently cannot change. raw_spin_lock_rcu_node(rdp->mynode); if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { // A nohz_full CPU is in the kernel and RCU needs a // quiescent state. Turn on the tick! WRITE_ONCE(rdp->rcu_forced_tick, true); tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); } raw_spin_unlock_rcu_node(rdp->mynode); } #endif /* CONFIG_NO_HZ_FULL */ /* * Check to see if any future non-offloaded RCU-related work will need * to be done by the current CPU, even if none need be done immediately, * returning 1 if so. This function is part of the RCU implementation; * it is -not- an exported member of the RCU API. This is used by * the idle-entry code to figure out whether it is safe to disable the * scheduler-clock interrupt. * * Just check whether or not this CPU has non-offloaded RCU callbacks * queued. */ int rcu_needs_cpu(void) { return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); } /* * If any sort of urgency was applied to the current CPU (for example, * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order * to get to a quiescent state, disable it. */ static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) { raw_lockdep_assert_held_rcu_node(rdp->mynode); WRITE_ONCE(rdp->rcu_urgent_qs, false); WRITE_ONCE(rdp->rcu_need_heavy_qs, false); if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); WRITE_ONCE(rdp->rcu_forced_tick, false); } } /** * rcu_is_watching - see if RCU thinks that the current CPU is not idle * * Return true if RCU is watching the running CPU, which means that this * CPU can safely enter RCU read-side critical sections. In other words, * if the current CPU is not in its idle loop or is in an interrupt or * NMI handler, return true. * * Make notrace because it can be called by the internal functions of * ftrace, and making this notrace removes unnecessary recursion calls. */ notrace bool rcu_is_watching(void) { bool ret; preempt_disable_notrace(); ret = !rcu_dynticks_curr_cpu_in_eqs(); preempt_enable_notrace(); return ret; } EXPORT_SYMBOL_GPL(rcu_is_watching); /* * If a holdout task is actually running, request an urgent quiescent * state from its CPU. This is unsynchronized, so migrations can cause * the request to go to the wrong CPU. Which is OK, all that will happen * is that the CPU's next context switch will be a bit slower and next * time around this task will generate another request. */ void rcu_request_urgent_qs_task(struct task_struct *t) { int cpu; barrier(); cpu = task_cpu(t); if (!task_curr(t)) return; /* This task is not running on that CPU. */ smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); } #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) /* * Is the current CPU online as far as RCU is concerned? * * Disable preemption to avoid false positives that could otherwise * happen due to the current CPU number being sampled, this task being * preempted, its old CPU being taken offline, resuming on some other CPU, * then determining that its old CPU is now offline. * * Disable checking if in an NMI handler because we cannot safely * report errors from NMI handlers anyway. In addition, it is OK to use * RCU on an offline processor during initial boot, hence the check for * rcu_scheduler_fully_active. */ bool rcu_lockdep_current_cpu_online(void) { struct rcu_data *rdp; bool ret = false; if (in_nmi() || !rcu_scheduler_fully_active) return true; preempt_disable_notrace(); rdp = this_cpu_ptr(&rcu_data); /* * Strictly, we care here about the case where the current CPU is * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask * not being up to date. So arch_spin_is_locked() might have a * false positive if it's held by some *other* CPU, but that's * OK because that just means a false *negative* on the warning. */ if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) ret = true; preempt_enable_notrace(); return ret; } EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ /* * When trying to report a quiescent state on behalf of some other CPU, * it is our responsibility to check for and handle potential overflow * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. * After all, the CPU might be in deep idle state, and thus executing no * code whatsoever. */ static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) { raw_lockdep_assert_held_rcu_node(rnp); if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, rnp->gp_seq)) WRITE_ONCE(rdp->gpwrap, true); if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; } /* * Snapshot the specified CPU's dynticks counter so that we can later * credit them with an implicit quiescent state. Return 1 if this CPU * is in dynticks idle mode, which is an extended quiescent state. */ static int dyntick_save_progress_counter(struct rcu_data *rdp) { rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); rcu_gpnum_ovf(rdp->mynode, rdp); return 1; } return 0; } /* * Return true if the specified CPU has passed through a quiescent * state by virtue of being in or having passed through an dynticks * idle state since the last call to dyntick_save_progress_counter() * for this same CPU, or by virtue of having been offline. */ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) { unsigned long jtsq; struct rcu_node *rnp = rdp->mynode; /* * If the CPU passed through or entered a dynticks idle phase with * no active irq/NMI handlers, then we can safely pretend that the CPU * already acknowledged the request to pass through a quiescent * state. Either way, that CPU cannot possibly be in an RCU * read-side critical section that started before the beginning * of the current RCU grace period. */ if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); rcu_gpnum_ovf(rnp, rdp); return 1; } /* * Complain if a CPU that is considered to be offline from RCU's * perspective has not yet reported a quiescent state. After all, * the offline CPU should have reported a quiescent state during * the CPU-offline process, or, failing that, by rcu_gp_init() * if it ran concurrently with either the CPU going offline or the * last task on a leaf rcu_node structure exiting its RCU read-side * critical section while all CPUs corresponding to that structure * are offline. This added warning detects bugs in any of these * code paths. * * The rcu_node structure's ->lock is held here, which excludes * the relevant portions the CPU-hotplug code, the grace-period * initialization code, and the rcu_read_unlock() code paths. * * For more detail, please refer to the "Hotplug CPU" section * of RCU's Requirements documentation. */ if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { struct rcu_node *rnp1; pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", __func__, rnp->grplo, rnp->grphi, rnp->level, (long)rnp->gp_seq, (long)rnp->completedqs); for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); return 1; /* Break things loose after complaining. */ } /* * A CPU running for an extended time within the kernel can * delay RCU grace periods: (1) At age jiffies_to_sched_qs, * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the * unsynchronized assignments to the per-CPU rcu_need_heavy_qs * variable are safe because the assignments are repeated if this * CPU failed to pass through a quiescent state. This code * also checks .jiffies_resched in case jiffies_to_sched_qs * is set way high. */ jtsq = READ_ONCE(jiffies_to_sched_qs); if (!READ_ONCE(rdp->rcu_need_heavy_qs) && (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || time_after(jiffies, rcu_state.jiffies_resched) || rcu_state.cbovld)) { WRITE_ONCE(rdp->rcu_need_heavy_qs, true); /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ smp_store_release(&rdp->rcu_urgent_qs, true); } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { WRITE_ONCE(rdp->rcu_urgent_qs, true); } /* * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! * The above code handles this, but only for straight cond_resched(). * And some in-kernel loops check need_resched() before calling * cond_resched(), which defeats the above code for CPUs that are * running in-kernel with scheduling-clock interrupts disabled. * So hit them over the head with the resched_cpu() hammer! */ if (tick_nohz_full_cpu(rdp->cpu) && (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || rcu_state.cbovld)) { WRITE_ONCE(rdp->rcu_urgent_qs, true); resched_cpu(rdp->cpu); WRITE_ONCE(rdp->last_fqs_resched, jiffies); } /* * If more than halfway to RCU CPU stall-warning time, invoke * resched_cpu() more frequently to try to loosen things up a bit. * Also check to see if the CPU is getting hammered with interrupts, * but only once per grace period, just to keep the IPIs down to * a dull roar. */ if (time_after(jiffies, rcu_state.jiffies_resched)) { if (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq)) { resched_cpu(rdp->cpu); WRITE_ONCE(rdp->last_fqs_resched, jiffies); } if (IS_ENABLED(CONFIG_IRQ_WORK) && !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && (rnp->ffmask & rdp->grpmask)) { rdp->rcu_iw_pending = true; rdp->rcu_iw_gp_seq = rnp->gp_seq; irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); } } return 0; } /* Trace-event wrapper function for trace_rcu_future_grace_period. */ static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, unsigned long gp_seq_req, const char *s) { trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), gp_seq_req, rnp->level, rnp->grplo, rnp->grphi, s); } /* * rcu_start_this_gp - Request the start of a particular grace period * @rnp_start: The leaf node of the CPU from which to start. * @rdp: The rcu_data corresponding to the CPU from which to start. * @gp_seq_req: The gp_seq of the grace period to start. * * Start the specified grace period, as needed to handle newly arrived * callbacks. The required future grace periods are recorded in each * rcu_node structure's ->gp_seq_needed field. Returns true if there * is reason to awaken the grace-period kthread. * * The caller must hold the specified rcu_node structure's ->lock, which * is why the caller is responsible for waking the grace-period kthread. * * Returns true if the GP thread needs to be awakened else false. */ static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, unsigned long gp_seq_req) { bool ret = false; struct rcu_node *rnp; /* * Use funnel locking to either acquire the root rcu_node * structure's lock or bail out if the need for this grace period * has already been recorded -- or if that grace period has in * fact already started. If there is already a grace period in * progress in a non-leaf node, no recording is needed because the * end of the grace period will scan the leaf rcu_node structures. * Note that rnp_start->lock must not be released. */ raw_lockdep_assert_held_rcu_node(rnp_start); trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); for (rnp = rnp_start; 1; rnp = rnp->parent) { if (rnp != rnp_start) raw_spin_lock_rcu_node(rnp); if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || rcu_seq_started(&rnp->gp_seq, gp_seq_req) || (rnp != rnp_start && rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Prestarted")); goto unlock_out; } WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { /* * We just marked the leaf or internal node, and a * grace period is in progress, which means that * rcu_gp_cleanup() will see the marking. Bail to * reduce contention. */ trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startedleaf")); goto unlock_out; } if (rnp != rnp_start && rnp->parent != NULL) raw_spin_unlock_rcu_node(rnp); if (!rnp->parent) break; /* At root, and perhaps also leaf. */ } /* If GP already in progress, just leave, otherwise start one. */ if (rcu_gp_in_progress()) { trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); goto unlock_out; } trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); WRITE_ONCE(rcu_state.gp_req_activity, jiffies); if (!READ_ONCE(rcu_state.gp_kthread)) { trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); goto unlock_out; } trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); ret = true; /* Caller must wake GP kthread. */ unlock_out: /* Push furthest requested GP to leaf node and rcu_data structure. */ if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); } if (rnp != rnp_start) raw_spin_unlock_rcu_node(rnp); return ret; } /* * Clean up any old requests for the just-ended grace period. Also return * whether any additional grace periods have been requested. */ static bool rcu_future_gp_cleanup(struct rcu_node *rnp) { bool needmore; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); if (!needmore) rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, needmore ? TPS("CleanupMore") : TPS("Cleanup")); return needmore; } /* * Awaken the grace-period kthread. Don't do a self-awaken (unless in an * interrupt or softirq handler, in which case we just might immediately * sleep upon return, resulting in a grace-period hang), and don't bother * awakening when there is nothing for the grace-period kthread to do * (as in several CPUs raced to awaken, we lost), and finally don't try * to awaken a kthread that has not yet been created. If all those checks * are passed, track some debug information and awaken. * * So why do the self-wakeup when in an interrupt or softirq handler * in the grace-period kthread's context? Because the kthread might have * been interrupted just as it was going to sleep, and just after the final * pre-sleep check of the awaken condition. In this case, a wakeup really * is required, and is therefore supplied. */ static void rcu_gp_kthread_wake(void) { struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); if ((current == t && !in_hardirq() && !in_serving_softirq()) || !READ_ONCE(rcu_state.gp_flags) || !t) return; WRITE_ONCE(rcu_state.gp_wake_time, jiffies); WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); swake_up_one(&rcu_state.gp_wq); } /* * If there is room, assign a ->gp_seq number to any callbacks on this * CPU that have not already been assigned. Also accelerate any callbacks * that were previously assigned a ->gp_seq number that has since proven * to be too conservative, which can happen if callbacks get assigned a * ->gp_seq number while RCU is idle, but with reference to a non-root * rcu_node structure. This function is idempotent, so it does not hurt * to call it repeatedly. Returns an flag saying that we should awaken * the RCU grace-period kthread. * * The caller must hold rnp->lock with interrupts disabled. */ static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) { unsigned long gp_seq_req; bool ret = false; rcu_lockdep_assert_cblist_protected(rdp); raw_lockdep_assert_held_rcu_node(rnp); /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ if (!rcu_segcblist_pend_cbs(&rdp->cblist)) return false; trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); /* * Callbacks are often registered with incomplete grace-period * information. Something about the fact that getting exact * information requires acquiring a global lock... RCU therefore * makes a conservative estimate of the grace period number at which * a given callback will become ready to invoke. The following * code checks this estimate and improves it when possible, thus * accelerating callback invocation to an earlier grace-period * number. */ gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); /* Trace depending on how much we were able to accelerate. */ if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); else trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); return ret; } /* * Similar to rcu_accelerate_cbs(), but does not require that the leaf * rcu_node structure's ->lock be held. It consults the cached value * of ->gp_seq_needed in the rcu_data structure, and if that indicates * that a new grace-period request be made, invokes rcu_accelerate_cbs() * while holding the leaf rcu_node structure's ->lock. */ static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, struct rcu_data *rdp) { unsigned long c; bool needwake; rcu_lockdep_assert_cblist_protected(rdp); c = rcu_seq_snap(&rcu_state.gp_seq); if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { /* Old request still live, so mark recent callbacks. */ (void)rcu_segcblist_accelerate(&rdp->cblist, c); return; } raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ needwake = rcu_accelerate_cbs(rnp, rdp); raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ if (needwake) rcu_gp_kthread_wake(); } /* * Move any callbacks whose grace period has completed to the * RCU_DONE_TAIL sublist, then compact the remaining sublists and * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL * sublist. This function is idempotent, so it does not hurt to * invoke it repeatedly. As long as it is not invoked -too- often... * Returns true if the RCU grace-period kthread needs to be awakened. * * The caller must hold rnp->lock with interrupts disabled. */ static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) { rcu_lockdep_assert_cblist_protected(rdp); raw_lockdep_assert_held_rcu_node(rnp); /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ if (!rcu_segcblist_pend_cbs(&rdp->cblist)) return false; /* * Find all callbacks whose ->gp_seq numbers indicate that they * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. */ rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); /* Classify any remaining callbacks. */ return rcu_accelerate_cbs(rnp, rdp); } /* * Move and classify callbacks, but only if doing so won't require * that the RCU grace-period kthread be awakened. */ static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, struct rcu_data *rdp) { rcu_lockdep_assert_cblist_protected(rdp); if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) return; // The grace period cannot end while we hold the rcu_node lock. if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); raw_spin_unlock_rcu_node(rnp); } /* * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a * quiescent state. This is intended to be invoked when the CPU notices * a new grace period. */ static void rcu_strict_gp_check_qs(void) { if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { rcu_read_lock(); rcu_read_unlock(); } } /* * Update CPU-local rcu_data state to record the beginnings and ends of * grace periods. The caller must hold the ->lock of the leaf rcu_node * structure corresponding to the current CPU, and must have irqs disabled. * Returns true if the grace-period kthread needs to be awakened. */ static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) { bool ret = false; bool need_qs; const bool offloaded = rcu_rdp_is_offloaded(rdp); raw_lockdep_assert_held_rcu_node(rnp); if (rdp->gp_seq == rnp->gp_seq) return false; /* Nothing to do. */ /* Handle the ends of any preceding grace periods first. */ if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || unlikely(READ_ONCE(rdp->gpwrap))) { if (!offloaded) ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ rdp->core_needs_qs = false; trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); } else { if (!offloaded) ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ if (rdp->core_needs_qs) rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); } /* Now handle the beginnings of any new-to-this-CPU grace periods. */ if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || unlikely(READ_ONCE(rdp->gpwrap))) { /* * If the current grace period is waiting for this CPU, * set up to detect a quiescent state, otherwise don't * go looking for one. */ trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); need_qs = !!(rnp->qsmask & rdp->grpmask); rdp->cpu_no_qs.b.norm = need_qs; rdp->core_needs_qs = need_qs; zero_cpu_stall_ticks(rdp); } rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) WRITE_ONCE(rdp->last_sched_clock, jiffies); WRITE_ONCE(rdp->gpwrap, false); rcu_gpnum_ovf(rnp, rdp); return ret; } static void note_gp_changes(struct rcu_data *rdp) { unsigned long flags; bool needwake; struct rcu_node *rnp; local_irq_save(flags); rnp = rdp->mynode; if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ local_irq_restore(flags); return; } needwake = __note_gp_changes(rnp, rdp); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rcu_strict_gp_check_qs(); if (needwake) rcu_gp_kthread_wake(); } static atomic_t *rcu_gp_slow_suppress; /* Register a counter to suppress debugging grace-period delays. */ void rcu_gp_slow_register(atomic_t *rgssp) { WARN_ON_ONCE(rcu_gp_slow_suppress); WRITE_ONCE(rcu_gp_slow_suppress, rgssp); } EXPORT_SYMBOL_GPL(rcu_gp_slow_register); /* Unregister a counter, with NULL for not caring which. */ void rcu_gp_slow_unregister(atomic_t *rgssp) { WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); WRITE_ONCE(rcu_gp_slow_suppress, NULL); } EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); static bool rcu_gp_slow_is_suppressed(void) { atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); return rgssp && atomic_read(rgssp); } static void rcu_gp_slow(int delay) { if (!rcu_gp_slow_is_suppressed() && delay > 0 && !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) schedule_timeout_idle(delay); } static unsigned long sleep_duration; /* Allow rcutorture to stall the grace-period kthread. */ void rcu_gp_set_torture_wait(int duration) { if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) WRITE_ONCE(sleep_duration, duration); } EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); /* Actually implement the aforementioned wait. */ static void rcu_gp_torture_wait(void) { unsigned long duration; if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) return; duration = xchg(&sleep_duration, 0UL); if (duration > 0) { pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); schedule_timeout_idle(duration); pr_alert("%s: Wait complete\n", __func__); } } /* * Handler for on_each_cpu() to invoke the target CPU's RCU core * processing. */ static void rcu_strict_gp_boundary(void *unused) { invoke_rcu_core(); } // Has rcu_init() been invoked? This is used (for example) to determine // whether spinlocks may be acquired safely. static bool rcu_init_invoked(void) { return !!rcu_state.n_online_cpus; } // Make the polled API aware of the beginning of a grace period. static void rcu_poll_gp_seq_start(unsigned long *snap) { struct rcu_node *rnp = rcu_get_root(); if (rcu_init_invoked()) raw_lockdep_assert_held_rcu_node(rnp); // If RCU was idle, note beginning of GP. if (!rcu_seq_state(rcu_state.gp_seq_polled)) rcu_seq_start(&rcu_state.gp_seq_polled); // Either way, record current state. *snap = rcu_state.gp_seq_polled; } // Make the polled API aware of the end of a grace period. static void rcu_poll_gp_seq_end(unsigned long *snap) { struct rcu_node *rnp = rcu_get_root(); if (rcu_init_invoked()) raw_lockdep_assert_held_rcu_node(rnp); // If the previously noted GP is still in effect, record the // end of that GP. Either way, zero counter to avoid counter-wrap // problems. if (*snap && *snap == rcu_state.gp_seq_polled) { rcu_seq_end(&rcu_state.gp_seq_polled); rcu_state.gp_seq_polled_snap = 0; rcu_state.gp_seq_polled_exp_snap = 0; } else { *snap = 0; } } // Make the polled API aware of the beginning of a grace period, but // where caller does not hold the root rcu_node structure's lock. static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) { struct rcu_node *rnp = rcu_get_root(); if (rcu_init_invoked()) { lockdep_assert_irqs_enabled(); raw_spin_lock_irq_rcu_node(rnp); } rcu_poll_gp_seq_start(snap); if (rcu_init_invoked()) raw_spin_unlock_irq_rcu_node(rnp); } // Make the polled API aware of the end of a grace period, but where // caller does not hold the root rcu_node structure's lock. static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) { struct rcu_node *rnp = rcu_get_root(); if (rcu_init_invoked()) { lockdep_assert_irqs_enabled(); raw_spin_lock_irq_rcu_node(rnp); } rcu_poll_gp_seq_end(snap); if (rcu_init_invoked()) raw_spin_unlock_irq_rcu_node(rnp); } /* * Initialize a new grace period. Return false if no grace period required. */ static noinline_for_stack bool rcu_gp_init(void) { unsigned long flags; unsigned long oldmask; unsigned long mask; struct rcu_data *rdp; struct rcu_node *rnp = rcu_get_root(); WRITE_ONCE(rcu_state.gp_activity, jiffies); raw_spin_lock_irq_rcu_node(rnp); if (!READ_ONCE(rcu_state.gp_flags)) { /* Spurious wakeup, tell caller to go back to sleep. */ raw_spin_unlock_irq_rcu_node(rnp); return false; } WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ if (WARN_ON_ONCE(rcu_gp_in_progress())) { /* * Grace period already in progress, don't start another. * Not supposed to be able to happen. */ raw_spin_unlock_irq_rcu_node(rnp); return false; } /* Advance to a new grace period and initialize state. */ record_gp_stall_check_time(); /* Record GP times before starting GP, hence rcu_seq_start(). */ rcu_seq_start(&rcu_state.gp_seq); ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); raw_spin_unlock_irq_rcu_node(rnp); /* * Apply per-leaf buffered online and offline operations to * the rcu_node tree. Note that this new grace period need not * wait for subsequent online CPUs, and that RCU hooks in the CPU * offlining path, when combined with checks in this function, * will handle CPUs that are currently going offline or that will * go offline later. Please also refer to "Hotplug CPU" section * of RCU's Requirements documentation. */ WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); /* Exclude CPU hotplug operations. */ rcu_for_each_leaf_node(rnp) { local_irq_save(flags); arch_spin_lock(&rcu_state.ofl_lock); raw_spin_lock_rcu_node(rnp); if (rnp->qsmaskinit == rnp->qsmaskinitnext && !rnp->wait_blkd_tasks) { /* Nothing to do on this leaf rcu_node structure. */ raw_spin_unlock_rcu_node(rnp); arch_spin_unlock(&rcu_state.ofl_lock); local_irq_restore(flags); continue; } /* Record old state, apply changes to ->qsmaskinit field. */ oldmask = rnp->qsmaskinit; rnp->qsmaskinit = rnp->qsmaskinitnext; /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ if (!oldmask != !rnp->qsmaskinit) { if (!oldmask) { /* First online CPU for rcu_node. */ if (!rnp->wait_blkd_tasks) /* Ever offline? */ rcu_init_new_rnp(rnp); } else if (rcu_preempt_has_tasks(rnp)) { rnp->wait_blkd_tasks = true; /* blocked tasks */ } else { /* Last offline CPU and can propagate. */ rcu_cleanup_dead_rnp(rnp); } } /* * If all waited-on tasks from prior grace period are * done, and if all this rcu_node structure's CPUs are * still offline, propagate up the rcu_node tree and * clear ->wait_blkd_tasks. Otherwise, if one of this * rcu_node structure's CPUs has since come back online, * simply clear ->wait_blkd_tasks. */ if (rnp->wait_blkd_tasks && (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { rnp->wait_blkd_tasks = false; if (!rnp->qsmaskinit) rcu_cleanup_dead_rnp(rnp); } raw_spin_unlock_rcu_node(rnp); arch_spin_unlock(&rcu_state.ofl_lock); local_irq_restore(flags); } rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ /* * Set the quiescent-state-needed bits in all the rcu_node * structures for all currently online CPUs in breadth-first * order, starting from the root rcu_node structure, relying on the * layout of the tree within the rcu_state.node[] array. Note that * other CPUs will access only the leaves of the hierarchy, thus * seeing that no grace period is in progress, at least until the * corresponding leaf node has been initialized. * * The grace period cannot complete until the initialization * process finishes, because this kthread handles both. */ WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); rcu_for_each_node_breadth_first(rnp) { rcu_gp_slow(gp_init_delay); raw_spin_lock_irqsave_rcu_node(rnp, flags); rdp = this_cpu_ptr(&rcu_data); rcu_preempt_check_blocked_tasks(rnp); rnp->qsmask = rnp->qsmaskinit; WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); if (rnp == rdp->mynode) (void)__note_gp_changes(rnp, rdp); rcu_preempt_boost_start_gp(rnp); trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, rnp->level, rnp->grplo, rnp->grphi, rnp->qsmask); /* Quiescent states for tasks on any now-offline CPUs. */ mask = rnp->qsmask & ~rnp->qsmaskinitnext; rnp->rcu_gp_init_mask = mask; if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); else raw_spin_unlock_irq_rcu_node(rnp); cond_resched_tasks_rcu_qs(); WRITE_ONCE(rcu_state.gp_activity, jiffies); } // If strict, make all CPUs aware of new grace period. if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) on_each_cpu(rcu_strict_gp_boundary, NULL, 0); return true; } /* * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state * time. */ static bool rcu_gp_fqs_check_wake(int *gfp) { struct rcu_node *rnp = rcu_get_root(); // If under overload conditions, force an immediate FQS scan. if (*gfp & RCU_GP_FLAG_OVLD) return true; // Someone like call_rcu() requested a force-quiescent-state scan. *gfp = READ_ONCE(rcu_state.gp_flags); if (*gfp & RCU_GP_FLAG_FQS) return true; // The current grace period has completed. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) return true; return false; } /* * Do one round of quiescent-state forcing. */ static void rcu_gp_fqs(bool first_time) { struct rcu_node *rnp = rcu_get_root(); WRITE_ONCE(rcu_state.gp_activity, jiffies); WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); if (first_time) { /* Collect dyntick-idle snapshots. */ force_qs_rnp(dyntick_save_progress_counter); } else { /* Handle dyntick-idle and offline CPUs. */ force_qs_rnp(rcu_implicit_dynticks_qs); } /* Clear flag to prevent immediate re-entry. */ if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { raw_spin_lock_irq_rcu_node(rnp); WRITE_ONCE(rcu_state.gp_flags, READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); raw_spin_unlock_irq_rcu_node(rnp); } } /* * Loop doing repeated quiescent-state forcing until the grace period ends. */ static noinline_for_stack void rcu_gp_fqs_loop(void) { bool first_gp_fqs = true; int gf = 0; unsigned long j; int ret; struct rcu_node *rnp = rcu_get_root(); j = READ_ONCE(jiffies_till_first_fqs); if (rcu_state.cbovld) gf = RCU_GP_FLAG_OVLD; ret = 0; for (;;) { if (rcu_state.cbovld) { j = (j + 2) / 3; if (j <= 0) j = 1; } if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); /* * jiffies_force_qs before RCU_GP_WAIT_FQS state * update; required for stall checks. */ smp_wmb(); WRITE_ONCE(rcu_state.jiffies_kick_kthreads, jiffies + (j ? 3 * j : 2)); } trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("fqswait")); WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); rcu_gp_torture_wait(); WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); /* Locking provides needed memory barriers. */ /* * Exit the loop if the root rcu_node structure indicates that the grace period * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check * is required only for single-node rcu_node trees because readers blocking * the current grace period are queued only on leaf rcu_node structures. * For multi-node trees, checking the root node's ->qsmask suffices, because a * given root node's ->qsmask bit is cleared only when all CPUs and tasks from * the corresponding leaf nodes have passed through their quiescent state. */ if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) break; /* If time for quiescent-state forcing, do it. */ if (!time_after(rcu_state.jiffies_force_qs, jiffies) || (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("fqsstart")); rcu_gp_fqs(first_gp_fqs); gf = 0; if (first_gp_fqs) { first_gp_fqs = false; gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; } trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("fqsend")); cond_resched_tasks_rcu_qs(); WRITE_ONCE(rcu_state.gp_activity, jiffies); ret = 0; /* Force full wait till next FQS. */ j = READ_ONCE(jiffies_till_next_fqs); } else { /* Deal with stray signal. */ cond_resched_tasks_rcu_qs(); WRITE_ONCE(rcu_state.gp_activity, jiffies); WARN_ON(signal_pending(current)); trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("fqswaitsig")); ret = 1; /* Keep old FQS timing. */ j = jiffies; if (time_after(jiffies, rcu_state.jiffies_force_qs)) j = 1; else j = rcu_state.jiffies_force_qs - j; gf = 0; } } } /* * Clean up after the old grace period. */ static noinline void rcu_gp_cleanup(void) { int cpu; bool needgp = false; unsigned long gp_duration; unsigned long new_gp_seq; bool offloaded; struct rcu_data *rdp; struct rcu_node *rnp = rcu_get_root(); struct swait_queue_head *sq; WRITE_ONCE(rcu_state.gp_activity, jiffies); raw_spin_lock_irq_rcu_node(rnp); rcu_state.gp_end = jiffies; gp_duration = rcu_state.gp_end - rcu_state.gp_start; if (gp_duration > rcu_state.gp_max) rcu_state.gp_max = gp_duration; /* * We know the grace period is complete, but to everyone else * it appears to still be ongoing. But it is also the case * that to everyone else it looks like there is nothing that * they can do to advance the grace period. It is therefore * safe for us to drop the lock in order to mark the grace * period as completed in all of the rcu_node structures. */ rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); raw_spin_unlock_irq_rcu_node(rnp); /* * Propagate new ->gp_seq value to rcu_node structures so that * other CPUs don't have to wait until the start of the next grace * period to process their callbacks. This also avoids some nasty * RCU grace-period initialization races by forcing the end of * the current grace period to be completely recorded in all of * the rcu_node structures before the beginning of the next grace * period is recorded in any of the rcu_node structures. */ new_gp_seq = rcu_state.gp_seq; rcu_seq_end(&new_gp_seq); rcu_for_each_node_breadth_first(rnp) { raw_spin_lock_irq_rcu_node(rnp); if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) dump_blkd_tasks(rnp, 10); WARN_ON_ONCE(rnp->qsmask); WRITE_ONCE(rnp->gp_seq, new_gp_seq); rdp = this_cpu_ptr(&rcu_data); if (rnp == rdp->mynode) needgp = __note_gp_changes(rnp, rdp) || needgp; /* smp_mb() provided by prior unlock-lock pair. */ needgp = rcu_future_gp_cleanup(rnp) || needgp; // Reset overload indication for CPUs no longer overloaded if (rcu_is_leaf_node(rnp)) for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { rdp = per_cpu_ptr(&rcu_data, cpu); check_cb_ovld_locked(rdp, rnp); } sq = rcu_nocb_gp_get(rnp); raw_spin_unlock_irq_rcu_node(rnp); rcu_nocb_gp_cleanup(sq); cond_resched_tasks_rcu_qs(); WRITE_ONCE(rcu_state.gp_activity, jiffies); rcu_gp_slow(gp_cleanup_delay); } rnp = rcu_get_root(); raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ /* Declare grace period done, trace first to use old GP number. */ trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); rcu_seq_end(&rcu_state.gp_seq); ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); /* Check for GP requests since above loop. */ rdp = this_cpu_ptr(&rcu_data); if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, TPS("CleanupMore")); needgp = true; } /* Advance CBs to reduce false positives below. */ offloaded = rcu_rdp_is_offloaded(rdp); if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { // We get here if a grace period was needed (“needgp”) // and the above call to rcu_accelerate_cbs() did not set // the RCU_GP_FLAG_INIT bit in ->gp_state (which records // the need for another grace period).  The purpose // of the “offloaded” check is to avoid invoking // rcu_accelerate_cbs() on an offloaded CPU because we do not // hold the ->nocb_lock needed to safely access an offloaded // ->cblist.  We do not want to acquire that lock because // it can be heavily contended during callback floods. WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); WRITE_ONCE(rcu_state.gp_req_activity, jiffies); trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); } else { // We get here either if there is no need for an // additional grace period or if rcu_accelerate_cbs() has // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.  // So all we need to do is to clear all of the other // ->gp_flags bits. WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); } raw_spin_unlock_irq_rcu_node(rnp); // If strict, make all CPUs aware of the end of the old grace period. if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) on_each_cpu(rcu_strict_gp_boundary, NULL, 0); } /* * Body of kthread that handles grace periods. */ static int __noreturn rcu_gp_kthread(void *unused) { rcu_bind_gp_kthread(); for (;;) { /* Handle grace-period start. */ for (;;) { trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("reqwait")); WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); swait_event_idle_exclusive(rcu_state.gp_wq, READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_INIT); rcu_gp_torture_wait(); WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); /* Locking provides needed memory barrier. */ if (rcu_gp_init()) break; cond_resched_tasks_rcu_qs(); WRITE_ONCE(rcu_state.gp_activity, jiffies); WARN_ON(signal_pending(current)); trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("reqwaitsig")); } /* Handle quiescent-state forcing. */ rcu_gp_fqs_loop(); /* Handle grace-period end. */ WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); rcu_gp_cleanup(); WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); } } /* * Report a full set of quiescent states to the rcu_state data structure. * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if * another grace period is required. Whether we wake the grace-period * kthread or it awakens itself for the next round of quiescent-state * forcing, that kthread will clean up after the just-completed grace * period. Note that the caller must hold rnp->lock, which is released * before return. */ static void rcu_report_qs_rsp(unsigned long flags) __releases(rcu_get_root()->lock) { raw_lockdep_assert_held_rcu_node(rcu_get_root()); WARN_ON_ONCE(!rcu_gp_in_progress()); WRITE_ONCE(rcu_state.gp_flags, READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); rcu_gp_kthread_wake(); } /* * Similar to rcu_report_qs_rdp(), for which it is a helper function. * Allows quiescent states for a group of CPUs to be reported at one go * to the specified rcu_node structure, though all the CPUs in the group * must be represented by the same rcu_node structure (which need not be a * leaf rcu_node structure, though it often will be). The gps parameter * is the grace-period snapshot, which means that the quiescent states * are valid only if rnp->gp_seq is equal to gps. That structure's lock * must be held upon entry, and it is released before return. * * As a special case, if mask is zero, the bit-already-cleared check is * disabled. This allows propagating quiescent state due to resumed tasks * during grace-period initialization. */ static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, unsigned long gps, unsigned long flags) __releases(rnp->lock) { unsigned long oldmask = 0; struct rcu_node *rnp_c; raw_lockdep_assert_held_rcu_node(rnp); /* Walk up the rcu_node hierarchy. */ for (;;) { if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { /* * Our bit has already been cleared, or the * relevant grace period is already over, so done. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && rcu_preempt_blocked_readers_cgp(rnp)); WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, mask, rnp->qsmask, rnp->level, rnp->grplo, rnp->grphi, !!rnp->gp_tasks); if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { /* Other bits still set at this level, so done. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } rnp->completedqs = rnp->gp_seq; mask = rnp->grpmask; if (rnp->parent == NULL) { /* No more levels. Exit loop holding root lock. */ break; } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rnp_c = rnp; rnp = rnp->parent; raw_spin_lock_irqsave_rcu_node(rnp, flags); oldmask = READ_ONCE(rnp_c->qsmask); } /* * Get here if we are the last CPU to pass through a quiescent * state for this grace period. Invoke rcu_report_qs_rsp() * to clean up and start the next grace period if one is needed. */ rcu_report_qs_rsp(flags); /* releases rnp->lock. */ } /* * Record a quiescent state for all tasks that were previously queued * on the specified rcu_node structure and that were blocking the current * RCU grace period. The caller must hold the corresponding rnp->lock with * irqs disabled, and this lock is released upon return, but irqs remain * disabled. */ static void __maybe_unused rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) __releases(rnp->lock) { unsigned long gps; unsigned long mask; struct rcu_node *rnp_p; raw_lockdep_assert_held_rcu_node(rnp); if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || rnp->qsmask != 0) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; /* Still need more quiescent states! */ } rnp->completedqs = rnp->gp_seq; rnp_p = rnp->parent; if (rnp_p == NULL) { /* * Only one rcu_node structure in the tree, so don't * try to report up to its nonexistent parent! */ rcu_report_qs_rsp(flags); return; } /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ gps = rnp->gp_seq; mask = rnp->grpmask; raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ rcu_report_qs_rnp(mask, rnp_p, gps, flags); } /* * Record a quiescent state for the specified CPU to that CPU's rcu_data * structure. This must be called from the specified CPU. */ static void rcu_report_qs_rdp(struct rcu_data *rdp) { unsigned long flags; unsigned long mask; bool needwake = false; bool needacc = false; struct rcu_node *rnp; WARN_ON_ONCE(rdp->cpu != smp_processor_id()); rnp = rdp->mynode; raw_spin_lock_irqsave_rcu_node(rnp, flags); if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || rdp->gpwrap) { /* * The grace period in which this quiescent state was * recorded has ended, so don't report it upwards. * We will instead need a new quiescent state that lies * within the current grace period. */ rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } mask = rdp->grpmask; rdp->core_needs_qs = false; if ((rnp->qsmask & mask) == 0) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } else { /* * This GP can't end until cpu checks in, so all of our * callbacks can be processed during the next GP. * * NOCB kthreads have their own way to deal with that... */ if (!rcu_rdp_is_offloaded(rdp)) { needwake = rcu_accelerate_cbs(rnp, rdp); } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { /* * ...but NOCB kthreads may miss or delay callbacks acceleration * if in the middle of a (de-)offloading process. */ needacc = true; } rcu_disable_urgency_upon_qs(rdp); rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); /* ^^^ Released rnp->lock */ if (needwake) rcu_gp_kthread_wake(); if (needacc) { rcu_nocb_lock_irqsave(rdp, flags); rcu_accelerate_cbs_unlocked(rnp, rdp); rcu_nocb_unlock_irqrestore(rdp, flags); } } } /* * Check to see if there is a new grace period of which this CPU * is not yet aware, and if so, set up local rcu_data state for it. * Otherwise, see if this CPU has just passed through its first * quiescent state for this grace period, and record that fact if so. */ static void rcu_check_quiescent_state(struct rcu_data *rdp) { /* Check for grace-period ends and beginnings. */ note_gp_changes(rdp); /* * Does this CPU still need to do its part for current grace period? * If no, return and let the other CPUs do their part as well. */ if (!rdp->core_needs_qs) return; /* * Was there a quiescent state since the beginning of the grace * period? If no, then exit and wait for the next call. */ if (rdp->cpu_no_qs.b.norm) return; /* * Tell RCU we are done (but rcu_report_qs_rdp() will be the * judge of that). */ rcu_report_qs_rdp(rdp); } /* * Near the end of the offline process. Trace the fact that this CPU * is going offline. */ int rcutree_dying_cpu(unsigned int cpu) { bool blkd; struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); struct rcu_node *rnp = rdp->mynode; if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) return 0; blkd = !!