/* * sched_clock.c: support for extending counters to full 64-bit ns counter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include struct clock_data { u64 epoch_ns; u32 epoch_cyc; u32 epoch_cyc_copy; unsigned long rate; u32 mult; u32 shift; bool suspended; }; static void sched_clock_poll(unsigned long wrap_ticks); static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0); static int irqtime = -1; core_param(irqtime, irqtime, int, 0400); static struct clock_data cd = { .mult = NSEC_PER_SEC / HZ, }; static u32 __read_mostly sched_clock_mask = 0xffffffff; static u32 notrace jiffy_sched_clock_read(void) { return (u32)(jiffies - INITIAL_JIFFIES); } static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read; static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) { return (cyc * mult) >> shift; } static unsigned long long notrace sched_clock_32(void) { u64 epoch_ns; u32 epoch_cyc; u32 cyc; if (cd.suspended) return cd.epoch_ns; /* * Load the epoch_cyc and epoch_ns atomically. We do this by * ensuring that we always write epoch_cyc, epoch_ns and * epoch_cyc_copy in strict order, and read them in strict order. * If epoch_cyc and epoch_cyc_copy are not equal, then we're in * the middle of an update, and we should repeat the load. */ do { epoch_cyc = cd.epoch_cyc; smp_rmb(); epoch_ns = cd.epoch_ns; smp_rmb(); } while (epoch_cyc != cd.epoch_cyc_copy); cyc = read_sched_clock(); cyc = (cyc - epoch_cyc) & sched_clock_mask; return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift); } /* * Atomically update the sched_clock epoch. */ static void notrace update_sched_clock(void) { unsigned long flags; u32 cyc; u64 ns; cyc = read_sched_clock(); ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask, cd.mult, cd.shift); /* * Write epoch_cyc and epoch_ns in a way that the update is * detectable in cyc_to_fixed_sched_clock(). */ raw_local_irq_save(flags); cd.epoch_cyc_copy = cyc; smp_wmb(); cd.epoch_ns = ns; smp_wmb(); cd.epoch_cyc = cyc; raw_local_irq_restore(flags); } static void sched_clock_poll(unsigned long wrap_ticks) { mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks)); update_sched_clock(); } void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate) { unsigned long r, w; u64 res, wrap; char r_unit; if (cd.rate > rate) return; BUG_ON(bits > 32); WARN_ON(!irqs_disabled()); read_sched_clock = read; sched_clock_mask = (1ULL << bits) - 1; cd.rate = rate; /* calculate the mult/shift to convert counter ticks to ns. */ clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0); r = rate; if (r >= 4000000) { r /= 1000000; r_unit = 'M'; } else if (r >= 1000) { r /= 1000; r_unit = 'k'; } else r_unit = ' '; /* calculate how many ns until we wrap */ wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift); do_div(wrap, NSEC_PER_MSEC); w = wrap; /* calculate the ns resolution of this counter */ res = cyc_to_ns(1ULL, cd.mult, cd.shift); pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n", bits, r, r_unit, res, w); /* * Start the timer to keep sched_clock() properly updated and * sets the initial epoch. */ sched_clock_timer.data = msecs_to_jiffies(w - (w / 10)); update_sched_clock(); /* * Ensure that sched_clock() starts off at 0ns */ cd.epoch_ns = 0; /* Enable IRQ time accounting if we have a fast enough sched_clock */ if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) enable_sched_clock_irqtime(); pr_debug("Registered %pF as sched_clock source\n", read); } unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32; unsigned long long notrace sched_clock(void) { return sched_clock_func(); } void __init sched_clock_postinit(void) { /* * If no sched_clock function has been provided at that point, * make it the final one one. */ if (read_sched_clock == jiffy_sched_clock_read) setup_sched_clock(jiffy_sched_clock_read, 32, HZ); sched_clock_poll(sched_clock_timer.data); } static int sched_clock_suspend(void) { sched_clock_poll(sched_clock_timer.data); cd.suspended = true; return 0; } static void sched_clock_resume(void) { cd.epoch_cyc = read_sched_clock(); cd.epoch_cyc_copy = cd.epoch_cyc; cd.suspended = false; } static struct syscore_ops sched_clock_ops = { .suspend = sched_clock_suspend, .resume = sched_clock_resume, }; static int __init sched_clock_syscore_init(void) { register_syscore_ops(&sched_clock_ops); return 0; } device_initcall(sched_clock_syscore_init);