// SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/mmu_notifier.c * * Copyright (C) 2008 Qumranet, Inc. * Copyright (C) 2008 SGI * Christoph Lameter */ #include #include #include #include #include #include #include #include #include #include #include /* global SRCU for all MMs */ DEFINE_STATIC_SRCU(srcu); #ifdef CONFIG_LOCKDEP struct lockdep_map __mmu_notifier_invalidate_range_start_map = { .name = "mmu_notifier_invalidate_range_start" }; #endif /* * The mmu notifier_mm structure is allocated and installed in * mm->mmu_notifier_mm inside the mm_take_all_locks() protected * critical section and it's released only when mm_count reaches zero * in mmdrop(). */ struct mmu_notifier_mm { /* all mmu notifiers registered in this mm are queued in this list */ struct hlist_head list; bool has_itree; /* to serialize the list modifications and hlist_unhashed */ spinlock_t lock; unsigned long invalidate_seq; unsigned long active_invalidate_ranges; struct rb_root_cached itree; wait_queue_head_t wq; struct hlist_head deferred_list; }; /* * This is a collision-retry read-side/write-side 'lock', a lot like a * seqcount, however this allows multiple write-sides to hold it at * once. Conceptually the write side is protecting the values of the PTEs in * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any * writer exists. * * Note that the core mm creates nested invalidate_range_start()/end() regions * within the same thread, and runs invalidate_range_start()/end() in parallel * on multiple CPUs. This is designed to not reduce concurrency or block * progress on the mm side. * * As a secondary function, holding the full write side also serves to prevent * writers for the itree, this is an optimization to avoid extra locking * during invalidate_range_start/end notifiers. * * The write side has two states, fully excluded: * - mm->active_invalidate_ranges != 0 * - mnn->invalidate_seq & 1 == True (odd) * - some range on the mm_struct is being invalidated * - the itree is not allowed to change * * And partially excluded: * - mm->active_invalidate_ranges != 0 * - mnn->invalidate_seq & 1 == False (even) * - some range on the mm_struct is being invalidated * - the itree is allowed to change * * Operations on mmu_notifier_mm->invalidate_seq (under spinlock): * seq |= 1 # Begin writing * seq++ # Release the writing state * seq & 1 # True if a writer exists * * The later state avoids some expensive work on inv_end in the common case of * no mni monitoring the VA. */ static bool mn_itree_is_invalidating(struct mmu_notifier_mm *mmn_mm) { lockdep_assert_held(&mmn_mm->lock); return mmn_mm->invalidate_seq & 1; } static struct mmu_interval_notifier * mn_itree_inv_start_range(struct mmu_notifier_mm *mmn_mm, const struct mmu_notifier_range *range, unsigned long *seq) { struct interval_tree_node *node; struct mmu_interval_notifier *res = NULL; spin_lock(&mmn_mm->lock); mmn_mm->active_invalidate_ranges++; node = interval_tree_iter_first(&mmn_mm->itree, range->start, range->end - 1); if (node) { mmn_mm->invalidate_seq |= 1; res = container_of(node, struct mmu_interval_notifier, interval_tree); } *seq = mmn_mm->invalidate_seq; spin_unlock(&mmn_mm->lock); return res; } static struct mmu_interval_notifier * mn_itree_inv_next(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range) { struct interval_tree_node *node; node = interval_tree_iter_next(&mni->interval_tree, range->start, range->end - 1); if (!node) return NULL; return container_of(node, struct mmu_interval_notifier, interval_tree); } static void mn_itree_inv_end(struct mmu_notifier_mm *mmn_mm) { struct mmu_interval_notifier *mni; struct hlist_node *next; spin_lock(&mmn_mm->lock); if (--mmn_mm->active_invalidate_ranges || !mn_itree_is_invalidating(mmn_mm)) { spin_unlock(&mmn_mm->lock); return; } /* Make invalidate_seq even */ mmn_mm->invalidate_seq++; /* * The inv_end incorporates a deferred mechanism like rtnl_unlock(). * Adds and removes are queued until the final inv_end happens then * they are progressed. This arrangement for tree updates is used to * avoid using a blocking lock during invalidate_range_start. */ hlist_for_each_entry_safe(mni, next, &mmn_mm->deferred_list, deferred_item) { if (RB_EMPTY_NODE(&mni->interval_tree.rb)) interval_tree_insert(&mni->interval_tree, &mmn_mm->itree); else interval_tree_remove(&mni->interval_tree, &mmn_mm->itree); hlist_del(&mni->deferred_item); } spin_unlock(&mmn_mm->lock); wake_up_all(&mmn_mm->wq); } /** * mmu_interval_read_begin - Begin a read side critical section against a VA * range * mni: The range to use * * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a * collision-retry scheme similar to seqcount for the VA range under mni. If * the mm invokes invalidation during the critical section then * mmu_interval_read_retry() will return true. * * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs * require a blocking context. The critical region formed by this can sleep, * and the required 'user_lock' can also be a sleeping lock. * * The caller is required to provide a 'user_lock' to serialize both teardown * and setup. * * The return value should be passed to mmu_interval_read_retry(). */ unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *mni) { struct mmu_notifier_mm *mmn_mm = mni->mm->mmu_notifier_mm; unsigned long seq; bool is_invalidating; /* * If the mni has a different seq value under the user_lock than we * started with then it has collided. * * If the mni currently has the same seq value as the mmn_mm seq, then * it is currently between invalidate_start/end and is colliding. * * The locking looks broadly like this: * mn_tree_invalidate_start(): mmu_interval_read_begin(): * spin_lock * seq = READ_ONCE(mni->invalidate_seq); * seq == mmn_mm->invalidate_seq * spin_unlock * spin_lock * seq = ++mmn_mm->invalidate_seq * spin_unlock * op->invalidate_range(): * user_lock * mmu_interval_set_seq() * mni->invalidate_seq = seq * user_unlock * * [Required: mmu_interval_read_retry() == true] * * mn_itree_inv_end(): * spin_lock * seq = ++mmn_mm->invalidate_seq * spin_unlock * * user_lock * mmu_interval_read_retry(): * mni->invalidate_seq != seq * user_unlock * * Barriers are not needed here as any races here are closed by an * eventual mmu_interval_read_retry(), which provides a barrier via the * user_lock. */ spin_lock(&mmn_mm->lock); /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ seq = READ_ONCE(mni->invalidate_seq); is_invalidating = seq == mmn_mm->invalidate_seq; spin_unlock(&mmn_mm->lock); /* * mni->invalidate_seq must always be set to an odd value via * mmu_interval_set_seq() using the provided cur_seq from * mn_itree_inv_start_range(). This ensures that if seq does wrap we * will always clear the below sleep in some reasonable time as * mmn_mm->invalidate_seq is even in the idle state. */ lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); lock_map_release(&__mmu_notifier_invalidate_range_start_map); if (is_invalidating) wait_event(mmn_mm->wq, READ_ONCE(mmn_mm->invalidate_seq) != seq); /* * Notice that mmu_interval_read_retry() can already be true at this * point, avoiding loops here allows the caller to provide a global * time bound. */ return seq; } EXPORT_SYMBOL_GPL(mmu_interval_read_begin); static void mn_itree_release(struct mmu_notifier_mm *mmn_mm, struct mm_struct *mm) { struct mmu_notifier_range range = { .flags = MMU_NOTIFIER_RANGE_BLOCKABLE, .event = MMU_NOTIFY_RELEASE, .mm = mm, .start = 0, .end = ULONG_MAX, }; struct mmu_interval_notifier *mni; unsigned long cur_seq; bool ret; for (mni = mn_itree_inv_start_range(mmn_mm, &range, &cur_seq); mni; mni = mn_itree_inv_next(mni, &range)) { ret = mni->ops->invalidate(mni, &range, cur_seq); WARN_ON(!ret); } mn_itree_inv_end(mmn_mm); } /* * This function can't run concurrently against mmu_notifier_register * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap * runs with mm_users == 0. Other tasks may still invoke mmu notifiers * in parallel despite there being no task using this mm any more, * through the vmas outside of the exit_mmap context, such as with * vmtruncate. This serializes against mmu_notifier_unregister with * the mmu_notifier_mm->lock in addition to SRCU and it serializes * against the other mmu notifiers with SRCU. struct mmu_notifier_mm * can't