// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1991, 1992 Linus Torvalds * * This file contains the interface functions for the various time related * system calls: time, stime, gettimeofday, settimeofday, adjtime * * Modification history: * * 1993-09-02 Philip Gladstone * Created file with time related functions from sched/core.c and adjtimex() * 1993-10-08 Torsten Duwe * adjtime interface update and CMOS clock write code * 1995-08-13 Torsten Duwe * kernel PLL updated to 1994-12-13 specs (rfc-1589) * 1999-01-16 Ulrich Windl * Introduced error checking for many cases in adjtimex(). * Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) * (Even though the technical memorandum forbids it) * 2004-07-14 Christoph Lameter * Added getnstimeofday to allow the posix timer functions to return * with nanosecond accuracy */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "timekeeping.h" /* * The timezone where the local system is located. Used as a default by some * programs who obtain this value by using gettimeofday. */ struct timezone sys_tz; EXPORT_SYMBOL(sys_tz); #ifdef __ARCH_WANT_SYS_TIME /* * sys_time() can be implemented in user-level using * sys_gettimeofday(). Is this for backwards compatibility? If so, * why not move it into the appropriate arch directory (for those * architectures that need it). */ SYSCALL_DEFINE1(time, time_t __user *, tloc) { time_t i = (time_t)ktime_get_real_seconds(); if (tloc) { if (put_user(i,tloc)) return -EFAULT; } force_successful_syscall_return(); return i; } /* * sys_stime() can be implemented in user-level using * sys_settimeofday(). Is this for backwards compatibility? If so, * why not move it into the appropriate arch directory (for those * architectures that need it). */ SYSCALL_DEFINE1(stime, time_t __user *, tptr) { struct timespec64 tv; int err; if (get_user(tv.tv_sec, tptr)) return -EFAULT; tv.tv_nsec = 0; err = security_settime64(&tv, NULL); if (err) return err; do_settimeofday64(&tv); return 0; } #endif /* __ARCH_WANT_SYS_TIME */ #ifdef CONFIG_COMPAT_32BIT_TIME #ifdef __ARCH_WANT_SYS_TIME32 /* old_time32_t is a 32 bit "long" and needs to get converted. */ SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc) { old_time32_t i; i = (old_time32_t)ktime_get_real_seconds(); if (tloc) { if (put_user(i,tloc)) return -EFAULT; } force_successful_syscall_return(); return i; } SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr) { struct timespec64 tv; int err; if (get_user(tv.tv_sec, tptr)) return -EFAULT; tv.tv_nsec = 0; err = security_settime64(&tv, NULL); if (err) return err; do_settimeofday64(&tv); return 0; } #endif /* __ARCH_WANT_SYS_TIME32 */ #endif SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, struct timezone __user *, tz) { if (likely(tv != NULL)) { struct timespec64 ts; ktime_get_real_ts64(&ts); if (put_user(ts.tv_sec, &tv->tv_sec) || put_user(ts.tv_nsec / 1000, &tv->tv_usec)) return -EFAULT; } if (unlikely(tz != NULL)) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } /* * In case for some reason the CMOS clock has not already been running * in UTC, but in some local time: The first time we set the timezone, * we will warp the clock so that it is ticking UTC time instead of * local time. Presumably, if someone is setting the timezone then we * are running in an environment where the programs understand about * timezones. This should be done at boot time in the /etc/rc script, * as soon as possible, so that the clock can be set right. Otherwise, * various programs will get confused when the clock gets warped. */ int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) { static int firsttime = 1; int error = 0; if (tv && !timespec64_valid(tv)) return -EINVAL; error = security_settime64(tv, tz); if (error) return error; if (tz) { /* Verify we're witin the +-15 hrs range */ if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) return -EINVAL; sys_tz = *tz; update_vsyscall_tz(); if (firsttime) { firsttime = 0; if (!tv) timekeeping_warp_clock(); } } if (tv) return do_settimeofday64(tv); return 0; } SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, struct timezone __user *, tz) { struct timespec64 new_ts; struct timeval user_tv; struct timezone new_tz; if (tv) { if (copy_from_user(&user_tv, tv, sizeof(*tv))) return -EFAULT; if (!timeval_valid(&user_tv)) return -EINVAL; new_ts.tv_sec = user_tv.tv_sec; new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; } if (tz) { if (copy_from_user(&new_tz, tz, sizeof(*tz))) return -EFAULT; } return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv, struct timezone __user *, tz) { if (tv) { struct timespec64 ts; ktime_get_real_ts64(&ts); if (put_user(ts.tv_sec, &tv->tv_sec) || put_user(ts.tv_nsec / 1000, &tv->tv_usec)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv, struct timezone __user *, tz) { struct timespec64 new_ts; struct timeval user_tv; struct timezone new_tz; if (tv) { if (compat_get_timeval(&user_tv, tv)) return -EFAULT; new_ts.tv_sec = user_tv.tv_sec; new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; } if (tz) { if (copy_from_user(&new_tz, tz, sizeof(*tz))) return -EFAULT; } return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); } #endif #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p) { struct __kernel_timex txc; /* Local copy of parameter */ int ret; /* Copy the user data space into the kernel copy * structure. But bear in mind that the structures * may change */ if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex))) return -EFAULT; ret = do_adjtimex(&txc); return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret; } #endif #ifdef CONFIG_COMPAT_32BIT_TIME int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp) { struct old_timex32 tx32; memset(txc, 0, sizeof(struct __kernel_timex)); if (copy_from_user(&tx32, utp, sizeof(struct old_timex32))) return -EFAULT; txc->modes = tx32.modes; txc->offset = tx32.offset; txc->freq = tx32.freq; txc->maxerror = tx32.maxerror; txc->esterror = tx32.esterror; txc->status = tx32.status; txc->constant = tx32.constant; txc->precision = tx32.precision; txc->tolerance = tx32.tolerance; txc->time.tv_sec = tx32.time.tv_sec; txc->time.tv_usec = tx32.time.tv_usec; txc->tick = tx32.tick; txc->ppsfreq = tx32.ppsfreq; txc->jitter = tx32.jitter; txc->shift = tx32.shift; txc->stabil = tx32.stabil; txc->jitcnt = tx32.jitcnt; txc->calcnt = tx32.calcnt; txc->errcnt = tx32.errcnt; txc->stbcnt = tx32.stbcnt; return 0; } int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc) { struct old_timex32 tx32; memset(&tx32, 0, sizeof(struct old_timex32)); tx32.modes = txc->modes; tx32.offset = txc->offset; tx32.freq = txc->freq; tx32.maxerror = txc->maxerror; tx32.esterror = txc->esterror; tx32.status = txc->status; tx32.constant = txc->constant; tx32.precision = txc->precision; tx32.tolerance = txc->tolerance; tx32.time.tv_sec = txc->time.tv_sec; tx32.time.tv_usec = txc->time.tv_usec; tx32.tick = txc->tick; tx32.ppsfreq = txc->ppsfreq; tx32.jitter = txc->jitter; tx32.shift = txc->shift; tx32.stabil = txc->stabil; tx32.jitcnt = txc->jitcnt; tx32.calcnt = txc->calcnt; tx32.errcnt = txc->errcnt; tx32.stbcnt = txc->stbcnt; tx32.tai = txc->tai; if (copy_to_user(utp, &tx32, sizeof(struct old_timex32))) return -EFAULT; return 0; } SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp) { struct __kernel_timex txc; int err, ret; err = get_old_timex32(&txc, utp); if (err) return err; ret = do_adjtimex(&txc); err = put_old_timex32(utp, &txc); if (err) return err; return ret; } #endif /* * Convert jiffies to milliseconds and back. * * Avoid unnecessary multiplications/divisions in the * two most common HZ cases: */ unsigned int jiffies_to_msecs(const unsigned long j) { #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) return (MSEC_PER_SEC / HZ) * j; #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); #else # if BITS_PER_LONG == 32 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >> HZ_TO_MSEC_SHR32; # else return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); # endif #endif } EXPORT_SYMBOL(jiffies_to_msecs); unsigned int jiffies_to_usecs(const unsigned long j) { /* * Hz usually doesn't go much further MSEC_PER_SEC. * jiffies_to_usecs() and usecs_to_jiffies() depend on that. */ BUILD_BUG_ON(HZ > USEC_PER_SEC); #if !