/* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include struct memblock memblock; static int memblock_debug; static int __init early_memblock(char *p) { if (p && strstr(p, "debug")) memblock_debug = 1; return 0; } early_param("memblock", early_memblock); static void memblock_dump(struct memblock_type *region, char *name) { unsigned long long base, size; int i; pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); for (i = 0; i < region->cnt; i++) { base = region->regions[i].base; size = region->regions[i].size; pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n", name, i, base, base + size - 1, size); } } void memblock_dump_all(void) { if (!memblock_debug) return; pr_info("MEMBLOCK configuration:\n"); pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size); pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size); memblock_dump(&memblock.memory, "memory"); memblock_dump(&memblock.reserved, "reserved"); } static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2, u64 size2) { return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); } static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2) { if (base2 == base1 + size1) return 1; else if (base1 == base2 + size2) return -1; return 0; } static long memblock_regions_adjacent(struct memblock_type *type, unsigned long r1, unsigned long r2) { u64 base1 = type->regions[r1].base; u64 size1 = type->regions[r1].size; u64 base2 = type->regions[r2].base; u64 size2 = type->regions[r2].size; return memblock_addrs_adjacent(base1, size1, base2, size2); } static void memblock_remove_region(struct memblock_type *type, unsigned long r) { unsigned long i; for (i = r; i < type->cnt - 1; i++) { type->regions[i].base = type->regions[i + 1].base; type->regions[i].size = type->regions[i + 1].size; } type->cnt--; } /* Assumption: base addr of region 1 < base addr of region 2 */ static void memblock_coalesce_regions(struct memblock_type *type, unsigned long r1, unsigned long r2) { type->regions[r1].size += type->regions[r2].size; memblock_remove_region(type, r2); } void __init memblock_init(void) { /* Create a dummy zero size MEMBLOCK which will get coalesced away later. * This simplifies the memblock_add() code below... */ memblock.memory.regions[0].base = 0; memblock.memory.regions[0].size = 0; memblock.memory.cnt = 1; /* Ditto. */ memblock.reserved.regions[0].base = 0; memblock.reserved.regions[0].size = 0; memblock.reserved.cnt = 1; memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE; } void __init memblock_analyze(void) { int i; memblock.memory.size = 0; for (i = 0; i < memblock.memory.cnt; i++) memblock.memory.size += memblock.memory.regions[i].size; } static long memblock_add_region(struct memblock_type *type, u64 base, u64 size) { unsigned long coalesced = 0; long adjacent, i; if ((type->cnt == 1) && (type->regions[0].size == 0)) { type->regions[0].base = base; type->regions[0].size = size; return 0; } /* First try and coalesce this MEMBLOCK with another. */ for (i = 0; i < type->cnt; i++) { u64 rgnbase = type->regions[i].base; u64 rgnsize = type->regions[i].size; if ((rgnbase == base) && (rgnsize == size)) /* Already have this region, so we're done */ return 0; adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize); if (adjacent > 0) { type->regions[i].base -= size; type->regions[i].size += size; coalesced++; break; } else if (adjacent < 0) { type->regions[i].size += size; coalesced++; break; } } if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) { memblock_coalesce_regions(type, i, i+1); coalesced++; } if (coalesced) return coalesced; if (type->cnt >= MAX_MEMBLOCK_REGIONS) return -1; /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ for (i = type->cnt - 1; i >= 0; i--) { if (base < type->regions[i].base) { type->regions[i+1].base = type->regions[i].base; type->regions[i+1].size = type->regions[i].size; } else { type->regions[i+1].base = base; type->regions[i+1].size = size; break; } } if (base < type->regions[0].base) { type->regions[0].base = base; type->regions[0].size = size; } type->cnt++; return 0; } long memblock_add(u64 base, u64 size) { /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */ if (base == 0) memblock.rmo_size = size; return memblock_add_region(&memblock.memory, base, size); } static long __memblock_remove(struct memblock_type *type, u64 base, u64 size) { u64 rgnbegin, rgnend; u64 end = base + size; int i; rgnbegin = rgnend = 0; /* supress gcc warnings */ /* Find the region where (base, size) belongs to */ for (i=0; i < type->cnt; i++) { rgnbegin = type->regions[i].base; rgnend = rgnbegin + type->regions[i].size; if ((rgnbegin <= base) && (end <= rgnend)) break; } /* Didn't find the region */ if (i == type->cnt) return -1; /* Check to see if we are removing entire region */ if ((rgnbegin == base) && (rgnend == end)) { memblock_remove_region(type, i); return 0; } /* Check to see if region is matching at the front */ if (rgnbegin == base) { type->regions[i].base = end; type->regions[i].size -= size; return 0; } /* Check to see if the region is matching at the end */ if (rgnend == end) { type->regions[i].size -= size; return 0; } /* * We need to split the entry - adjust the current one to the * beginging of the hole and add the region after hole. */ type->regions[i].size = base - type->regions[i].base; return memblock_add_region(type, end, rgnend - end); } long memblock_remove(u64 base, u64 size) { return __memblock_remove(&memblock.memory, base, size); } long __init memblock_free(u64 base, u64 size) { return __memblock_remove(&memblock.reserved, base, size); } long __init memblock_reserve(u64 