go away from under us as exit_mmap holds an mm_count pin * itself. */ static void mn_hlist_release(struct mmu_notifier_mm *mmn_mm, struct mm_struct *mm) { struct mmu_notifier *mn; int id; /* * SRCU here will block mmu_notifier_unregister until * ->release returns. */ id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) /* * If ->release runs before mmu_notifier_unregister it must be * handled, as it's the only way for the driver to flush all * existing sptes and stop the driver from establishing any more * sptes before all the pages in the mm are freed. */ if (mn->ops->release) mn->ops->release(mn, mm); spin_lock(&mmn_mm->lock); while (unlikely(!hlist_empty(&mmn_mm->list))) { mn = hlist_entry(mmn_mm->list.first, struct mmu_notifier, hlist); /* * We arrived before mmu_notifier_unregister so * mmu_notifier_unregister will do nothing other than to wait * for ->release to finish and for mmu_notifier_unregister to * return. */ hlist_del_init_rcu(&mn->hlist); } spin_unlock(&mmn_mm->lock); srcu_read_unlock(&srcu, id); /* * synchronize_srcu here prevents mmu_notifier_release from returning to * exit_mmap (which would proceed with freeing all pages in the mm) * until the ->release method returns, if it was invoked by * mmu_notifier_unregister. * * The mmu_notifier_mm can't go away from under us because one mm_count * is held by exit_mmap. */ synchronize_srcu(&srcu); } void __mmu_notifier_release(struct mm_struct *mm) { struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm; if (mmn_mm->has_itree) mn_itree_release(mmn_mm, mm); if (!hlist_empty(&mmn_mm->list)) mn_hlist_release(mmn_mm, mm); } /* * If no young bitflag is supported by the hardware, ->clear_flush_young can * unmap the address and return 1 or 0 depending if the mapping previously * existed or not. */ int __mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { struct mmu_notifier *mn; int young = 0, id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->clear_flush_young) young |= mn->ops->clear_flush_young(mn, mm, start, end); } srcu_read_unlock(&srcu, id); return young; } int __mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end) { struct mmu_notifier *mn; int young = 0, id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->clear_young) young |= mn->ops->clear_young(mn, mm, start, end); } srcu_read_unlock(&srcu, id); return young; } int __mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { struct mmu_notifier *mn; int young = 0, id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->test_young) { young = mn->ops->test_young(mn, mm, address); if (young) break; } } srcu_read_unlock(&srcu, id); return young; } void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { struct mmu_notifier *mn; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->change_pte) mn->ops->change_pte(mn, mm, address, pte); } srcu_read_unlock(&srcu, id); } static int mn_itree_invalidate(struct mmu_notifier_mm *mmn_mm, const struct mmu_notifier_range *range) { struct mmu_interval_notifier *mni; unsigned long cur_seq; for (mni = mn_itree_inv_start_range(mmn_mm, range, &cur_seq); mni; mni = mn_itree_inv_next(mni, range)) { bool ret; ret = mni->ops->invalidate(mni, range, cur_seq); if (!ret) { if (WARN_ON(mmu_notifier_range_blockable(range))) continue; goto out_would_block; } } return 0; out_would_block: /* * On -EAGAIN the non-blocking caller is not allowed to call * invalidate_range_end() */ mn_itree_inv_end(mmn_mm); return -EAGAIN; } static int mn_hlist_invalidate_range_start(struct mmu_notifier_mm *mmn_mm, struct mmu_notifier_range *range) { struct mmu_notifier *mn; int ret = 0; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) { if (mn->ops->invalidate_range_start) { int _ret; if (!mmu_notifier_range_blockable(range)) non_block_start(); _ret = mn->ops->invalidate_range_start(mn, range); if (!mmu_notifier_range_blockable(range)) non_block_end(); if (_ret) { pr_info("%pS callback failed with %d in %sblockable context.