(rnp->qsmask & rdp->grpmask); trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); return 0; } /* * All CPUs for the specified rcu_node structure have gone offline, * and all tasks that were preempted within an RCU read-side critical * section while running on one of those CPUs have since exited their RCU * read-side critical section. Some other CPU is reporting this fact with * the specified rcu_node structure's ->lock held and interrupts disabled. * This function therefore goes up the tree of rcu_node structures, * clearing the corresponding bits in the ->qsmaskinit fields. Note that * the leaf rcu_node structure's ->qsmaskinit field has already been * updated. * * This function does check that the specified rcu_node structure has * all CPUs offline and no blocked tasks, so it is OK to invoke it * prematurely. That said, invoking it after the fact will cost you * a needless lock acquisition. So once it has done its work, don't * invoke it again. */ static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) { long mask; struct rcu_node *rnp = rnp_leaf; raw_lockdep_assert_held_rcu_node(rnp_leaf); if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || WARN_ON_ONCE(rnp_leaf->qsmaskinit) || WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) return; for (;;) { mask = rnp->grpmask; rnp = rnp->parent; if (!rnp) break; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ rnp->qsmaskinit &= ~mask; /* Between grace periods, so better already be zero! */ WARN_ON_ONCE(rnp->qsmask); if (rnp->qsmaskinit) { raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ return; } raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ } } /* * The CPU has been completely removed, and some other CPU is reporting * this fact from process context. Do the remainder of the cleanup. * There can only be one CPU hotplug operation at a time, so no need for * explicit locking. */ int rcutree_dead_cpu(unsigned int cpu) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) return 0; WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); /* Adjust any no-longer-needed kthreads. */ rcu_boost_kthread_setaffinity(rnp, -1); // Stop-machine done, so allow nohz_full to disable tick. tick_dep_clear(TICK_DEP_BIT_RCU); return 0; } /* * Invoke any RCU callbacks that have made it to the end of their grace * period. Throttle as specified by rdp->blimit. */ static void rcu_do_batch(struct rcu_data *rdp) { int div; bool __maybe_unused empty; unsigned long flags; struct rcu_head *rhp; struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); long bl, count = 0; long pending, tlimit = 0; /* If no callbacks are ready, just return. */ if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { trace_rcu_batch_start(rcu_state.name, rcu_segcblist_n_cbs(&rdp->cblist), 0); trace_rcu_batch_end(rcu_state.name, 0, !rcu_segcblist_empty(&rdp->cblist), need_resched(), is_idle_task(current), rcu_is_callbacks_kthread(rdp)); return; } /* * Extract the list of ready callbacks, disabling IRQs to prevent * races with call_rcu() from interrupt handlers. Leave the * callback counts, as rcu_barrier() needs to be conservative. */ rcu_nocb_lock_irqsave(rdp, flags); WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); pending = rcu_segcblist_n_cbs(&rdp->cblist); div = READ_ONCE(rcu_divisor); div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; bl = max(rdp->blimit, pending >> div); if (in_serving_softirq() && unlikely(bl > 100)) { long rrn = READ_ONCE(rcu_resched_ns); rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; tlimit = local_clock() + rrn; } trace_rcu_batch_start(rcu_state.name, rcu_segcblist_n_cbs(&rdp->cblist), bl); rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); if (rcu_rdp_is_offloaded(rdp)) rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); rcu_nocb_unlock_irqrestore(rdp, flags); /* Invoke callbacks. */ tick_dep_set_task(current, TICK_DEP_BIT_RCU); rhp = rcu_cblist_dequeue(&rcl); for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { rcu_callback_t f; count++; debug_rcu_head_unqueue(rhp); rcu_lock_acquire(&rcu_callback_map); trace_rcu_invoke_callback(rcu_state.name, rhp); f = rhp->func; WRITE_ONCE(rhp->func, (rcu_callback_t)0L); f(rhp); rcu_lock_release(&rcu_callback_map); /* * Stop only if limit reached and CPU has something to do. */ if (in_serving_softirq()) { if (count >= bl && (need_resched() || !is_idle_task(current))) break; /* * Make sure we don't spend too much time here and deprive other * softirq vectors of CPU cycles. */ if (unlikely(tlimit)) { /* only call local_clock() every 32 callbacks */ if (likely((count & 31) || local_clock() < tlimit)) continue; /* Exceeded the time limit, so leave. */ break; } } else { local_bh_enable(); lockdep_assert_irqs_enabled(); cond_resched_tasks_rcu_qs(); lockdep_assert_irqs_enabled(); local_bh_disable(); } } rcu_nocb_lock_irqsave(rdp, flags); rdp->n_cbs_invoked += count; trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), is_idle_task(current), rcu_is_callbacks_kthread(rdp)); /* Update counts and requeue any remaining callbacks. */ rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); rcu_segcblist_add_len(&rdp->cblist, -count); /* Reinstate batch limit if we have worked down the excess. */ count = rcu_segcblist_n_cbs(&rdp->cblist); if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) rdp->blimit = blimit; /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ if (count == 0 && rdp->qlen_last_fqs_check != 0) { rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); } else if (count < rdp->qlen_last_fqs_check - qhimark) rdp->qlen_last_fqs_check = count; /* * The following usually indicates a double call_rcu(). To track * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. */ empty = rcu_segcblist_empty(&rdp->cblist); WARN_ON_ONCE(count == 0 && !empty); WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && count != 0 && empty); WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); rcu_nocb_unlock_irqrestore(rdp, flags); tick_dep_clear_task(current, TICK_DEP_BIT_RCU); } /* * This function is invoked from each scheduling-clock interrupt, * and checks to see if this CPU is in a non-context-switch quiescent * state, for example, user mode or idle loop. It also schedules RCU * core processing. If the current grace period has gone on too long, * it will ask the scheduler to manufacture a context switch for the sole * purpose of providing the needed quiescent state. */ void rcu_sched_clock_irq(int user) { unsigned long j; if (IS_ENABLED(CONFIG_PROVE_RCU)) { j = jiffies; WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); __this_cpu_write(rcu_data.last_sched_clock, j); } trace_rcu_utilization(TPS("Start scheduler-tick")); lockdep_assert_irqs_disabled(); raw_cpu_inc(rcu_data.ticks_this_gp); /* The load-acquire pairs with the store-release setting to true. */ if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { /* Idle and userspace execution already are quiescent states. */ if (!rcu_is_cpu_rrupt_from_idle() && !user) { set_tsk_need_resched(current); set_preempt_need_resched(); } __this_cpu_write(rcu_data.rcu_urgent_qs, false); } rcu_flavor_sched_clock_irq(user); if (rcu_pending(user)) invoke_rcu_core(); if (user) rcu_tasks_classic_qs(current, false); lockdep_assert_irqs_disabled(); trace_rcu_utilization(TPS("End scheduler-tick")); } /* * Scan the leaf rcu_node structures. For each structure on which all * CPUs have reported a quiescent state and on which there are tasks * blocking the current grace period, initiate RCU priority boosting. * Otherwise, invoke the specified function to check dyntick state for * each CPU that has not yet reported a quiescent state. */ static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) { int cpu; unsigned long flags; unsigned long mask; struct rcu_data *rdp; struct rcu_node *rnp; rcu_state.cbovld = rcu_state.cbovldnext; rcu_state.cbovldnext = false; rcu_for_each_leaf_node(rnp) { cond_resched_tasks_rcu_qs(); mask = 0; raw_spin_lock_irqsave_rcu_node(rnp, flags); rcu_state.cbovldnext |= !!rnp->cbovldmask; if (rnp->qsmask == 0) { if (rcu_preempt_blocked_readers_cgp(rnp)) { /* * No point in scanning bits because they * are all zero. But we might need to * priority-boost blocked readers. */ rcu_initiate_boost(rnp, flags); /* rcu_initiate_boost() releases rnp->lock */ continue; } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); continue; } for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { rdp = per_cpu_ptr(&rcu_data, cpu); if (f(rdp)) { mask |= rdp->grpmask; rcu_disable_urgency_upon_qs(rdp); } } if (mask != 0) { /* Idle/offline CPUs, report (releases rnp->lock). */ rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); } else { /* Nothing to do here, so just drop the lock. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } } /* * Force quiescent states on reluctant CPUs, and also detect which * CPUs are in dyntick-idle mode. */ void rcu_force_quiescent_state(void) { unsigned long flags; bool ret; struct rcu_node *rnp; struct rcu_node *rnp_old = NULL; /* Funnel through hierarchy to reduce memory contention. */ rnp = __this_cpu_read(rcu_data.mynode); for (; rnp != NULL; rnp = rnp->parent) { ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || !raw_spin_trylock(&rnp->fqslock); if (rnp_old != NULL) raw_spin_unlock(&rnp_old->fqslock); if (ret) return; rnp_old = rnp; } /* rnp_old == rcu_get_root(), rnp == NULL. */ /* Reached the root of the rcu_node tree, acquire lock. */ raw_spin_lock_irqsave_rcu_node(rnp_old, flags); raw_spin_unlock(&rnp_old->fqslock); if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); return; /* Someone beat us to it. */ } WRITE_ONCE(rcu_state.gp_flags, READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); rcu_gp_kthread_wake(); } EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); // Workqueue handler for an RCU reader for kernels enforcing struct RCU // grace periods. static void strict_work_handler(struct work_struct *work) { rcu_read_lock(); rcu_read_unlock(); } /* Perform RCU core processing work for the current CPU. */ static __latent_entropy void rcu_core(void) { unsigned long flags; struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); struct rcu_node *rnp = rdp->mynode; /* * On RT rcu_core() can be preempted when IRQs aren't disabled. * Therefore this function can race with concurrent NOCB (de-)offloading * on this CPU and the below condition must be considered volatile. * However if we race with: * * _ Offloading: In the worst case we accelerate or process callbacks * concurrently with NOCB kthreads. We are guaranteed to * call rcu_nocb_lock() if that happens. * * _ Deoffloading: In the worst case we miss callbacks acceleration or * processing. This is fine because the early stage * of deoffloading invokes rcu_core() after setting * SEGCBLIST_RCU_CORE. So we guarantee that we'll process * what could have been dismissed without the need to wait * for the next rcu_pending() check in the next jiffy. */ const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); if (cpu_is_offline(smp_processor_id())) return; trace_rcu_utilization(TPS("Start RCU core")); WARN_ON_ONCE(!rdp->beenonline); /* Report any deferred quiescent states if preemption enabled. */ if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { rcu_preempt_deferred_qs(current); } else if (rcu_preempt_need_deferred_qs(current)) { set_tsk_need_resched(current); set_preempt_need_resched(); } /* Update RCU state based on any recent quiescent states. */ rcu_check_quiescent_state(rdp); /* No grace period and unregistered callbacks? */ if (!rcu_gp_in_progress() && rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { rcu_nocb_lock_irqsave(rdp, flags); if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) rcu_accelerate_cbs_unlocked(rnp, rdp); rcu_nocb_unlock_irqrestore(rdp, flags); } rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); /* If there are callbacks ready, invoke them. */ if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && likely(READ_ONCE(rcu_scheduler_fully_active))) { rcu_do_batch(rdp); /* Re-invoke RCU core processing if there are callbacks remaining. */ if (rcu_segcblist_ready_cbs(&rdp->cblist)) invoke_rcu_core(); } /* Do any needed deferred wakeups of rcuo kthreads. */ do_nocb_deferred_wakeup(rdp); trace_rcu_utilization(TPS("End RCU core")); // If strict GPs, schedule an RCU reader in a clean environment. if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); } static void rcu_core_si(struct softirq_action *h) { rcu_core(); } static void rcu_wake_cond(struct task_struct *t, int status) { /* * If the thread is yielding, only wake it when this * is invoked from idle */ if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) wake_up_process(t); } static void invoke_rcu_core_kthread(void) { struct task_struct *t; unsigned long flags; local_irq_save(flags); __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); if (t != NULL && t != current) rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); local_irq_restore(flags); } /* * Wake up this CPU's rcuc kthread to do RCU core processing. */ static void invoke_rcu_core(void) { if (!cpu_online(smp_processor_id())) return; if (use_softirq) raise_softirq(RCU_SOFTIRQ); else invoke_rcu_core_kthread(); } static void rcu_cpu_kthread_park(unsigned int cpu) { per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; } static int rcu_cpu_kthread_should_run(unsigned int cpu) { return __this_cpu_read(rcu_data.rcu_cpu_has_work); } /* * Per-CPU kernel thread that invokes RCU callbacks. This replaces * the RCU softirq used in configurations of RCU that do not support RCU * priority boosting. */ static void rcu_cpu_kthread(unsigned int cpu) { unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); int spincnt; trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); for (spincnt = 0; spincnt < 10; spincnt++) { WRITE_ONCE(*j, jiffies); local_bh_disable(); *statusp = RCU_KTHREAD_RUNNING; local_irq_disable(); work = *workp; *workp = 0; local_irq_enable(); if (work) rcu_core(); local_bh_enable(); if (*workp == 0) { trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); *statusp = RCU_KTHREAD_WAITING; return; } } *statusp = RCU_KTHREAD_YIELDING; trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); schedule_timeout_idle(2); trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); *statusp = RCU_KTHREAD_WAITING; WRITE_ONCE(*j, jiffies); } static struct smp_hotplug_thread rcu_cpu_thread_spec = { .store = &rcu_data.rcu_cpu_kthread_task, .thread_should_run = rcu_cpu_kthread_should_run, .thread_fn = rcu_cpu_kthread, .thread_comm = "rcuc/%u", .setup = rcu_cpu_kthread_setup, .park = rcu_cpu_kthread_park, }; /* * Spawn per-CPU RCU core processing kthreads. */ static int __init rcu_spawn_core_kthreads(void) { int cpu; for_each_possible_cpu(cpu) per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; if (use_softirq) return 0; WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); return 0; } /* * Handle any core-RCU processing required by a call_rcu() invocation. */ static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, unsigned long flags) { /* * If called from an extended quiescent state, invoke the RCU * core in order to force a re-evaluation of RCU's idleness. */ if (!rcu_is_watching()) invoke_rcu_core(); /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) return; /* * Force the grace period if too many callbacks or too long waiting. * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() * if some other CPU has recently done so. Also, don't bother * invoking rcu_force_quiescent_state() if the newly enqueued callback * is the only one waiting for a grace period to complete. */ if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > rdp->qlen_last_fqs_check + qhimark)) { /* Are we ignoring a completed grace period? */ note_gp_changes(rdp); /* Start a new grace period if one not already started. */ if (!rcu_gp_in_progress()) { rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); } else { /* Give the grace period a kick. */ rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && rcu_segcblist_first_pend_cb(&rdp->cblist) != head) rcu_force_quiescent_state(); rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); } } } /* * RCU callback function to leak a callback. */ static void rcu_leak_callback(struct rcu_head *rhp) { } /* * Check and if necessary update the leaf rcu_node structure's * ->cbovldmask bit corresponding to the current CPU based on that CPU's * number of queued RCU callbacks. The caller must hold the leaf rcu_node * structure's ->lock. */ static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) { raw_lockdep_assert_held_rcu_node(rnp); if (qovld_calc <= 0) return; // Early boot and wildcard value set. if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); else WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); } /* * Check and if necessary update the leaf rcu_node structure's * ->cbovldmask bit corresponding to the current CPU based on that CPU's * number of queued RCU callbacks. No locks need be held, but the * caller must have disabled interrupts. * * Note that this function ignores the possibility that there are a lot * of callbacks all of which have already seen the end of their respective * grace periods. This omission is due to the need for no-CBs CPUs to * be holding ->nocb_lock to do this check, which is too heavy for a * common-case operation. */ static void check_cb_ovld(struct rcu_data *rdp) { struct rcu_node *const rnp = rdp->mynode; if (qovld_calc <= 0 || ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) return; // Early boot wildcard value or already set correctly. raw_spin_lock_rcu_node(rnp); check_cb_ovld_locked(rdp, rnp); raw_spin_unlock_rcu_node(rnp); } /** * call_rcu() - Queue an RCU callback for invocation after a grace period. * @head: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all pre-existing RCU read-side * critical sections have completed. However, the callback function * might well execute concurrently with RCU read-side critical sections * that started after call_rcu() was invoked. * * RCU read-side critical sections are delimited by rcu_read_lock() * and rcu_read_unlock(), and may be nested. In addition, but only in * v5.0 and later, regions of code across which interrupts, preemption, * or softirqs have been disabled also serve as RCU read-side critical * sections. This includes hardware interrupt handlers, softirq handlers, * and NMI handlers. * * Note that all CPUs must agree that the grace period extended beyond * all pre-existing RCU read-side critical section. On systems with more * than one CPU, this means that when "func()" is invoked, each CPU is * guaranteed to have executed a full memory barrier since the end of its * last RCU read-side critical section whose beginning preceded the call * to call_rcu(). It also means that each CPU executing an RCU read-side * critical section that continues beyond the start of "func()" must have * executed a memory barrier after the call_rcu() but before the beginning * of that RCU read-side critical section. Note that these guarantees * include CPUs that are offline, idle, or executing in user mode, as * well as CPUs that are executing in the kernel. * * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the * resulting RCU callback function "func()", then both CPU A and CPU B are * guaranteed to execute a full memory barrier during the time interval * between the call to call_rcu() and the invocation of "func()" -- even * if CPU A and CPU B are the same CPU (but again only if the system has * more than one CPU). * * Implementation of these memory-ordering guarantees is described here: * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. */ void call_rcu(struct rcu_head *head, rcu_callback_t func) { static atomic_t doublefrees; unsigned long flags; struct rcu_data *rdp; bool was_alldone; /* Misaligned rcu_head! */ WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); if (debug_rcu_head_queue(head)) { /* * Probable double call_rcu(), so leak the callback. * Use rcu:rcu_callback trace event to find the previous * time callback was passed to call_rcu(). */ if (atomic_inc_return(&doublefrees) < 4) { pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); mem_dump_obj(head); } WRITE_ONCE(head->func, rcu_leak_callback); return; } head->func = func; head->next = NULL; kasan_record_aux_stack_noalloc(head); local_irq_save(flags); rdp = this_cpu_ptr(&rcu_data); /* Add the callback to our list. */ if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { // This can trigger due to call_rcu() from offline CPU: WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); WARN_ON_ONCE(!rcu_is_watching()); // Very early boot, before rcu_init(). Initialize if needed // and then drop through to queue the callback. if (rcu_segcblist_empty(&rdp->cblist)) rcu_segcblist_init(&rdp->cblist); } check_cb_ovld(rdp); if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) return; // Enqueued onto ->nocb_bypass, so just leave. // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. rcu_segcblist_enqueue(&rdp->cblist, head); if (__is_kvfree_rcu_offset((unsigned long)func)) trace_rcu_kvfree_callback(rcu_state.name, head, (unsigned long)func, rcu_segcblist_n_cbs(&rdp->cblist)); else trace_rcu_callback(rcu_state.name, head, rcu_segcblist_n_cbs(&rdp->cblist)); trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); /* Go handle any RCU core processing required. */ if (unlikely(rcu_rdp_is_offloaded(rdp))) { __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ } else { __call_rcu_core(rdp, head, flags); local_irq_restore(flags); } } EXPORT_SYMBOL_GPL(call_rcu); /* Maximum number of jiffies to wait before draining a batch. */ #define KFREE_DRAIN_JIFFIES (HZ / 50) #define KFREE_N_BATCHES 2 #define FREE_N_CHANNELS 2 /** * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers * @nr_records: Number of active pointers in the array * @next: Next bulk object in the block chain * @records: Array of the kvfree_rcu() pointers */ struct kvfree_rcu_bulk_data { unsigned long nr_records; struct kvfree_rcu_bulk_data *next; void *records[]; }; /* * This macro defines how many entries the "records" array * will contain. It is based on the fact that the size of * kvfree_rcu_bulk_data structure becomes exactly one page. */ #define KVFREE_BULK_MAX_ENTR \ ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) /** * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period * @head_free: List of kfree_rcu() objects waiting for a grace period * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period * @krcp: Pointer to @kfree_rcu_cpu structure */ struct kfree_rcu_cpu_work { struct rcu_work rcu_work; struct rcu_head *head_free; struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; struct kfree_rcu_cpu *krcp; }; /** * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period * @head: List of kfree_rcu() objects not yet waiting for a grace period * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period * @lock: Synchronize access to this structure * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES * @initialized: The @rcu_work fields have been initialized * @count: Number of objects for which GP not started * @bkvcache: * A simple cache list that contains objects for reuse purpose. * In order to save some per-cpu space the list is singular. * Even though it is lockless an access has to be protected by the * per-cpu lock. * @page_cache_work: A work to refill the cache when it is empty * @backoff_page_cache_fill: Delay cache refills * @work_in_progress: Indicates that page_cache_work is running * @hrtimer: A hrtimer for scheduling a page_cache_work * @nr_bkv_objs: number of allocated objects at @bkvcache. * * This is a per-CPU structure. The reason that it is not included in * the rcu_data structure is to permit this code to be extracted from * the RCU files. Such extraction could allow further optimization of * the interactions with the slab allocators. */ struct kfree_rcu_cpu { struct rcu_head *head; struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; raw_spinlock_t lock; struct delayed_work monitor_work; bool initialized; int count; struct delayed_work page_cache_work; atomic_t backoff_page_cache_fill; atomic_t work_in_progress; struct hrtimer hrtimer; struct llist_head bkvcache; int nr_bkv_objs; }; static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), }; static __always_inline void debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) { #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD int i; for (i = 0; i < bhead->nr_records; i++) debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); #endif } static inline struct kfree_rcu_cpu * krc_this_cpu_lock(unsigned long *flags) { struct kfree_rcu_cpu *krcp; local_irq_save(*flags); // For safely calling this_cpu_ptr(). krcp = this_cpu_ptr(&krc); raw_spin_lock(&krcp->lock); return krcp; } static inline void krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) { raw_spin_unlock_irqrestore(&krcp->lock, flags); } static inline struct kvfree_rcu_bulk_data * get_cached_bnode(struct kfree_rcu_cpu *krcp) { if (!krcp->nr_bkv_objs) return NULL; WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); return (struct kvfree_rcu_bulk_data *) llist_del_first(&krcp->bkvcache); } static inline bool put_cached_bnode(struct kfree_rcu_cpu *krcp, struct kvfree_rcu_bulk_data *bnode) { // Check the limit. if (krcp->nr_bkv_objs >= rcu_min_cached_objs) return false; llist_add((struct llist_node *) bnode, &krcp->bkvcache); WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); return true; } static int drain_page_cache(struct kfree_rcu_cpu *krcp) { unsigned long flags; struct llist_node *page_list, *pos, *n; int freed = 0; raw_spin_lock_irqsave(&krcp->lock, flags); page_list = llist_del_all(&krcp->bkvcache); WRITE_ONCE(krcp->nr_bkv_objs, 0); raw_spin_unlock_irqrestore(&krcp->lock, flags); llist_for_each_safe(pos, n, page_list) { free_page((unsigned long)pos); freed++; } return freed; } /* * This function is invoked in workqueue context after a grace period. * It frees all the objects queued on ->bkvhead_free or ->head_free. */ static void kfree_rcu_work(struct work_struct *work) { unsigned long flags; struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; struct rcu_head *head, *next; struct kfree_rcu_cpu *krcp; struct kfree_rcu_cpu_work *krwp; int i, j; krwp = container_of(to_rcu_work(work), struct kfree_rcu_cpu_work, rcu_work); krcp = krwp->krcp; raw_spin_lock_irqsave(&krcp->lock, flags); // Channels 1 and 2. for (i = 0; i < FREE_N_CHANNELS; i++) { bkvhead[i] = krwp->bkvhead_free[i]; krwp->bkvhead_free[i] = NULL; } // Channel 3. head = krwp->head_free; krwp->head_free = NULL; raw_spin_unlock_irqrestore(&krcp->lock, flags); // Handle the first two channels. for (i = 0; i < FREE_N_CHANNELS; i++) { for (; bkvhead[i]; bkvhead[i] = bnext) { bnext = bkvhead[i]->next; debug_rcu_bhead_unqueue(bkvhead[i]); rcu_lock_acquire(&rcu_callback_map); if (i == 0) { // kmalloc() / kfree(). trace_rcu_invoke_kfree_bulk_callback( rcu_state.name, bkvhead[i]->nr_records, bkvhead[i]->records); kfree_bulk(bkvhead[i]->nr_records, bkvhead[i]->records); } else { // vmalloc() / vfree(). for (j = 0; j < bkvhead[i]->nr_records; j++) { trace_rcu_invoke_kvfree_callback( rcu_state.name, bkvhead[i]->records[j], 0); vfree(bkvhead[i]->records[j]); } } rcu_lock_release(&rcu_callback_map); raw_spin_lock_irqsave(&krcp->lock, flags); if (put_cached_bnode(krcp, bkvhead[i])) bkvhead[i] = NULL; raw_spin_unlock_irqrestore(&krcp->lock, flags); if (bkvhead[i]) free_page((unsigned long) bkvhead[i]); cond_resched_tasks_rcu_qs(); } } /* * This is used when the "bulk" path can not be used for the * double-argument of kvfree_rcu(). This happens when the * page-cache is empty, which means that objects are instead * queued on a linked list through their rcu_head structures. * This list is named "Channel 3". */ for (; head; head = next) { unsigned long offset = (unsigned long)head->func; void *ptr = (void *)head - offset; next = head->next; debug_rcu_head_unqueue((struct rcu_head *)ptr); rcu_lock_acquire(&rcu_callback_map); trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) kvfree(ptr); rcu_lock_release(&rcu_callback_map); cond_resched_tasks_rcu_qs(); } } static bool need_offload_krc(struct kfree_rcu_cpu *krcp) { int i; for (i = 0; i < FREE_N_CHANNELS; i++) if (krcp->bkvhead[i]) return true; return !!krcp->head; } /* * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. */ static void kfree_rcu_monitor(struct work_struct *work) { struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, monitor_work.work); unsigned long flags; int i, j; raw_spin_lock_irqsave(&krcp->lock, flags); // Attempt to start a new batch. for (i = 0; i < KFREE_N_BATCHES; i++) { struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); // Try to detach bkvhead or head and attach it over any // available corresponding free channel. It can be that // a previous RCU batch is in progress, it means that // immediately to queue another one is not possible so // in that