/* * Generic entry point for the idle threads */ #include #include #include #include #include #include #include #include static int __read_mostly cpu_idle_force_poll; void cpu_idle_poll_ctrl(bool enable) { if (enable) { cpu_idle_force_poll++; } else { cpu_idle_force_poll--; WARN_ON_ONCE(cpu_idle_force_poll < 0); } } #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP static int __init cpu_idle_poll_setup(char *__unused) { cpu_idle_force_poll = 1; return 1; } __setup("nohlt", cpu_idle_poll_setup); static int __init cpu_idle_nopoll_setup(char *__unused) { cpu_idle_force_poll = 0; return 1; } __setup("hlt", cpu_idle_nopoll_setup); #endif static inline int cpu_idle_poll(void) { rcu_idle_enter(); trace_cpu_idle_rcuidle(0, smp_processor_id()); local_irq_enable(); while (!tif_need_resched()) cpu_relax(); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); rcu_idle_exit(); return 1; } /* Weak implementations for optional arch specific functions */ void __weak arch_cpu_idle_prepare(void) { } void __weak arch_cpu_idle_enter(void) { } void __weak arch_cpu_idle_exit(void) { } void __weak arch_cpu_idle_dead(void) { } void __weak arch_cpu_idle(void) { cpu_idle_force_poll = 1; local_irq_enable(); } /** * cpuidle_idle_call - the main idle function * * NOTE: no locks or semaphores should be used here * return non-zero on failure */ static int cpuidle_idle_call(void) { struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices); struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); int next_state, entered_state, ret; bool broadcast; /* * Check if the idle task must be rescheduled. If it is the * case, exit the function after re-enabling the local irq and * set again the polling flag */ if (current_clr_polling_and_test()) { local_irq_enable(); __current_set_polling(); return 0; } /* * During the idle period, stop measuring the disabled irqs * critical sections latencies */ stop_critical_timings(); /* * Tell the RCU framework we are entering an idle section, * so no more rcu read side critical sections and one more * step to the grace period */ rcu_idle_enter(); /* * Check if the cpuidle framework is ready, otherwise fallback * to the default arch specific idle method */ ret = cpuidle_enabled(drv, dev); if (!ret) { /* * Ask the governor to choose an idle state it thinks * it is convenient to go to. There is *always* a * convenient idle state */ next_state = cpuidle_select(drv, dev); /* * The idle task must be scheduled, it is pointless to * go to idle, just update no idle residency and get * out of this function */ if (current_clr_polling_and_test()) { dev->last_residency = 0; entered_state = next_state; local_irq_enable(); } else { broadcast = !!(drv->states[next_state].flags & CPUIDLE_FLAG_TIMER_STOP); if (broadcast) /* * Tell the time framework to switch * to a broadcast timer because our * local timer will be shutdown. If a * local timer is used from another * cpu as a broadcast timer, this call * may fail if it is not available */ ret = clockevents_notify( CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &dev->cpu); if (!ret) { trace_cpu_idle_rcuidle(next_state, dev->cpu); /* * Enter the idle state previously * returned by the governor * decision. This function will block * until an interrupt occurs and will * take care of re-enabling the local * interrupts */ entered_state = cpuidle_enter(drv, dev, next_state); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu); if (broadcast) clockevents_notify( CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &dev->cpu); /* * Give the governor an opportunity to reflect on the * outcome */ cpuidle_reflect(dev, entered_state); } } } /* * We can't use the cpuidle framework, let's use the default * idle routine */ if (ret) arch_cpu_idle(); __current_set_polling(); /* * It is up to the idle functions to enable back the local * interrupt */ if (WARN_ON_ONCE(irqs_disabled())) local_irq_enable(); rcu_idle_exit(); start_critical_timings(); return 0; } /* * Generic idle loop implementation */ static void cpu_idle_loop(void) { while (1) { tick_nohz_idle_enter(); while (!need_resched()) { check_pgt_cache(); rmb(); if (cpu_is_offline(smp_processor_id())) arch_cpu_idle_dead(); local_irq_disable(); arch_cpu_idle_enter(); /* * In poll mode we reenable interrupts and spin. * * Also if we detected in the wakeup from idle * path that the tick broadcast device expired * for us, we don't want to go deep idle as we * know that the IPI is going to arrive right * away */ if (cpu_idle_force_poll || tick_check_broadcast_expired()) cpu_idle_poll(); else cpuidle_idle_call(); arch_cpu_idle_exit(); } /* * Since we fell out of the loop above, we know * TIF_NEED_RESCHED must be set, propagate it into * PREEMPT_NEED_RESCHED. * * This is required because for polling idle loops we will * not have had an IPI to fold the state for us. */ preempt_set_need_resched(); tick_nohz_idle_exit(); schedule_preempt_disabled(); } } void cpu_startup_entry(enum cpuhp_state state) { /* * This #ifdef needs to die, but it's too late in the cycle to * make this generic (arm and sh have never invoked the canary * init for the non boot cpus!). Will be fixed in 3.11 */ #ifdef CONFIG_X86 /* * If we're the non-boot CPU, nothing set the stack canary up * for us. The boot CPU already has it initialized but no harm * in doing it again. This is a good place for updating it, as * we wont ever return from this function (so the invalid * canaries already on the stack wont ever trigger). */ boot_init_stack_canary(); #endif __current_set_polling(); arch_cpu_idle_prepare(); cpu_idle_loop(); }