\n", mn->ops->invalidate_range_start, _ret, !mmu_notifier_range_blockable(range) ? "non-" : ""); WARN_ON(mmu_notifier_range_blockable(range) || _ret != -EAGAIN); ret = _ret; } } } srcu_read_unlock(&srcu, id); return ret; } int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm; int ret; if (mmn_mm->has_itree) { ret = mn_itree_invalidate(mmn_mm, range); if (ret) return ret; } if (!hlist_empty(&mmn_mm->list)) return mn_hlist_invalidate_range_start(mmn_mm, range); return 0; } static void mn_hlist_invalidate_end(struct mmu_notifier_mm *mmn_mm, struct mmu_notifier_range *range, bool only_end) { struct mmu_notifier *mn; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mmn_mm->list, hlist) { /* * Call invalidate_range here too to avoid the need for the * subsystem of having to register an invalidate_range_end * call-back when there is invalidate_range already. Usually a * subsystem registers either invalidate_range_start()/end() or * invalidate_range(), so this will be no additional overhead * (besides the pointer check). * * We skip call to invalidate_range() if we know it is safe ie * call site use mmu_notifier_invalidate_range_only_end() which * is safe to do when we know that a call to invalidate_range() * already happen under page table lock. */ if (!only_end && mn->ops->invalidate_range) mn->ops->invalidate_range(mn, range->mm, range->start, range->end); if (mn->ops->invalidate_range_end) { if (!mmu_notifier_range_blockable(range)) non_block_start(); mn->ops->invalidate_range_end(mn, range); if (!mmu_notifier_range_blockable(range)) non_block_end(); } } srcu_read_unlock(&srcu, id); } void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range, bool only_end) { struct mmu_notifier_mm *mmn_mm = range->mm->mmu_notifier_mm; lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mmn_mm->has_itree) mn_itree_inv_end(mmn_mm); if (!hlist_empty(&mmn_mm->list)) mn_hlist_invalidate_end(mmn_mm, range, only_end); lock_map_release(&__mmu_notifier_invalidate_range_start_map); } void __mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { struct mmu_notifier *mn; int id; id = srcu_read_lock(&srcu); hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops->invalidate_range) mn->ops->invalidate_range(mn, mm, start, end); } srcu_read_unlock(&srcu, id); } /* * Same as mmu_notifier_register but here the caller must hold the mmap_sem in * write mode. A NULL mn signals the notifier is being registered for itree * mode. */ int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) { struct mmu_notifier_mm *mmu_notifier_mm = NULL; int ret; lockdep_assert_held_write(&mm->mmap_sem); BUG_ON(atomic_read(&mm->mm_users) <= 0); if (IS_ENABLED(CONFIG_LOCKDEP)) { fs_reclaim_acquire(GFP_KERNEL); lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); lock_map_release(&__mmu_notifier_invalidate_range_start_map); fs_reclaim_release(GFP_KERNEL); } if (!mm->mmu_notifier_mm) { /* * kmalloc cannot be called under mm_take_all_locks(), but we * know that mm->mmu_notifier_mm can't change while we hold * the write side of the mmap_sem. */ mmu_notifier_mm = kzalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL); if (!mmu_notifier_mm) return -ENOMEM; INIT_HLIST_HEAD(&mmu_notifier_mm->list); spin_lock_init(&mmu_notifier_mm->lock); mmu_notifier_mm->invalidate_seq = 2; mmu_notifier_mm->itree = RB_ROOT_CACHED; init_waitqueue_head(&mmu_notifier_mm->wq); INIT_HLIST_HEAD(&mmu_notifier_mm->deferred_list); } ret = mm_take_all_locks(mm); if (unlikely(ret)) goto out_clean; /* * Serialize the update against mmu_notifier_unregister. A * side note: mmu_notifier_release can't run concurrently with * us because we hold the mm_users pin (either implicitly as * current->mm or explicitly with get_task_mm() or similar). * We can't race against any other mmu notifier method either * thanks to mm_take_all_locks(). * * release semantics on the initialization of the mmu_notifier_mm's * contents are provided for unlocked readers. acquire can only be * used while holding the mmgrab or mmget, and is safe because once * created the mmu_notififer_mm is not freed until the mm is * destroyed. As above, users holding the mmap_sem or one of the * mm_take_all_locks() do not need to use acquire semantics. */ if (mmu_notifier_mm) smp_store_release(&mm->mmu_notifier_mm, mmu_notifier_mm); if (mn) { /* Pairs