(USEC_PER_SEC % HZ) return (USEC_PER_SEC / HZ) * j; #else # if BITS_PER_LONG == 32 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; # else return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; # endif #endif } EXPORT_SYMBOL(jiffies_to_usecs); /* * mktime64 - Converts date to seconds. * Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * A leap second can be indicated by calling this function with sec as * 60 (allowable under ISO 8601). The leap second is treated the same * as the following second since they don't exist in UNIX time. * * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight * tomorrow - (allowable under ISO 8601) is supported. */ time64_t mktime64(const unsigned int year0, const unsigned int mon0, const unsigned int day, const unsigned int hour, const unsigned int min, const unsigned int sec) { unsigned int mon = mon0, year = year0; /* 1..12 -> 11,12,1..10 */ if (0 >= (int) (mon -= 2)) { mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((((time64_t) (year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours - midnight tomorrow handled here */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } EXPORT_SYMBOL(mktime64); /** * ns_to_timespec - Convert nanoseconds to timespec * @nsec: the nanoseconds value to be converted * * Returns the timespec representation of the nsec parameter. */ struct timespec ns_to_timespec(const s64 nsec) { struct timespec ts; s32 rem; if (!nsec) return (struct timespec) {0, 0}; ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); if (unlikely(rem < 0)) { ts.tv_sec--; rem += NSEC_PER_SEC; } ts.tv_nsec = rem; return ts; } EXPORT_SYMBOL(ns_to_timespec); /** * ns_to_timeval - Convert nanoseconds to timeval * @nsec: the nanoseconds value to be converted * * Returns the timeval representation of the nsec parameter. */ struct timeval ns_to_timeval(const s64 nsec) { struct timespec ts = ns_to_timespec(nsec); struct timeval tv; tv.tv_sec = ts.tv_sec; tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; return tv; } EXPORT_SYMBOL(ns_to_timeval); struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec) { struct timespec64 ts = ns_to_timespec64(nsec); struct __kernel_old_timeval tv; tv.tv_sec = ts.tv_sec; tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000; return tv; } EXPORT_SYMBOL(ns_to_kernel_old_timeval); /** * set_normalized_timespec - set timespec sec and nsec parts and normalize * * @ts: pointer to timespec variable to be set * @sec: seconds to set * @nsec: nanoseconds to set * * Set seconds and nanoseconds field of a timespec variable and * normalize to the timespec storage format * * Note: The tv_nsec part is always in the range of * 0 <= tv_nsec < NSEC_PER_SEC * For negative values only the tv_sec field is negative ! */ void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) { while (nsec >= NSEC_PER_SEC) { /* * The following asm() prevents the compiler from * optimising this loop into a modulo operation. See * also __iter_div_u64_rem() in include/linux/time.h */ asm("" : "+rm"(nsec)); nsec -= NSEC_PER_SEC; ++sec; } while (nsec < 0) { asm("" : "+rm"(nsec)); nsec += NSEC_PER_SEC; --sec; } ts->tv_sec = sec; ts->tv_nsec = nsec; } EXPORT_SYMBOL(set_normalized_timespec64); /** * ns_to_timespec64 - Convert nanoseconds to timespec64 * @nsec: the nanoseconds value to be converted * * Returns the timespec64 representation of the nsec parameter. */ struct timespec64 ns_to_timespec64(const s64 nsec) { struct timespec64 ts; s32 rem; if (!nsec) return (struct timespec64) {0, 0}; ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); if (unlikely(rem < 0)) { ts.tv_sec--; rem += NSEC_PER_SEC; } ts.tv_nsec = rem; return ts; } EXPORT_SYMBOL(ns_to_timespec64); /** * msecs_to_jiffies: - convert milliseconds to jiffies * @m: time in milliseconds * * conversion is done as follows: * * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows. * for the details see __msecs_to_jiffies() * * msecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __msecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the _msecs_to_jiffies helpers are the HZ dependent conversion * routines found in include/linux/jiffies.h */ unsigned long __msecs_to_jiffies(const unsigned int m) { /* * Negative value, means infinite timeout: */ if ((int)m < 0) return MAX_JIFFY_OFFSET; return _msecs_to_jiffies(m); } EXPORT_SYMBOL(__msecs_to_jiffies); unsigned long __usecs_to_jiffies(const unsigned int u) { if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return _usecs_to_jiffies(u); } EXPORT_SYMBOL(__usecs_to_jiffies); /* * The TICK_NSEC - 1 rounds up the value to the next resolution. Note * that a remainder subtract here would not do the right thing as the * resolution values don't fall on second boundries. I.e. the line: * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. * Note that due to the small error in the