case the monitor work is rearmed. if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || (krcp->head && !krwp->head_free)) { // Channel 1 corresponds to the SLAB-pointer bulk path. // Channel 2 corresponds to vmalloc-pointer bulk path. for (j = 0; j < FREE_N_CHANNELS; j++) { if (!krwp->bkvhead_free[j]) { krwp->bkvhead_free[j] = krcp->bkvhead[j]; krcp->bkvhead[j] = NULL; } } // Channel 3 corresponds to both SLAB and vmalloc // objects queued on the linked list. if (!krwp->head_free) { krwp->head_free = krcp->head; krcp->head = NULL; } WRITE_ONCE(krcp->count, 0); // One work is per one batch, so there are three // "free channels", the batch can handle. It can // be that the work is in the pending state when // channels have been detached following by each // other. queue_rcu_work(system_wq, &krwp->rcu_work); } } // If there is nothing to detach, it means that our job is // successfully done here. In case of having at least one // of the channels that is still busy we should rearm the // work to repeat an attempt. Because previous batches are // still in progress. if (need_offload_krc(krcp)) schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); raw_spin_unlock_irqrestore(&krcp->lock, flags); } static enum hrtimer_restart schedule_page_work_fn(struct hrtimer *t) { struct kfree_rcu_cpu *krcp = container_of(t, struct kfree_rcu_cpu, hrtimer); queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); return HRTIMER_NORESTART; } static void fill_page_cache_func(struct work_struct *work) { struct kvfree_rcu_bulk_data *bnode; struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, page_cache_work.work); unsigned long flags; int nr_pages; bool pushed; int i; nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 1 : rcu_min_cached_objs; for (i = 0; i < nr_pages; i++) { bnode = (struct kvfree_rcu_bulk_data *) __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); if (bnode) { raw_spin_lock_irqsave(&krcp->lock, flags); pushed = put_cached_bnode(krcp, bnode); raw_spin_unlock_irqrestore(&krcp->lock, flags); if (!pushed) { free_page((unsigned long) bnode); break; } } } atomic_set(&krcp->work_in_progress, 0); atomic_set(&krcp->backoff_page_cache_fill, 0); } static void run_page_cache_worker(struct kfree_rcu_cpu *krcp) { if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && !atomic_xchg(&krcp->work_in_progress, 1)) { if (atomic_read(&krcp->backoff_page_cache_fill)) { queue_delayed_work(system_wq, &krcp->page_cache_work, msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); } else { hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); krcp->hrtimer.function = schedule_page_work_fn; hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); } } } // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() // state specified by flags. If can_alloc is true, the caller must // be schedulable and not be holding any locks or mutexes that might be // acquired by the memory allocator or anything that it might invoke. // Returns true if ptr was successfully recorded, else the caller must // use a fallback. static inline bool add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, unsigned long *flags, void *ptr, bool can_alloc) { struct kvfree_rcu_bulk_data *bnode; int idx; *krcp = krc_this_cpu_lock(flags); if (unlikely(!(*krcp)->initialized)) return false; idx = !!is_vmalloc_addr(ptr); /* Check if a new block is required. */ if (!(*krcp)->bkvhead[idx] || (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { bnode = get_cached_bnode(*krcp); if (!bnode && can_alloc) { krc_this_cpu_unlock(*krcp, *flags); // __GFP_NORETRY - allows a light-weight direct reclaim // what is OK from minimizing of fallback hitting point of // view. Apart of that it forbids any OOM invoking what is // also beneficial since we are about to release memory soon. // // __GFP_NOMEMALLOC - prevents from consuming of all the // memory reserves. Please note we have a fallback path. // // __GFP_NOWARN - it is supposed that an allocation can // be failed under low memory or high memory pressure // scenarios. bnode = (struct kvfree_rcu_bulk_data *) __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); *krcp = krc_this_cpu_lock(flags); } if (!bnode) return false; /* Initialize the new block. */ bnode->nr_records = 0; bnode->next = (*krcp)->bkvhead[idx]; /* Attach it to the head. */ (*krcp)->bkvhead[idx] = bnode; } /* Finally insert. */ (*krcp)->bkvhead[idx]->records [(*krcp)->bkvhead[idx]->nr_records++] = ptr; return true; } /* * Queue a request for lazy invocation of the appropriate free routine * after a grace period. Please note that three paths are maintained, * two for the common case using arrays of pointers and a third one that * is used only when the main paths cannot be used, for example, due to * memory pressure. * * Each kvfree_call_rcu() request is added to a batch. The batch will be drained * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will * be free'd in workqueue context. This allows us to: batch requests together to * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. */ void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) { unsigned long flags; struct kfree_rcu_cpu *krcp; bool success; void *ptr; if (head) { ptr = (void *) head - (unsigned long) func; } else { /* * Please note there is a limitation for the head-less * variant, that is why there is a clear rule for such * objects: it can be used from might_sleep() context * only. For other places please embed an rcu_head to * your data. */ might_sleep(); ptr = (unsigned long *) func; } // Queue the object but don't yet schedule the batch. if (debug_rcu_head_queue(ptr)) { // Probable double kfree_rcu(), just leak. WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", __func__, head); // Mark as success and leave. return; } kasan_record_aux_stack_noalloc(ptr); success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); if (!success) { run_page_cache_worker(krcp); if (head == NULL) // Inline if kvfree_rcu(one_arg) call. goto unlock_return; head->func = func; head->next = krcp->head; krcp->head = head; success = true; } WRITE_ONCE(krcp->count, krcp->count + 1); // Set timer to drain after KFREE_DRAIN_JIFFIES. if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); unlock_return: krc_this_cpu_unlock(krcp, flags); /* * Inline kvfree() after synchronize_rcu(). We can do * it from might_sleep() context only, so the current * CPU can pass the QS state. */ if (!success) { debug_rcu_head_unqueue((struct rcu_head *) ptr); synchronize_rcu(); kvfree(ptr); } } EXPORT_SYMBOL_GPL(kvfree_call_rcu); static unsigned long kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { int cpu; unsigned long count = 0; /* Snapshot count of all CPUs */ for_each_possible_cpu(cpu) { struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); count += READ_ONCE(krcp->count); count += READ_ONCE(krcp->nr_bkv_objs); atomic_set(&krcp->backoff_page_cache_fill, 1); } return count; } static unsigned long kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) { int cpu, freed = 0; for_each_possible_cpu(cpu) { int count; struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); count = krcp->count; count += drain_page_cache(krcp); kfree_rcu_monitor(&krcp->monitor_work.work); sc->nr_to_scan -= count; freed += count; if (sc->nr_to_scan <= 0) break; } return freed == 0 ? SHRINK_STOP : freed; } static struct shrinker kfree_rcu_shrinker = { .count_objects = kfree_rcu_shrink_count, .scan_objects = kfree_rcu_shrink_scan, .batch = 0, .seeks = DEFAULT_SEEKS, }; void __init kfree_rcu_scheduler_running(void) { int cpu; unsigned long flags; for_each_possible_cpu(cpu) { struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); raw_spin_lock_irqsave(&krcp->lock, flags); if (need_offload_krc(krcp)) schedule_delayed_work_on(cpu, &krcp->monitor_work, KFREE_DRAIN_JIFFIES); raw_spin_unlock_irqrestore(&krcp->lock, flags); } } /* * During early boot, any blocking grace-period wait automatically * implies a grace period. Later on, this is never the case for PREEMPTION. * * However, because a context switch is a grace period for !PREEMPTION, any * blocking grace-period wait automatically implies a grace period if * there is only one CPU online at any point time during execution of * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to * occasionally incorrectly indicate that there are multiple CPUs online * when there was in fact only one the whole time, as this just adds some * overhead: RCU still operates correctly. */ static int rcu_blocking_is_gp(void) { int ret; // Invoking preempt_model_*() too early gets a splat. if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE || preempt_model_full() || preempt_model_rt()) return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; might_sleep(); /* Check for RCU read-side critical section. */ preempt_disable(); /* * If the rcu_state.n_online_cpus counter is equal to one, * there is only one CPU, and that CPU sees all prior accesses * made by any CPU that was online at the time of its access. * Furthermore, if this counter is equal to one, its value cannot * change until after the preempt_enable() below. * * Furthermore, if rcu_state.n_online_cpus is equal to one here, * all later CPUs (both this one and any that come online later * on) are guaranteed to see all accesses prior to this point * in the code, without the need for additional memory barriers. * Those memory barriers are provided by CPU-hotplug code. */ ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; preempt_enable(); return ret; } /** * synchronize_rcu - wait until a grace period has elapsed. * * Control will return to the caller some time after a full grace * period has elapsed, in other words after all currently executing RCU * read-side critical sections have completed. Note, however, that * upon return from synchronize_rcu(), the caller might well be executing * concurrently with new RCU read-side critical sections that began while * synchronize_rcu() was waiting. * * RCU read-side critical sections are delimited by rcu_read_lock() * and rcu_read_unlock(), and may be nested. In addition, but only in * v5.0 and later, regions of code across which interrupts, preemption, * or softirqs have been disabled also serve as RCU read-side critical * sections. This includes hardware interrupt handlers, softirq handlers, * and NMI handlers. * * Note that this guarantee implies further memory-ordering guarantees. * On systems with more than one CPU, when synchronize_rcu() returns, * each CPU is guaranteed to have executed a full memory barrier since * the end of its last RCU read-side critical section whose beginning * preceded the call to synchronize_rcu(). In addition, each CPU having * an RCU read-side critical section that extends beyond the return from * synchronize_rcu() is guaranteed to have executed a full memory barrier * after the beginning of synchronize_rcu() and before the beginning of * that RCU read-side critical section. Note that these guarantees include * CPUs that are offline, idle, or executing in user mode, as well as CPUs * that are executing in the kernel. * * Furthermore, if CPU A invoked synchronize_rcu(), which returned * to its caller on CPU B, then both CPU A and CPU B are guaranteed * to have executed a full memory barrier during the execution of * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but * again only if the system has more than one CPU). * * Implementation of these memory-ordering guarantees is described here: * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. */ void synchronize_rcu(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_rcu() in RCU read-side critical section"); if (rcu_blocking_is_gp()) { // Note well that this code runs with !PREEMPT && !SMP. // In addition, all code that advances grace periods runs at // process level. Therefore, this normal GP overlaps with // other normal GPs only by being fully nested within them, // which allows reuse of ->gp_seq_polled_snap. rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); if (rcu_init_invoked()) cond_resched_tasks_rcu_qs(); return; // Context allows vacuous grace periods. } if (rcu_gp_is_expedited()) synchronize_rcu_expedited(); else wait_rcu_gp(call_rcu); } EXPORT_SYMBOL_GPL(synchronize_rcu); /** * get_state_synchronize_rcu - Snapshot current RCU state * * Returns a cookie that is used by a later call to cond_synchronize_rcu() * or poll_state_synchronize_rcu() to determine whether or not a full * grace period has elapsed in the meantime. */ unsigned long get_state_synchronize_rcu(void) { /* * Any prior manipulation of RCU-protected data must happen * before the load from ->gp_seq. */ smp_mb(); /* ^^^ */ return rcu_seq_snap(&rcu_state.gp_seq_polled); } EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); /** * start_poll_synchronize_rcu - Snapshot and start RCU grace period * * Returns a cookie that is used by a later call to cond_synchronize_rcu() * or poll_state_synchronize_rcu() to determine whether or not a full * grace period has elapsed in the meantime. If the needed grace period * is not already slated to start, notifies RCU core of the need for that * grace period. * * Interrupts must be enabled for the case where it is necessary to awaken * the grace-period kthread. */ unsigned long start_poll_synchronize_rcu(void) { unsigned long flags; unsigned long gp_seq = get_state_synchronize_rcu(); bool needwake; struct rcu_data *rdp; struct rcu_node *rnp; lockdep_assert_irqs_enabled(); local_irq_save(flags); rdp = this_cpu_ptr(&rcu_data); rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); // irqs already disabled. // Note it is possible for a grace period to have elapsed between // the above call to get_state_synchronize_rcu() and the below call // to rcu_seq_snap. This is OK, the worst that happens is that we // get a grace period that no one needed. These accesses are ordered // by smp_mb(), and we are accessing them in the opposite order // from which they are updated at grace-period start, as required. needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (needwake) rcu_gp_kthread_wake(); return gp_seq; } EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); /** * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period * * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() * * If a full RCU grace period has elapsed since the earlier call from * which oldstate was obtained, return @true, otherwise return @false. * If @false is returned, it is the caller's responsibility to invoke this * function later on until it does return @true. Alternatively, the