with the mmdrop in mmu_notifier_unregister_* */ mmgrab(mm); mn->mm = mm; mn->users = 1; spin_lock(&mm->mmu_notifier_mm->lock); hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list); spin_unlock(&mm->mmu_notifier_mm->lock); } else mm->mmu_notifier_mm->has_itree = true; mm_drop_all_locks(mm); BUG_ON(atomic_read(&mm->mm_users) <= 0); return 0; out_clean: kfree(mmu_notifier_mm); return ret; } EXPORT_SYMBOL_GPL(__mmu_notifier_register); /** * mmu_notifier_register - Register a notifier on a mm * @mn: The notifier to attach * @mm: The mm to attach the notifier to * * Must not hold mmap_sem nor any other VM related lock when calling * this registration function. Must also ensure mm_users can't go down * to zero while this runs to avoid races with mmu_notifier_release, * so mm has to be current->mm or the mm should be pinned safely such * as with get_task_mm(). If the mm is not current->mm, the mm_users * pin should be released by calling mmput after mmu_notifier_register * returns. * * mmu_notifier_unregister() or mmu_notifier_put() must be always called to * unregister the notifier. * * While the caller has a mmu_notifier get the mn->mm pointer will remain * valid, and can be converted to an active mm pointer via mmget_not_zero(). */ int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm) { int ret; down_write(&mm->mmap_sem); ret = __mmu_notifier_register(mn, mm); up_write(&mm->mmap_sem); return ret; } EXPORT_SYMBOL_GPL(mmu_notifier_register); static struct mmu_notifier * find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) { struct mmu_notifier *mn; spin_lock(&mm->mmu_notifier_mm->lock); hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) { if (mn->ops != ops) continue; if (likely(mn->users != UINT_MAX)) mn->users++; else mn = ERR_PTR(-EOVERFLOW); spin_unlock(&mm->mmu_notifier_mm->lock); return mn; } spin_unlock(&mm->mmu_notifier_mm->lock); return NULL; } /** * mmu_notifier_get_locked - Return the single struct mmu_notifier for * the mm & ops * @ops: The operations struct being subscribe with * @mm : The mm to attach notifiers too * * This function either allocates a new mmu_notifier via * ops->alloc_notifier(), or returns an already existing notifier on the * list. The value of the ops pointer is used to determine when two notifiers * are the same. * * Each call to mmu_notifier_get() must be paired with a call to * mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem. * * While the caller has a mmu_notifier get the mm pointer will remain valid, * and can be converted to an active mm pointer via mmget_not_zero(). */ struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, struct mm_struct *mm) { struct mmu_notifier *mn; int ret; lockdep_assert_held_write(&mm->mmap_sem); if (mm->mmu_notifier_mm) { mn = find_get_mmu_notifier(mm, ops); if (mn) return mn; } mn = ops->alloc_notifier(mm); if (IS_ERR(mn)) return mn; mn->ops = ops; ret = __mmu_notifier_register(mn, mm); if (ret) goto out_free; return mn; out_free: mn->ops->free_notifier(mn); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); /* this is called after the last mmu_notifier_unregister() returned */ void __mmu_notifier_mm_destroy(struct mm_struct *mm) { BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list)); kfree(mm->mmu_notifier_mm); mm->mmu_notifier_mm = LIST_POISON1; /* debug */ } /* * This releases the mm_count pin automatically and frees the mm * structure if it was the last user of it. It serializes against * running mmu notifiers with SRCU and against mmu_notifier_unregister * with the unregister lock + SRCU. All sptes must be dropped before * calling mmu_notifier_unregister. ->release or any other notifier * method may be invoked concurrently with mmu_notifier_unregister, * and only after mmu_notifier_unregister returned we're guaranteed * that ->release or any other method can't run anymore. */ void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) { BUG_ON(atomic_read(&mm->mm_count) <= 0); if (!hlist_unhashed(&mn->hlist)) { /* * SRCU here will force exit_mmap to wait for ->release to * finish before freeing the pages. */ int id; id = srcu_read_lock(&srcu); /* * exit_mmap