multiplier here, this * rounding is incorrect for sufficiently large values of tv_nsec, but * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're * OK. * * Rather, we just shift the bits off the right. * * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec * value to a scaled second value. */ static unsigned long __timespec64_to_jiffies(u64 sec, long nsec) { nsec = nsec + TICK_NSEC - 1; if (sec >= MAX_SEC_IN_JIFFIES){ sec = MAX_SEC_IN_JIFFIES; nsec = 0; } return ((sec * SEC_CONVERSION) + (((u64)nsec * NSEC_CONVERSION) >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; } static unsigned long __timespec_to_jiffies(unsigned long sec, long nsec) { return __timespec64_to_jiffies((u64)sec, nsec); } unsigned long timespec64_to_jiffies(const struct timespec64 *value) { return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec); } EXPORT_SYMBOL(timespec64_to_jiffies); void jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) { /* * Convert jiffies to nanoseconds and separate with * one divide. */ u32 rem; value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, NSEC_PER_SEC, &rem); value->tv_nsec = rem; } EXPORT_SYMBOL(jiffies_to_timespec64); /* * We could use a similar algorithm to timespec_to_jiffies (with a * different multiplier for usec instead of nsec). But this has a * problem with rounding: we can't exactly add TICK_NSEC - 1 to the * usec value, since it's not necessarily integral. * * We could instead round in the intermediate scaled representation * (i.e. in units of 1/2^(large scale) jiffies) but that's also * perilous: the scaling introduces a small positive error, which * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 * units to the intermediate before shifting) leads to accidental * overflow and overestimates. * * At the cost of one additional multiplication by a constant, just * use the timespec implementation. */ unsigned long timeval_to_jiffies(const struct timeval *value) { return __timespec_to_jiffies(value->tv_sec, value->tv_usec * NSEC_PER_USEC); } EXPORT_SYMBOL(timeval_to_jiffies); void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) { /* * Convert jiffies to nanoseconds and separate with * one divide. */ u32 rem; value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, NSEC_PER_SEC, &rem); value->tv_usec = rem / NSEC_PER_USEC; } EXPORT_SYMBOL(jiffies_to_timeval); /* * Convert jiffies/jiffies_64 to clock_t and back. */ clock_t jiffies_to_clock_t(unsigned long x) { #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 # if HZ < USER_HZ return x * (USER_HZ / HZ); # else return x / (HZ / USER_HZ); # endif #else return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); #endif } EXPORT_SYMBOL(jiffies_to_clock_t); unsigned long clock_t_to_jiffies(unsigned long x) { #if (HZ % USER_HZ)==0 if (x >= ~0UL / (HZ / USER_HZ)) return ~0UL; return x * (HZ / USER_HZ); #else /* Don't worry about loss of precision here .. */ if (x >= ~0UL / HZ * USER_HZ) return ~0UL; /* .. but do try to contain it here */ return div_u64((u64)x * HZ, USER_HZ); #endif } EXPORT_SYMBOL(clock_t_to_jiffies); u64 jiffies_64_to_clock_t(u64 x) { #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 # if HZ < USER_HZ x = div_u64(x * USER_HZ, HZ); # elif HZ > USER_HZ x = div_u64(x, HZ / USER_HZ); # else /* Nothing to do */ # endif #else /* * There are better ways that don't overflow early, * but even this doesn't overflow in hundreds of years * in 64 bits, so.. */ x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); #endif return x; } EXPORT_SYMBOL(jiffies_64_to_clock_t); u64 nsec_to_clock_t(u64 x) { #if (NSEC_PER_SEC % USER_HZ) == 0 return div_u64(x, NSEC_PER_SEC / USER_HZ); #elif (USER_HZ % 512) == 0 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); #else /* * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, * overflow after 64.99 years. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... */ return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); #endif } u64 jiffies64_to_nsecs(u64 j) { #if !