caller * can explicitly wait for a grace period, for example, by passing @oldstate * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). * * Yes, this function does not take counter wrap into account. * But counter wrap is harmless. If the counter wraps, we have waited for * more than a billion grace periods (and way more on a 64-bit system!). * Those needing to keep oldstate values for very long time periods * (many hours even on 32-bit systems) should check them occasionally * and either refresh them or set a flag indicating that the grace period * has completed. * * This function provides the same memory-ordering guarantees that * would be provided by a synchronize_rcu() that was invoked at the call * to the function that provided @oldstate, and that returned at the end * of this function. */ bool poll_state_synchronize_rcu(unsigned long oldstate) { if (oldstate == RCU_GET_STATE_COMPLETED || rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { smp_mb(); /* Ensure GP ends before subsequent accesses. */ return true; } return false; } EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); /** * cond_synchronize_rcu - Conditionally wait for an RCU grace period * * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() * * If a full RCU grace period has elapsed since the earlier call to * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. * Otherwise, invoke synchronize_rcu() to wait for a full grace period. * * Yes, this function does not take counter wrap into account. * But counter wrap is harmless. If the counter wraps, we have waited for * more than 2 billion grace periods (and way more on a 64-bit system!), * so waiting for a couple of additional grace periods should be just fine. * * This function provides the same memory-ordering guarantees that * would be provided by a synchronize_rcu() that was invoked at the call * to the function that provided @oldstate and that returned at the end * of this function. */ void cond_synchronize_rcu(unsigned long oldstate) { if (!poll_state_synchronize_rcu(oldstate)) synchronize_rcu(); } EXPORT_SYMBOL_GPL(cond_synchronize_rcu); /* * Check to see if there is any immediate RCU-related work to be done by * the current CPU, returning 1 if so and zero otherwise. The checks are * in order of increasing expense: checks that can be carried out against * CPU-local state are performed first. However, we must check for CPU * stalls first, else we might not get a chance. */ static int rcu_pending(int user) { bool gp_in_progress; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp = rdp->mynode; lockdep_assert_irqs_disabled(); /* Check for CPU stalls, if enabled. */ check_cpu_stall(rdp); /* Does this CPU need a deferred NOCB wakeup? */ if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) return 1; /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) return 0; /* Is the RCU core waiting for a quiescent state from this CPU? */ gp_in_progress = rcu_gp_in_progress(); if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) return 1; /* Does this CPU have callbacks ready to invoke? */ if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist)) return 1; /* Has RCU gone idle with this CPU needing another grace period? */ if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) return 1; /* Have RCU grace period completed or started? */ if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ return 1; /* nothing to do */ return 0; } /* * Helper function for rcu_barrier() tracing. If tracing is disabled, * the compiler is expected to optimize this away. */ static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) { trace_rcu_barrier(rcu_state.name, s, cpu, atomic_read(&rcu_state.barrier_cpu_count), done); } /* * RCU callback function for rcu_barrier(). If we are last, wake * up the task executing rcu_barrier(). * * Note that the value of rcu_state.barrier_sequence must be captured * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, * other CPUs might count the value down to zero before this CPU gets * around to invoking rcu_barrier_trace(), which might result in bogus * data from the next instance of rcu_barrier(). */ static void rcu_barrier_callback(struct rcu_head *rhp) { unsigned long __maybe_unused s = rcu_state.barrier_sequence; if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { rcu_barrier_trace(TPS("LastCB"), -1, s); complete(&rcu_state.barrier_completion); } else { rcu_barrier_trace(TPS("CB"), -1, s); } } /* * If needed, entrain an rcu_barrier() callback on rdp->cblist. */ static void rcu_barrier_entrain(struct rcu_data *rdp) { unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); lockdep_assert_held(&rcu_state.barrier_lock); if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) return; rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); rdp->barrier_head.func = rcu_barrier_callback; debug_rcu_head_queue(&rdp->barrier_head); rcu_nocb_lock(rdp); WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { atomic_inc(&rcu_state.barrier_cpu_count); } else { debug_rcu_head_unqueue(&rdp->barrier_head); rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); } rcu_nocb_unlock(rdp); smp_store_release(&rdp->barrier_seq_snap, gseq); } /* * Called with preemption disabled, and from cross-cpu IRQ context. */ static void rcu_barrier_handler(void *cpu_in) { uintptr_t cpu = (uintptr_t)cpu_in; struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); lockdep_assert_irqs_disabled(); WARN_ON_ONCE(cpu != rdp->cpu); WARN_ON_ONCE(cpu != smp_processor_id()); raw_spin_lock(&rcu_state.barrier_lock); rcu_barrier_entrain(rdp); raw_spin_unlock(&rcu_state.barrier_lock); } /** * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. * * Note that this primitive does not necessarily wait for an RCU grace period * to complete. For example, if there are no RCU callbacks queued anywhere * in the system, then rcu_barrier() is within its rights to return * immediately, without waiting for anything, much less an RCU grace period. */ void rcu_barrier(void) { uintptr_t cpu; unsigned long flags; unsigned long gseq; struct rcu_data *rdp; unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); rcu_barrier_trace(TPS("Begin"), -1, s); /* Take mutex to serialize concurrent rcu_barrier() requests. */ mutex_lock(&rcu_state.barrier_mutex); /* Did someone else do our work for us? */ if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); smp_mb(); /* caller's subsequent code after above check. */ mutex_unlock(&rcu_state.barrier_mutex); return; } /* Mark the start of the barrier operation. */ raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); rcu_seq_start(&rcu_state.barrier_sequence); gseq = rcu_state.barrier_sequence; rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); /* * Initialize the count to two rather than to zero in order * to avoid a too-soon return to zero in case of an immediate * invocation of the just-enqueued callback (or preemption of * this task). Exclude CPU-hotplug operations to ensure that no * offline non-offloaded CPU has callbacks queued. */ init_completion(&rcu_state.barrier_completion); atomic_set(&rcu_state.barrier_cpu_count, 2); raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); /* * Force each CPU with callbacks to register a new callback. * When that callback is invoked, we will know that all of the * corresponding CPU's preceding callbacks have been invoked. */ for_each_possible_cpu(cpu) { rdp = per_cpu_ptr(&rcu_data, cpu); retry: if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) continue; raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); if (!rcu_segcblist_n_cbs(&rdp->cblist)) { WRITE_ONCE(rdp->barrier_seq_snap, gseq); raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); continue; } if (!rcu_rdp_cpu_online(rdp)) { rcu_barrier_entrain(rdp); WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); continue; } raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { schedule_timeout_uninterruptible(1); goto retry; } WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); } /* * Now that we have an rcu_barrier_callback() callback on each * CPU, and thus each counted, remove the initial count. */ if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) complete(&rcu_state.barrier_completion); /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ wait_for_completion(&rcu_state.barrier_completion); /* Mark the end of the barrier operation. */ rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); rcu_seq_end(&rcu_state.barrier_sequence); gseq = rcu_state.barrier_sequence; for_each_possible_cpu(cpu) { rdp = per_cpu_ptr(&rcu_data, cpu); WRITE_ONCE(rdp->barrier_seq_snap, gseq); } /* Other rcu_barrier() invocations can now safely proceed. */ mutex_unlock(&rcu_state.barrier_mutex); } EXPORT_SYMBOL_GPL(rcu_barrier); /* * Propagate ->qsinitmask bits up the rcu_node tree to account for the * first CPU in a given leaf rcu_node structure coming online. The caller * must hold the corresponding leaf rcu_node ->lock with interrupts * disabled. */ static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) { long mask; long oldmask; struct rcu_node *rnp = rnp_leaf; raw_lockdep_assert_held_rcu_node(rnp_leaf); WARN_ON_ONCE(rnp->wait_blkd_tasks); for (;;) { mask = rnp->grpmask; rnp = rnp->parent; if (rnp == NULL) return; raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ oldmask = rnp->qsmaskinit; rnp->qsmaskinit |= mask; raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ if (oldmask) return; } } /* * Do boot-time initialization of a CPU's per-CPU RCU data. */ static void __init rcu_boot_init_percpu_data(int cpu) { struct context_tracking *ct = this_cpu_ptr(&context_tracking); struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); /* Set up local state, ensuring consistent view of global state. */ rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); INIT_WORK(&rdp->strict_work, strict_work_handler); WARN_ON_ONCE(ct->dynticks_nesting != 1); WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); rdp->barrier_seq_snap = rcu_state.barrier_sequence; rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; rdp->rcu_onl_gp_seq = rcu_state.gp_seq; rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; rdp->last_sched_clock = jiffies; rdp->cpu = cpu; rcu_boot_init_nocb_percpu_data(rdp); } /* * Invoked early in the CPU-online process, when pretty much all services * are available. The incoming CPU is not present. * * Initializes a CPU's per-CPU RCU data. Note that only one online or * offline event can be happening at a given time. Note also that we can * accept some slop in the rsp->gp_seq access due to the fact that this * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. * And any offloaded callbacks are being numbered elsewhere. */ int rcutree_prepare_cpu(unsigned int cpu) { unsigned long flags; struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); struct rcu_node *rnp = rcu_get_root(); /* Set up local state, ensuring consistent view of global state. */ raw_spin_lock_irqsave_rcu_node(rnp, flags); rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); rdp->blimit = blimit; ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ /* * Only non-NOCB CPUs that didn't have early-boot callbacks need to be * (re-)initialized. */ if (!rcu_segcblist_is_enabled(&rdp->cblist)) rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ /* * Add CPU to leaf rcu_node pending-online bitmask. Any needed * propagation up the rcu_node tree will happen at the beginning * of the next grace period. */ rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ rdp->beenonline = true; /* We have now been online. */ rdp->gp_seq = READ_ONCE(rnp->gp_seq); rdp->gp_seq_needed = rdp->gp_seq; rdp->cpu_no_qs.b.norm = true; rdp->core_needs_qs = false; rdp->rcu_iw_pending = false; rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rcu_spawn_one_boost_kthread(rnp); rcu_spawn_cpu_nocb_kthread(cpu); WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); return 0; } /* * Update RCU priority boot kthread affinity for CPU-hotplug changes. */ static void rcutree_affinity_setting(unsigned int cpu, int outgoing) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); } /* * Near the end of the CPU-online process. Pretty much all services * enabled, and the CPU is now very much alive. */ int rcutree_online_cpu(unsigned int cpu) { unsigned long flags; struct rcu_data *rdp; struct rcu_node *rnp; rdp = per_cpu_ptr(&rcu_data, cpu); rnp = rdp->mynode; raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->ffmask |= rdp->grpmask; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) return 0; /* Too early in boot for scheduler work. */ sync_sched_exp_online_cleanup(cpu); rcutree_affinity_setting(cpu, -1); // Stop-machine done, so allow nohz_full to disable tick. tick_dep_clear(TICK_DEP_BIT_RCU); return 0; } /* * Near the beginning of the process. The CPU is still very much alive * with pretty much all services enabled. */ int rcutree_offline_cpu(unsigned int cpu) { unsigned long flags; struct rcu_data *rdp; struct rcu_node *rnp; rdp = per_cpu_ptr(&rcu_data, cpu); rnp = rdp->mynode; raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->ffmask &= ~rdp->grpmask; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rcutree_affinity_setting(cpu, cpu); // nohz_full CPUs need the tick for stop-machine to work quickly tick_dep_set(TICK_DEP_BIT_RCU); return 0; } /* * Mark the specified CPU as being online so that subsequent grace periods * (both expedited and normal) will wait on it. Note that this means that * incoming CPUs are not allowed to use RCU read-side critical sections * until this function is called. Failing to observe this restriction * will result in lockdep splats. * * Note that this function is special in that it is invoked directly * from the incoming CPU rather than from the cpuhp_step mechanism. * This is because this function must be invoked at a precise location. */ void rcu_cpu_starting(unsigned int cpu) { unsigned long flags; unsigned long mask; struct rcu_data *rdp; struct rcu_node *rnp; bool newcpu; rdp = per_cpu_ptr(&rcu_data, cpu); if (rdp->cpu_started) return; rdp->cpu_started = true; rnp = rdp->mynode; mask = rdp->grpmask; local_irq_save(flags); arch_spin_lock(&rcu_state.ofl_lock); rcu_dynticks_eqs_online(); raw_spin_lock(&rcu_state.barrier_lock); raw_spin_lock_rcu_node(rnp); WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); raw_spin_unlock(&rcu_state.barrier_lock); newcpu = !