base, u64 size) { struct memblock_type *_rgn = &memblock.reserved; BUG_ON(0 == size); return memblock_add_region(_rgn, base, size); } long memblock_overlaps_region(struct memblock_type *type, u64 base, u64 size) { unsigned long i; for (i = 0; i < type->cnt; i++) { u64 rgnbase = type->regions[i].base; u64 rgnsize = type->regions[i].size; if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) break; } return (i < type->cnt) ? i : -1; } static u64 memblock_align_down(u64 addr, u64 size) { return addr & ~(size - 1); } static u64 memblock_align_up(u64 addr, u64 size) { return (addr + (size - 1)) & ~(size - 1); } static u64 __init memblock_alloc_region(u64 start, u64 end, u64 size, u64 align) { u64 base, res_base; long j; base = memblock_align_down((end - size), align); while (start <= base) { j = memblock_overlaps_region(&memblock.reserved, base, size); if (j < 0) { /* this area isn't reserved, take it */ if (memblock_add_region(&memblock.reserved, base, size) < 0) base = ~(u64)0; return base; } res_base = memblock.reserved.regions[j].base; if (res_base < size) break; base = memblock_align_down(res_base - size, align); } return ~(u64)0; } u64 __weak __init memblock_nid_range(u64 start, u64 end, int *nid) { *nid = 0; return end; } static u64 __init memblock_alloc_nid_region(struct memblock_region *mp, u64 size, u64 align, int nid) { u64 start, end; start = mp->base; end = start + mp->size; start = memblock_align_up(start, align); while (start < end) { u64 this_end; int this_nid; this_end = memblock_nid_range(start, end, &this_nid); if (this_nid == nid) { u64 ret = memblock_alloc_region(start, this_end, size, align); if (ret != ~(u64)0) return ret; } start = this_end; } return ~(u64)0; } u64 __init memblock_alloc_nid(u64 size, u64 align, int nid) { struct memblock_type *mem = &memblock.memory; int i; BUG_ON(0 == size); /* We do a bottom-up search for a region with the right * nid since that's easier considering how memblock_nid_range() * works */ size = memblock_align_up(size, align); for (i = 0; i < mem->cnt; i++) { u64 ret = memblock_alloc_nid_region(&mem->regions[i], size, align, nid); if (ret != ~(u64)0) return ret; } return memblock_alloc(size, align); } u64 __init memblock_alloc(u64 size, u64 align) { return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); } u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr) { u64 alloc; alloc = __memblock_alloc_base(size, align, max_addr); if (alloc == 0) panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", (unsigned long long) size, (unsigned long long) max_addr); return alloc; } u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr) { long i; u64 base = 0; u64 res_base; BUG_ON(0 == size); size = memblock_align_up(size, align); /* Pump up max_addr */ if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE) max_addr = memblock.current_limit; /* We do a top-down search, this tends to limit memory * fragmentation by keeping early boot allocs near the * top of memory */ for (i = memblock.memory.cnt - 1; i >= 0; i--) { u64 memblockbase = memblock.memory.regions[i].base; u64 memblocksize = memblock.memory.regions[i].size; if (memblocksize < size) continue; base = min(memblockbase + memblocksize, max_addr); res_base = memblock_alloc_region(memblockbase, base, size, align); if (res_base != ~(u64)0) return res_base; } return 0; } /* You must call memblock_analyze() before this. */ u64 __init memblock_phys_mem_size(void) { return memblock.memory.size; } u64 memblock_end_of_DRAM(void) { int idx = memblock.memory.cnt - 1; return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); } /* You must call memblock_analyze() after this. */ void __init memblock_enforce_memory_limit(u64 memory_limit) { unsigned long i; u64 limit; struct memblock_region *p; if (!memory_limit) return; /* Truncate the memblock regions to satisfy the memory limit. */ limit = memory_limit; for (i = 0; i < memblock.memory.cnt; i++) { if (limit > memblock.memory.regions[i].size) { limit -= memblock.memory.regions[i].size; continue; } memblock.memory.regions[i].size = limit; memblock.memory.cnt = i + 1; break; } if (memblock.memory.regions[0].size < memblock.rmo_size) memblock.rmo_size = memblock.memory.regions[0].size; memory_limit = memblock_end_of_DRAM(); /* And truncate any reserves above the limit also. */ for (i = 0; i < memblock.reserved.cnt; i++) { p = &memblock.reserved.regions[i]; if (p->base > memory_limit) p->size = 0; else if ((p->base + p->size) > memory_limit) p->size = memory_limit - p->base; if (p->size == 0) { memblock_remove_region(&memblock.reserved, i); i--; } } } static int memblock_search(struct memblock_type *type, u64 addr) { unsigned int left = 0, right = type->cnt; do { unsigned int mid = (right + left) / 2; if (addr < type->regions[mid].base) right = mid; else if (addr >= (type->regions[mid].base + type->regions[mid].size)) left = mid + 1; else return mid; } while (left < right); return -1; } int __init memblock_is_reserved(u64 addr) { return memblock_search(&memblock.reserved, addr) != -1; } int memblock_is_memory(u64 addr) { return memblock_search(&memblock.memory, addr) != -1; } int memblock_is_region_memory(u64 base, u64 size) { int idx = memblock_search(&memblock.reserved, base); if (idx == -1) return 0; return memblock.reserved.regions[idx].base <= base && (memblock.reserved.regions[idx].base + memblock.reserved.regions[idx].size) >= (base + size); } int memblock_is_region_reserved(u64 base, u64 size) { return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; } void __init memblock_set_current_limit(u64 limit) { memblock.current_limit = limit; }