will block in mmu_notifier_release to guarantee * that ->release is called before freeing the pages. */ if (mn->ops->release) mn->ops->release(mn, mm); srcu_read_unlock(&srcu, id); spin_lock(&mm->mmu_notifier_mm->lock); /* * Can not use list_del_rcu() since __mmu_notifier_release * can delete it before we hold the lock. */ hlist_del_init_rcu(&mn->hlist); spin_unlock(&mm->mmu_notifier_mm->lock); } /* * Wait for any running method to finish, of course including * ->release if it was run by mmu_notifier_release instead of us. */ synchronize_srcu(&srcu); BUG_ON(atomic_read(&mm->mm_count) <= 0); mmdrop(mm); } EXPORT_SYMBOL_GPL(mmu_notifier_unregister); static void mmu_notifier_free_rcu(struct rcu_head *rcu) { struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu); struct mm_struct *mm = mn->mm; mn->ops->free_notifier(mn); /* Pairs with the get in __mmu_notifier_register() */ mmdrop(mm); } /** * mmu_notifier_put - Release the reference on the notifier * @mn: The notifier to act on * * This function must be paired with each mmu_notifier_get(), it releases the * reference obtained by the get. If this is the last reference then process * to free the notifier will be run asynchronously. * * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release * when the mm_struct is destroyed. Instead free_notifier is always called to * release any resources held by the user. * * As ops->release is not guaranteed to be called, the user must ensure that * all sptes are dropped, and no new sptes can be established before * mmu_notifier_put() is called. * * This function can be called from the ops->release callback, however the * caller must still ensure it is called pairwise with mmu_notifier_get(). * * Modules calling this function must call mmu_notifier_synchronize() in * their __exit functions to ensure the async work is completed. */ void mmu_notifier_put(struct mmu_notifier *mn) { struct mm_struct *mm = mn->mm; spin_lock(&mm->mmu_notifier_mm->lock); if (WARN_ON(!mn->users) || --mn->users) goto out_unlock; hlist_del_init_rcu(&mn->hlist); spin_unlock(&mm->mmu_notifier_mm->lock); call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu); return; out_unlock: spin_unlock(&mm->mmu_notifier_mm->lock); } EXPORT_SYMBOL_GPL(mmu_notifier_put); static int __mmu_interval_notifier_insert( struct mmu_interval_notifier *mni, struct mm_struct *mm, struct mmu_notifier_mm *mmn_mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops) { mni->mm = mm; mni->ops = ops; RB_CLEAR_NODE(&mni->interval_tree.rb); mni->interval_tree.start = start; /* * Note that the representation of the intervals in the interval tree * considers the ending point as contained in the interval. */ if (length == 0 || check_add_overflow(start, length - 1, &mni->interval_tree.last)) return -EOVERFLOW; /* Must call with a mmget() held */ if (WARN_ON(atomic_read(&mm->mm_count) <= 0)) return -EINVAL; /* pairs with mmdrop in mmu_interval_notifier_remove() */ mmgrab(mm); /* * If some invalidate_range_start/end region is going on in parallel * we don't know what VA ranges are affected, so we must assume this * new range is included. * * If the itree is invalidating then we are not allowed to change * it. Retrying until invalidation is done is tricky due to the * possibility for live lock, instead defer the add to * mn_itree_inv_end() so this algorithm is deterministic. * * In all cases the value for the mni->invalidate_seq should be * odd, see mmu_interval_read_begin() */ spin_lock(&mmn_mm->lock); if (mmn_mm->active_invalidate_ranges) { if (mn_itree_is_invalidating(mmn_mm)) hlist_add_head(&mni->deferred_item, &mmn_mm->deferred_list); else { mmn_mm->invalidate_seq |= 1; interval_tree_insert(&mni->interval_tree, &mmn_mm->itree); } mni->invalidate_seq = mmn_mm->invalidate_seq; } else { WARN_ON(mn_itree_is_invalidating(mmn_mm)); /* * The starting seq for a mni not under invalidation should be * odd, not equal to the current invalidate_seq and * invalidate_seq should not 'wrap' to the new seq any time * soon. */ mni->invalidate_seq = mmn_mm->invalidate_seq - 1; interval_tree_insert(&mni->interval_tree, &mmn_mm->itree); } spin_unlock(&mmn_mm->lock); return 