(NSEC_PER_SEC % HZ) return (NSEC_PER_SEC / HZ) * j; # else return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN); #endif } EXPORT_SYMBOL(jiffies64_to_nsecs); /** * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 * * @n: nsecs in u64 * * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed * for scheduler, not for use in device drivers to calculate timeout value. * * note: * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years */ u64 nsecs_to_jiffies64(u64 n) { #if (NSEC_PER_SEC % HZ) == 0 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ return div_u64(n, NSEC_PER_SEC / HZ); #elif (HZ % 512) == 0 /* overflow after 292 years if HZ = 1024 */ return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); #else /* * Generic case - optimized for cases where HZ is a multiple of 3. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. */ return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); #endif } EXPORT_SYMBOL(nsecs_to_jiffies64); /** * nsecs_to_jiffies - Convert nsecs in u64 to jiffies * * @n: nsecs in u64 * * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed * for scheduler, not for use in device drivers to calculate timeout value. * * note: * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years */ unsigned long nsecs_to_jiffies(u64 n) { return (unsigned long)nsecs_to_jiffies64(n); } EXPORT_SYMBOL_GPL(nsecs_to_jiffies); /* * Add two timespec64 values and do a safety check for overflow. * It's assumed that both values are valid (>= 0). * And, each timespec64 is in normalized form. */ struct timespec64 timespec64_add_safe(const struct timespec64 lhs, const struct timespec64 rhs) { struct timespec64 res; set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec, lhs.tv_nsec + rhs.tv_nsec); if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { res.tv_sec = TIME64_MAX; res.tv_nsec = 0; } return res; } int get_timespec64(struct timespec64 *ts, const struct __kernel_timespec __user *uts) { struct __kernel_timespec kts; int ret; ret = copy_from_user(&kts, uts, sizeof(kts)); if (ret) return -EFAULT; ts->tv_sec = kts.tv_sec; /* Zero out the padding for 32 bit systems or in compat mode */ if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall()) kts.tv_nsec &= 0xFFFFFFFFUL; ts->tv_nsec = kts.tv_nsec; return 0; } EXPORT_SYMBOL_GPL(get_timespec64); int put_timespec64(const struct timespec64 *ts, struct __kernel_timespec __user *uts) { struct __kernel_timespec kts = { .tv_sec = ts->tv_sec, .tv_nsec = ts->tv_nsec }; return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0; } EXPORT_SYMBOL_GPL(put_timespec64); static int __get_old_timespec32(struct timespec64 *ts64, const struct old_timespec32 __user *cts) { struct old_timespec32 ts; int ret; ret = copy_from_user(&ts, cts, sizeof(ts)); if (ret) return -EFAULT; ts64->tv_sec = ts.tv_sec; ts64->tv_nsec = ts.tv_nsec; return 0; } static int __put_old_timespec32(const struct timespec64 *ts64, struct old_timespec32 __user *cts) { struct old_timespec32 ts = { .tv_sec = ts64->tv_sec, .tv_nsec = ts64->tv_nsec }; return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0; } int get_old_timespec32(struct timespec64 *ts, const void __user *uts) { if (COMPAT_USE_64BIT_TIME) return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0; else return __get_old_timespec32(ts, uts); } EXPORT_SYMBOL_GPL(get_old_timespec32); int put_old_timespec32(const struct timespec64 *ts, void __user *uts) { if (COMPAT_USE_64BIT_TIME) return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0; else return __put_old_timespec32(ts, uts); } EXPORT_SYMBOL_GPL(put_old_timespec32); int get_itimerspec64(struct itimerspec64 *it, const struct __kernel_itimerspec __user *uit) { int ret; ret = get_timespec64(&it->it_interval, &uit->it_interval); if (ret) return ret; ret = get_timespec64(&it->it_value, &uit->it_value); return ret; } EXPORT_SYMBOL_GPL(get_itimerspec64); int put_itimerspec64(const struct itimerspec64 *it, struct __kernel_itimerspec __user *uit) { int ret; ret = put_timespec64(&it->it_interval, &uit->it_interval); if (ret) return ret; ret = put_timespec64(&it->it_value, &uit->it_value); return ret; } EXPORT_SYMBOL_GPL(put_itimerspec64); int get_old_itimerspec32(struct itimerspec64 *its, const struct old_itimerspec32 __user *uits) { if (__get_old_timespec32(&its->it_interval, &uits->it_interval) || __get_old_timespec32(&its->it_value, &uits->it_value)) return -EFAULT; return 0; } EXPORT_SYMBOL_GPL(get_old_itimerspec32); int put_old_itimerspec32(const struct itimerspec64 *its, struct old_itimerspec32 __user *uits) { if (__put_old_timespec32(&its->it_interval, &uits->it_interval) || __put_old_timespec32(&its->it_value, &uits->it_value)) return -EFAULT; return 0; } EXPORT_SYMBOL_GPL(put_old_itimerspec32);