(rnp->expmaskinitnext & mask); rnp->expmaskinitnext |= mask; /* Allow lockless access for expedited grace periods. */ smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); /* An incoming CPU should never be blocking a grace period. */ if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ /* rcu_report_qs_rnp() *really* wants some flags to restore */ unsigned long flags2; local_irq_save(flags2); rcu_disable_urgency_upon_qs(rdp); /* Report QS -after- changing ->qsmaskinitnext! */ rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); } else { raw_spin_unlock_rcu_node(rnp); } arch_spin_unlock(&rcu_state.ofl_lock); local_irq_restore(flags); smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ } /* * The outgoing function has no further need of RCU, so remove it from * the rcu_node tree's ->qsmaskinitnext bit masks. * * Note that this function is special in that it is invoked directly * from the outgoing CPU rather than from the cpuhp_step mechanism. * This is because this function must be invoked at a precise location. */ void rcu_report_dead(unsigned int cpu) { unsigned long flags, seq_flags; unsigned long mask; struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ // Do any dangling deferred wakeups. do_nocb_deferred_wakeup(rdp); /* QS for any half-done expedited grace period. */ rcu_report_exp_rdp(rdp); rcu_preempt_deferred_qs(current); /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ mask = rdp->grpmask; local_irq_save(seq_flags); arch_spin_lock(&rcu_state.ofl_lock); raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ /* Report quiescent state -before- changing ->qsmaskinitnext! */ rcu_disable_urgency_upon_qs(rdp); rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); raw_spin_lock_irqsave_rcu_node(rnp, flags); } WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); arch_spin_unlock(&rcu_state.ofl_lock); local_irq_restore(seq_flags); rdp->cpu_started = false; } #ifdef CONFIG_HOTPLUG_CPU /* * The outgoing CPU has just passed through the dying-idle state, and we * are being invoked from the CPU that was IPIed to continue the offline * operation. Migrate the outgoing CPU's callbacks to the current CPU. */ void rcutree_migrate_callbacks(int cpu) { unsigned long flags; struct rcu_data *my_rdp; struct rcu_node *my_rnp; struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); bool needwake; if (rcu_rdp_is_offloaded(rdp) || rcu_segcblist_empty(&rdp->cblist)) return; /* No callbacks to migrate. */ raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); rcu_barrier_entrain(rdp); my_rdp = this_cpu_ptr(&rcu_data); my_rnp = my_rdp->mynode; rcu_nocb_lock(my_rdp); /* irqs already disabled. */ WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ /* Leverage recent GPs and set GP for new callbacks. */ needwake = rcu_advance_cbs(my_rnp, rdp) || rcu_advance_cbs(my_rnp, my_rdp); rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); rcu_segcblist_disable(&rdp->cblist); WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); check_cb_ovld_locked(my_rdp, my_rnp); if (rcu_rdp_is_offloaded(my_rdp)) { raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ __call_rcu_nocb_wake(my_rdp, true, flags); } else { rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); } if (needwake) rcu_gp_kthread_wake(); lockdep_assert_irqs_enabled(); WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || !rcu_segcblist_empty(&rdp->cblist), "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", cpu, rcu_segcblist_n_cbs(&rdp->cblist), rcu_segcblist_first_cb(&rdp->cblist)); } #endif /* * On non-huge systems, use expedited RCU grace periods to make suspend * and hibernation run faster. */ static int rcu_pm_notify(struct notifier_block *self, unsigned long action, void *hcpu) { switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: rcu_expedite_gp(); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: rcu_unexpedite_gp(); break; default: break; } return NOTIFY_OK; } #ifdef CONFIG_RCU_EXP_KTHREAD struct kthread_worker *rcu_exp_gp_kworker; struct kthread_worker *rcu_exp_par_gp_kworker; static void __init rcu_start_exp_gp_kworkers(void) { const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; struct sched_param param = { .sched_priority = kthread_prio }; rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { pr_err("Failed to create %s!\n", gp_kworker_name); return; } rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { pr_err("Failed to create %s!\n", par_gp_kworker_name); kthread_destroy_worker(rcu_exp_gp_kworker); return; } sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, ¶m); } static inline void rcu_alloc_par_gp_wq(void) { } #else /* !CONFIG_RCU_EXP_KTHREAD */ struct workqueue_struct *rcu_par_gp_wq; static void __init rcu_start_exp_gp_kworkers(void) { } static inline void rcu_alloc_par_gp_wq(void) { rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); WARN_ON(!rcu_par_gp_wq); } #endif /* CONFIG_RCU_EXP_KTHREAD */ /* * Spawn the kthreads that handle RCU's grace periods. */ static int __init rcu_spawn_gp_kthread(void) { unsigned long flags; struct rcu_node *rnp; struct sched_param sp; struct task_struct *t; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); rcu_scheduler_fully_active = 1; t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) return 0; if (kthread_prio) { sp.sched_priority = kthread_prio; sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); } rnp = rcu_get_root(); raw_spin_lock_irqsave_rcu_node(rnp, flags); WRITE_ONCE(rcu_state.gp_activity, jiffies); WRITE_ONCE(rcu_state.gp_req_activity, jiffies); // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); wake_up_process(t); /* This is a pre-SMP initcall, we expect a single CPU */ WARN_ON(num_online_cpus() > 1); /* * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() * due to rcu_scheduler_fully_active. */ rcu_spawn_cpu_nocb_kthread(smp_processor_id()); rcu_spawn_one_boost_kthread(rdp->mynode); rcu_spawn_core_kthreads(); /* Create kthread worker for expedited GPs */ rcu_start_exp_gp_kworkers(); return 0; } early_initcall(rcu_spawn_gp_kthread); /* * This function is invoked towards the end of the scheduler's * initialization process. Before this is called, the idle task might * contain synchronous grace-period primitives (during which time, this idle * task is booting the system, and such primitives are no-ops). After this * function is called, any synchronous grace-period primitives are run as * expedited, with the requesting task driving the grace period forward. * A later core_initcall() rcu_set_runtime_mode() will switch to full * runtime RCU functionality. */ void rcu_scheduler_starting(void) { WARN_ON(num_online_cpus() != 1); WARN_ON(nr_context_switches() > 0); rcu_test_sync_prims(); rcu_scheduler_active = RCU_SCHEDULER_INIT; rcu_test_sync_prims(); } /* * Helper function for rcu_init() that initializes the rcu_state structure. */ static void __init rcu_init_one(void) { static const char * const buf[] = RCU_NODE_NAME_INIT; static const char * const fqs[] = RCU_FQS_NAME_INIT; static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ int cpustride = 1; int i; int j; struct rcu_node *rnp; BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ /* Silence gcc 4.8 false positive about array index out of range. */ if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) panic("rcu_init_one: rcu_num_lvls out of range"); /* Initialize the level-tracking arrays. */ for (i = 1; i < rcu_num_lvls; i++) rcu_state.level[i] = rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; rcu_init_levelspread(levelspread, num_rcu_lvl); /* Initialize the elements themselves, starting from the leaves. */ for (i = rcu_num_lvls - 1; i >= 0; i--) { cpustride *= levelspread[i]; rnp = rcu_state.level[i]; for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), &rcu_node_class[i], buf[i]); raw_spin_lock_init(&rnp->fqslock); lockdep_set_class_and_name(&rnp->fqslock, &rcu_fqs_class[i], fqs[i]); rnp->gp_seq = rcu_state.gp_seq; rnp->gp_seq_needed = rcu_state.gp_seq; rnp->completedqs = rcu_state.gp_seq; rnp->qsmask = 0; rnp->qsmaskinit = 0; rnp->grplo = j * cpustride; rnp->grphi = (j + 1) * cpustride - 1; if (rnp->grphi >= nr_cpu_ids) rnp->grphi = nr_cpu_ids - 1; if (i == 0) { rnp->grpnum = 0; rnp->grpmask = 0; rnp->parent = NULL; } else { rnp->grpnum = j % levelspread[i - 1]; rnp->grpmask = BIT(rnp->grpnum); rnp->parent = rcu_state.level[i - 1] + j / levelspread[i - 1]; } rnp->level = i; INIT_LIST_HEAD(&rnp->blkd_tasks); rcu_init_one_nocb(rnp); init_waitqueue_head(&rnp->exp_wq[0]); init_waitqueue_head(&rnp->exp_wq[1]); init_waitqueue_head(&rnp->exp_wq[2]); init_waitqueue_head(&rnp->exp_wq[3]); spin_lock_init(&rnp->exp_lock); mutex_init(&rnp->boost_kthread_mutex); raw_spin_lock_init(&rnp->exp_poll_lock); rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); } } init_swait_queue_head(&rcu_state.gp_wq); init_swait_queue_head(&rcu_state.expedited_wq); rnp = rcu_first_leaf_node(); for_each_possible_cpu(i) { while (i > rnp->grphi) rnp++; per_cpu_ptr(&rcu_data, i)->mynode = rnp; rcu_boot_init_percpu_data(i); } } /* * Force priority from the kernel command-line into range. */ static void __init sanitize_kthread_prio(void) { int kthread_prio_in = kthread_prio; if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) kthread_prio = 2; else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) kthread_prio = 1; else if (kthread_prio < 0) kthread_prio = 0; else if (kthread_prio > 99) kthread_prio = 99; if (kthread_prio != kthread_prio_in) pr_alert("%s: Limited prio to %d from %d\n", __func__, kthread_prio, kthread_prio_in); } /* * Compute the rcu_node tree geometry from kernel parameters. This cannot * replace the definitions in tree.h because those are needed to size * the ->node array in the rcu_state structure. */ void rcu_init_geometry(void) { ulong d; int i; static unsigned long old_nr_cpu_ids; int rcu_capacity[RCU_NUM_LVLS]; static bool initialized; if (initialized) { /* * Warn if setup_nr_cpu_ids() had not yet been invoked, * unless nr_cpus_ids == NR_CPUS, in which case who cares? */ WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); return; } old_nr_cpu_ids = nr_cpu_ids; initialized = true; /* * Initialize any unspecified boot parameters. * The default values of jiffies_till_first_fqs and * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS * value, which is a function of HZ, then adding one for each * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. */ d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; if (jiffies_till_first_fqs == ULONG_MAX) jiffies_till_first_fqs = d; if (jiffies_till_next_fqs == ULONG_MAX) jiffies_till_next_fqs = d; adjust_jiffies_till_sched_qs(); /* If the compile-time values are accurate, just leave. */ if (rcu_fanout_leaf == RCU_FANOUT_LEAF && nr_cpu_ids == NR_CPUS) return; pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", rcu_fanout_leaf, nr_cpu_ids); /* * The boot-time rcu_fanout_leaf parameter must be at least two * and cannot exceed the number of bits in the rcu_node masks. * Complain and fall back to the compile-time values if this * limit is exceeded. */ if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > sizeof(unsigned long) * 8) { rcu_fanout_leaf = RCU_FANOUT_LEAF; WARN_ON(1); return; } /* * Compute number of nodes that can be handled an rcu_node tree * with the given number of levels. */ rcu_capacity[0] = rcu_fanout_leaf; for (i = 1; i < RCU_NUM_LVLS; i++) rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; /* * The tree must be able to accommodate the configured number of CPUs. * If this limit is exceeded, fall back to the compile-time values. */ if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { rcu_fanout_leaf = RCU_FANOUT_LEAF; WARN_ON(1); return; } /* Calculate the number of levels in the tree. */ for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { } rcu_num_lvls = i + 1; /* Calculate the number of rcu_nodes at each level of the tree. */ for (i = 0; i < rcu_num_lvls; i++) { int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); } /* Calculate the total number of rcu_node structures. */ rcu_num_nodes = 0; for (i = 0; i < rcu_num_lvls; i++) rcu_num_nodes += num_rcu_lvl[i]; } /* * Dump out the structure of the rcu_node combining tree associated * with the rcu_state structure. */ static void __init rcu_dump_rcu_node_tree(void) { int level = 0; struct rcu_node *rnp; pr_info("rcu_node tree layout dump\n"); pr_info(" "); rcu_for_each_node_breadth_first(rnp) { if (rnp->level != level) { pr_cont("\n"); pr_info(" "); level = rnp->level; } pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); } pr_cont("\n"); } struct workqueue_struct *rcu_gp_wq; static void __init kfree_rcu_batch_init(void) { int cpu; int i; /* Clamp it to [0:100] seconds interval. */ if (rcu_delay_page_cache_fill_msec < 0 || rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { rcu_delay_page_cache_fill_msec = clamp(rcu_delay_page_cache_fill_msec, 0, (int) (100 * MSEC_PER_SEC)); pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", rcu_delay_page_cache_fill_msec); } for_each_possible_cpu(cpu) { struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); for (i = 0; i < KFREE_N_BATCHES; i++) { INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); krcp->krw_arr[i].krcp = krcp; } INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); krcp->initialized = true; } if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) pr_err("Failed to register kfree_rcu() shrinker!\n"); } void __init rcu_init(void) { int cpu = smp_processor_id(); rcu_early_boot_tests(); kfree_rcu_batch_init(); rcu_bootup_announce(); sanitize_kthread_prio(); rcu_init_geometry(); rcu_init_one(); if (dump_tree) rcu_dump_rcu_node_tree(); if (use_softirq) open_softirq(RCU_SOFTIRQ, rcu_core_si); /* * We don't need protection against CPU-hotplug here because * this is called early in boot, before either interrupts * or the scheduler are operational. */ pm_notifier(rcu_pm_notify, 0); WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. rcutree_prepare_cpu(cpu); rcu_cpu_starting(cpu); rcutree_online_cpu(cpu); /* Create workqueue for Tree SRCU and for expedited GPs. */ rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); WARN_ON(!rcu_gp_wq); rcu_alloc_par_gp_wq(); /* Fill in default value for rcutree.qovld boot parameter. */ /* -After- the rcu_node ->lock fields are initialized! */ if (qovld < 0) qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; else qovld_calc = qovld; // Kick-start any polled grace periods that started early. if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) (void)start_poll_synchronize_rcu_expedited(); } #include "tree_stall.h" #include "tree_exp.h" #include "tree_nocb.h" #include "tree_plugin.h"