// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2013 Red Hat Inc. * * Authors: Jérôme Glisse */ /* * Refer to include/linux/hmm.h for information about heterogeneous memory * management or HMM for short. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct hmm_vma_walk { struct hmm_range *range; struct dev_pagemap *pgmap; unsigned long last; unsigned int flags; }; static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr, bool write_fault, uint64_t *pfn) { unsigned int flags = FAULT_FLAG_REMOTE; struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; vm_fault_t ret; if (!vma) goto err; if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY) flags |= FAULT_FLAG_ALLOW_RETRY; if (write_fault) flags |= FAULT_FLAG_WRITE; ret = handle_mm_fault(vma, addr, flags); if (ret & VM_FAULT_RETRY) { /* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */ return -EAGAIN; } if (ret & VM_FAULT_ERROR) goto err; return -EBUSY; err: *pfn = range->values[HMM_PFN_ERROR]; return -EFAULT; } static int hmm_pfns_fill(unsigned long addr, unsigned long end, struct hmm_range *range, enum hmm_pfn_value_e value) { uint64_t *pfns = range->pfns; unsigned long i; i = (addr - range->start) >> PAGE_SHIFT; for (; addr < end; addr += PAGE_SIZE, i++) pfns[i] = range->values[value]; return 0; } /* * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s) * @addr: range virtual start address (inclusive) * @end: range virtual end address (exclusive) * @fault: should we fault or not ? * @write_fault: write fault ? * @walk: mm_walk structure * Return: 0 on success, -EBUSY after page fault, or page fault error * * This function will be called whenever pmd_none() or pte_none() returns true, * or whenever there is no page directory covering the virtual address range. */ static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end, bool fault, bool write_fault, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; uint64_t *pfns = range->pfns; unsigned long i; hmm_vma_walk->last = addr; i = (addr - range->start) >> PAGE_SHIFT; if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE)) return -EPERM; for (; addr < end; addr += PAGE_SIZE, i++) { pfns[i] = range->values[HMM_PFN_NONE]; if (fault || write_fault) { int ret; ret = hmm_vma_do_fault(walk, addr, write_fault, &pfns[i]); if (ret != -EBUSY) return ret; } } return (fault || write_fault) ? -EBUSY : 0; } static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, uint64_t pfns, uint64_t cpu_flags, bool *fault, bool *write_fault) { struct hmm_range *range = hmm_vma_walk->range; if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) return; /* * So we not only consider the individual per page request we also * consider the default flags requested for the range. The API can * be used 2 ways. The first one where the HMM user coalesces * multiple page faults into one request and sets flags per pfn for * those faults. The second one where the HMM user wants to pre- * fault a range with specific flags. For the latter one it is a * waste to have the user pre-fill the pfn arrays with a default * flags value. */ pfns = (pfns & range->pfn_flags_mask) | range->default_flags; /* We aren't ask to do anything ... */ if (!(pfns & range->flags[HMM_PFN_VALID])) return; /* If this is device memory then only fault if explicitly requested */ if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) { /* Do we fault on device memory ? */ if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) { *write_fault = pfns & range->flags[HMM_PFN_WRITE]; *fault = true; } return; } /* If CPU page table is not valid then we need to fault */ *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]); /* Need to write fault ? */ if ((pfns & range->flags[HMM_PFN_WRITE]) && !(cpu_flags & range->flags[HMM_PFN_WRITE])) { *write_fault = true; *fault = true; } } static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, const uint64_t *pfns, unsigned long npages, uint64_t cpu_flags, bool *fault, bool *write_fault) { unsigned long i; if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) { *fault = *write_fault = false; return; } *fault = *write_fault = false; for (i = 0; i < npages; ++i) { hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags, fault, write_fault); if ((*write_fault)) return; } } static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, __always_unused int depth, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; bool fault, write_fault; unsigned long i, npages; uint64_t *pfns; i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault, &write_fault); return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); } static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd) { if (pmd_protnone(pmd)) return 0; return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, unsigned long end, uint64_t *pfns, pmd_t pmd) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; unsigned long pfn, npages, i; bool fault, write_fault; uint64_t cpu_flags; npages = (end - addr) >> PAGE_SHIFT; cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, &fault, &write_fault); if (pmd_protnone(pmd) || fault || write_fault) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { if (pmd_devmap(pmd)) { hmm_vma_walk->pgmap = get_dev_pagemap(pfn, hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; } pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; } if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } hmm_vma_walk->last = end; return 0; } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ /* stub to allow the code below to compile */ int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, unsigned long end, uint64_t *pfns, pmd_t pmd); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte) { if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) return 0; return pte_write(pte) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, unsigned long end, pmd_t *pmdp, pte_t *ptep, uint64_t *pfn) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; bool fault, write_fault; uint64_t cpu_flags; pte_t pte = *ptep; uint64_t orig_pfn = *pfn; *pfn = range->values[HMM_PFN_NONE]; fault = write_fault = false; if (pte_none(pte)) { hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault, &write_fault); if (fault || write_fault) goto fault; return 0; } if (!pte_present(pte)) { swp_entry_t entry = pte_to_swp_entry(pte); if (!non_swap_entry(entry)) { cpu_flags = pte_to_hmm_pfn_flags(range, pte); hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) goto fault; return 0; } /* * This is a special swap entry, ignore migration, use * device and report anything else as error. */ if (is_device_private_entry(entry)) { cpu_flags = range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_DEVICE_PRIVATE]; cpu_flags |= is_write_device_private_entry(entry) ? range->flags[HMM_PFN_WRITE] : 0; hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) goto fault; *pfn = hmm_device_entry_from_pfn(range, swp_offset(entry)); *pfn |= cpu_flags; return 0; } if (is_migration_entry(entry)) { if (fault || write_fault) { pte_unmap(ptep); hmm_vma_walk->last = addr; migration_entry_wait(walk->mm, pmdp, addr); return -EBUSY; } return 0; } /* Report error for everything else */ *pfn = range->values[HMM_PFN_ERROR]; return -EFAULT; } else { cpu_flags = pte_to_hmm_pfn_flags(range, pte); hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); } if (fault || write_fault) goto fault; if (pte_devmap(pte)) { hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte), hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) return -EBUSY; } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) { if (!is_zero_pfn(pte_pfn(pte))) { *pfn = range->values[HMM_PFN_SPECIAL]; return -EFAULT; } /* * Since each architecture defines a struct page for the zero * page, just fall through and treat it like a normal page. */ } *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags; return 0; fault: if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } pte_unmap(ptep); /* Fault any virtual address we were asked to fault */ return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); } static int hmm_vma_walk_pmd(pmd_t *pmdp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; uint64_t *pfns = range->pfns; unsigned long addr = start, i; pte_t *ptep; pmd_t pmd; again: pmd = READ_ONCE(*pmdp); if (pmd_none(pmd)) return hmm_vma_walk_hole(start, end, -1, walk); if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { bool fault, write_fault; unsigned long npages; uint64_t *pfns; i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault, &write_fault); if (fault || write_fault) { hmm_vma_walk->last = addr; pmd_migration_entry_wait(walk->mm, pmdp); return -EBUSY; } return 0; } else if (!pmd_present(pmd)) return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { /* * No need to take pmd_lock here, even if some other thread * is splitting the huge pmd we will get that event through * mmu_notifier callback. * * So just read pmd value and check again it's a transparent * huge or device mapping one and compute corresponding pfn * values. */ pmd = pmd_read_atomic(pmdp); barrier(); if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) goto again; i = (addr - range->start) >> PAGE_SHIFT; return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd); } /* * We have handled all the valid cases above ie either none, migration, * huge or transparent huge. At this point either it is a valid pmd * entry pointing to pte directory or it is a bad pmd that will not * recover. */ if (pmd_bad(pmd)) return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); ptep = pte_offset_map(pmdp, addr); i = (addr - range->start) >> PAGE_SHIFT; for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { int r; r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]); if (r) { /* hmm_vma_handle_pte() did unmap pte directory */ hmm_vma_walk->last = addr; return r; } } if (hmm_vma_walk->pgmap) { /* * We do put_dev_pagemap() here and not in hmm_vma_handle_pte() * so that we can leverage get_dev_pagemap() optimization which * will not re-take a reference on a pgmap if we already have * one. */ put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } pte_unmap(ptep - 1); hmm_vma_walk->last = addr; return 0; } #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud) { if (!pud_present(pud)) return 0; return pud_write(pud) ? range->flags[HMM_PFN_VALID] | range->flags[HMM_PFN_WRITE] : range->flags[HMM_PFN_VALID]; } static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; unsigned long addr = start; pud_t pud; int ret = 0; spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); if (!ptl) return 0; /* Normally we don't want to split the huge page */ walk->action = ACTION_CONTINUE; pud = READ_ONCE(*pudp); if (pud_none(pud)) { ret = hmm_vma_walk_hole(start, end, -1, walk); goto out_unlock; } if (pud_huge(pud) && pud_devmap(pud)) { unsigned long i, npages, pfn; uint64_t *pfns, cpu_flags; bool fault, write_fault; if (!pud_present(pud)) { ret = hmm_vma_walk_hole(start, end, -1, walk); goto out_unlock; } i = (addr - range->start) >> PAGE_SHIFT; npages = (end - addr) >> PAGE_SHIFT; pfns = &range->pfns[i]; cpu_flags = pud_to_hmm_pfn_flags(range, pud); hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, &fault, &write_fault); if (fault || write_fault) { ret = hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); goto out_unlock; } pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); for (i = 0; i < npages; ++i, ++pfn) { hmm_vma_walk->pgmap = get_dev_pagemap(pfn, hmm_vma_walk->pgmap); if (unlikely(!hmm_vma_walk->pgmap)) { ret = -EBUSY; goto out_unlock; } pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; } if (hmm_vma_walk->pgmap) { put_dev_pagemap(hmm_vma_walk->pgmap); hmm_vma_walk->pgmap = NULL; } hmm_vma_walk->last = end; goto out_unlock; } /* Ask for the PUD to be split */ walk->action = ACTION_SUBTREE; out_unlock: spin_unlock(ptl); return ret; } #else #define hmm_vma_walk_pud NULL #endif #ifdef CONFIG_HUGETLB_PAGE static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, unsigned long start, unsigned long end, struct mm_walk *walk) { unsigned long addr = start, i, pfn; struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; uint64_t orig_pfn, cpu_flags; bool fault, write_fault; spinlock_t *ptl; pte_t entry; int ret = 0; ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); entry = huge_ptep_get(pte); i = (start - range->start) >> PAGE_SHIFT; orig_pfn = range->pfns[i]; range->pfns[i] = range->values[HMM_PFN_NONE]; cpu_flags = pte_to_hmm_pfn_flags(range, entry); fault = write_fault = false; hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault, &write_fault); if (fault || write_fault) { ret = -ENOENT; goto unlock; } pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); for (; addr < end; addr += PAGE_SIZE, i++, pfn++) range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; hmm_vma_walk->last = end; unlock: spin_unlock(ptl); if (ret == -ENOENT) return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); return ret; } #else #define hmm_vma_walk_hugetlb_entry NULL #endif /* CONFIG_HUGETLB_PAGE */ static int hmm_vma_walk_test(unsigned long start, unsigned long end, struct mm_walk *walk) { struct hmm_vma_walk *hmm_vma_walk = walk->private; struct hmm_range *range = hmm_vma_walk->range; struct vm_area_struct *vma = walk->vma; /* * Skip vma ranges that don't have struct page backing them or * map I/O devices directly. */ if (vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) return -EFAULT; /* * If the vma does not allow read access, then assume that it does not * allow write access either. HMM does not support architectures * that allow write without read. */ if (!(vma->vm_flags & VM_READ)) { bool fault, write_fault; /* * Check to see if a fault is requested for any page in the * range. */ hmm_range_need_fault(hmm_vma_walk, range->pfns + ((start - range->start) >> PAGE_SHIFT), (end - start) >> PAGE_SHIFT, 0, &fault, &write_fault); if (fault || write_fault) return -EFAULT; hmm_pfns_fill(start, end, range, HMM_PFN_NONE); hmm_vma_walk->last = end; /* Skip this vma and continue processing the next vma. */ return 1; } return 0; } static const struct mm_walk_ops hmm_walk_ops = { .pud_entry = hmm_vma_walk_pud, .pmd_entry = hmm_vma_walk_pmd, .pte_hole = hmm_vma_walk_hole, .hugetlb_entry = hmm_vma_walk_hugetlb_entry, .test_walk = hmm_vma_walk_test, }; /** * hmm_range_fault - try to fault some address in a virtual address range * @range: range being faulted * @flags: HMM_FAULT_* flags * * Return: the number of valid pages in range->pfns[] (from range start * address), which may be zero. On error one of the following status codes * can be returned: * * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma * (e.g., device file vma). * -ENOMEM: Out of memory. * -EPERM: Invalid permission (e.g., asking for write and range is read * only). * -EAGAIN: A page fault needs to be retried and mmap_sem was dropped. * -EBUSY: The range has been invalidated and the caller needs to wait for * the invalidation to finish. * -EFAULT: Invalid (i.e., either no valid vma or it is illegal to access * that range) number of valid pages in range->pfns[] (from * range start address). * * This is similar to a regular CPU page fault except that it will not trigger * any memory migration if the memory being faulted is not accessible by CPUs * and caller does not ask for migration. * * On error, for one virtual address in the range, the function will mark the * corresponding HMM pfn entry with an error flag. */ long hmm_range_fault(struct hmm_range *range, unsigned int flags) { struct hmm_vma_walk hmm_vma_walk = { .range = range, .last = range->start, .flags = flags, }; struct mm_struct *mm = range->notifier->mm; int ret; lockdep_assert_held(&mm->mmap_sem); do { /* If range is no longer valid force retry. */ if (mmu_interval_check_retry(range->notifier, range->notifier_seq)) return -EBUSY; ret = walk_page_range(mm, hmm_vma_walk.last, range->end, &hmm_walk_ops, &hmm_vma_walk); } while (ret == -EBUSY); if (ret) return ret; return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; } EXPORT_SYMBOL(hmm_range_fault);