0; } /** * mmu_interval_notifier_insert - Insert an interval notifier * @mni: Interval notifier to register * @start: Starting virtual address to monitor * @length: Length of the range to monitor * @mm : mm_struct to attach to * * This function subscribes the interval notifier for notifications from the * mm. Upon return the ops related to mmu_interval_notifier will be called * whenever an event that intersects with the given range occurs. * * Upon return the range_notifier may not be present in the interval tree yet. * The caller must use the normal interval notifier read flow via * mmu_interval_read_begin() to establish SPTEs for this range. */ int mmu_interval_notifier_insert(struct mmu_interval_notifier *mni, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops) { struct mmu_notifier_mm *mmn_mm; int ret; might_lock(&mm->mmap_sem); mmn_mm = smp_load_acquire(&mm->mmu_notifier_mm); if (!mmn_mm || !mmn_mm->has_itree) { ret = mmu_notifier_register(NULL, mm); if (ret) return ret; mmn_mm = mm->mmu_notifier_mm; } return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length, ops); } EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert); int mmu_interval_notifier_insert_locked( struct mmu_interval_notifier *mni, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops) { struct mmu_notifier_mm *mmn_mm; int ret; lockdep_assert_held_write(&mm->mmap_sem); mmn_mm = mm->mmu_notifier_mm; if (!mmn_mm || !mmn_mm->has_itree) { ret = __mmu_notifier_register(NULL, mm); if (ret) return ret; mmn_mm = mm->mmu_notifier_mm; } return __mmu_interval_notifier_insert(mni, mm, mmn_mm, start, length, ops); } EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked); /** * mmu_interval_notifier_remove - Remove a interval notifier * @mni: Interval notifier to unregister * * This function must be paired with mmu_interval_notifier_insert(). It cannot * be called from any ops callback. * * Once this returns ops callbacks are no longer running on other CPUs and * will not be called in future. */ void mmu_interval_notifier_remove(struct mmu_interval_notifier *mni) { struct mm_struct *mm = mni->mm; struct mmu_notifier_mm *mmn_mm = mm->mmu_notifier_mm; unsigned long seq = 0; might_sleep(); spin_lock(&mmn_mm->lock); if (mn_itree_is_invalidating(mmn_mm)) { /* * remove is being called after insert put this on the * deferred list, but before the deferred list was processed. */ if (RB_EMPTY_NODE(&mni->interval_tree.rb)) { hlist_del(&mni->deferred_item); } else { hlist_add_head(&mni->deferred_item, &mmn_mm->deferred_list); seq = mmn_mm->invalidate_seq; } } else { WARN_ON(RB_EMPTY_NODE(&mni->interval_tree.rb)); interval_tree_remove(&mni->interval_tree, &mmn_mm->itree); } spin_unlock(&mmn_mm->lock); /* * The possible sleep on progress in the invalidation requires the * caller not hold any locks held by invalidation callbacks. */ lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); lock_map_release(&__mmu_notifier_invalidate_range_start_map); if (seq) wait_event(mmn_mm->wq, READ_ONCE(mmn_mm->invalidate_seq) != seq); /* pairs with mmgrab in mmu_interval_notifier_insert() */ mmdrop(mm); } EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove); /** * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed * * This function ensures that all outstanding async SRU work from * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops * associated with an unused mmu_notifier will no longer be called. * * Before using the caller must ensure that all of its mmu_notifiers have been * fully released via mmu_notifier_put(). * * Modules using the mmu_notifier_put() API should call this in their __exit * function to avoid module unloading races. */ void mmu_notifier_synchronize(void) { synchronize_srcu(&srcu); } EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); bool mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range) { if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA) return false; /* Return true if the vma still have the read flag set. */ return range->vma->vm_flags & VM_READ; } EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);