/* * SLOB Allocator: Simple List Of Blocks * * Matt Mackall 12/30/03 * * How SLOB works: * * The core of SLOB is a traditional K&R style heap allocator, with * support for returning aligned objects. The granularity of this * allocator is 8 bytes on x86, though it's perhaps possible to reduce * this to 4 if it's deemed worth the effort. The slob heap is a * singly-linked list of pages from __get_free_page, grown on demand * and allocation from the heap is currently first-fit. * * Above this is an implementation of kmalloc/kfree. Blocks returned * from kmalloc are 8-byte aligned and prepended with a 8-byte header. * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls * __get_free_pages directly so that it can return page-aligned blocks * and keeps a linked list of such pages and their orders. These * objects are detected in kfree() by their page alignment. * * SLAB is emulated on top of SLOB by simply calling constructors and * destructors for every SLAB allocation. Objects are returned with * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is * set, in which case the low-level allocator will fragment blocks to * create the proper alignment. Again, objects of page-size or greater * are allocated by calling __get_free_pages. As SLAB objects know * their size, no separate size bookkeeping is necessary and there is * essentially no allocation space overhead. */ #include #include #include #include #include #include #include struct slob_block { int units; struct slob_block *next; }; typedef struct slob_block slob_t; #define SLOB_UNIT sizeof(slob_t) #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) #define SLOB_ALIGN L1_CACHE_BYTES struct bigblock { int order; void *pages; struct bigblock *next; }; typedef struct bigblock bigblock_t; /* * struct slob_rcu is inserted at the tail of allocated slob blocks, which * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free * the block using call_rcu. */ struct slob_rcu { struct rcu_head head; int size; }; static slob_t arena = { .next = &arena, .units = 1 }; static slob_t *slobfree = &arena; static bigblock_t *bigblocks; static DEFINE_SPINLOCK(slob_lock); static DEFINE_SPINLOCK(block_lock); static void slob_free(void *b, int size); static void slob_timer_cbk(void); static void *slob_alloc(size_t size, gfp_t gfp, int align) { slob_t *prev, *cur, *aligned = 0; int delta = 0, units = SLOB_UNITS(size); unsigned long flags; spin_lock_irqsave(&slob_lock, flags); prev = slobfree; for (cur = prev->next; ; prev = cur, cur = cur->next) { if (align) { aligned = (slob_t *)ALIGN((unsigned long)cur, align); delta = aligned - cur; } if (cur->units >= units + delta) { /* room enough? */ if (delta) { /* need to fragment head to align? */ aligned->units = cur->units - delta; aligned->next = cur->next; cur->next = aligned; cur->units = delta; prev = cur; cur = aligned; } if (cur->units == units) /* exact fit? */ prev->next = cur->next; /* unlink */ else { /* fragment */ prev->next = cur + units; prev->next->units = cur->units - units; prev->next->next = cur->next; cur->units = units; } slobfree = prev; spin_unlock_irqrestore(&slob_lock, flags); return cur; } if (cur == slobfree) { spin_unlock_irqrestore(&slob_lock, flags); if (size == PAGE_SIZE) /* trying to shrink arena? */ return 0; cur = (slob_t *)__get_free_page(gfp); if (!cur) return 0; slob_free(cur, PAGE_SIZE); spin_lock_irqsave(&slob_lock, flags); cur = slobfree; } } } static void slob_free(void *block, int size) { slob_t *cur, *b = (slob_t *)block; unsigned long flags; if (!block) return; if (size) b->units = SLOB_UNITS(size); /* Find reinsertion point */ spin_lock_irqsave(&slob_lock, flags); for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next) if (cur >= cur->next && (b > cur || b < cur->next)) break; if (b + b->units == cur->next) { b->units += cur->next->units; b->next = cur->next->next; } else b->next = cur->next; if (cur + cur->units == b) { cur->units += b->units; cur->next = b->next; } else cur->next = b; slobfree = cur; spin_unlock_irqrestore(&slob_lock, flags); } void *__kmalloc(size_t size, gfp_t gfp) { slob_t *m; bigblock_t *bb; unsigned long flags; if (size < PAGE_SIZE - SLOB_UNIT) { m = slob_alloc(size + SLOB_UNIT, gfp, 0); return m ? (void *)(m + 1) : 0; } bb = slob_alloc(sizeof(bigblock_t), gfp, 0); if (!bb) return 0; bb->order = get_order(size); bb->pages = (void *)__get_free_pages(gfp, bb->order); if (bb->pages) { spin_lock_irqsave(&block_lock, flags); bb->next = bigblocks; bigblocks = bb; spin_unlock_irqrestore(&block_lock, flags); return bb->pages; } slob_free(bb, sizeof(bigblock_t)); return 0; } EXPORT_SYMBOL(__kmalloc); /** * krealloc - reallocate memory. The contents will remain unchanged. * * @p: object to reallocate memory for. * @new_size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * The contents of the object pointed to are preserved up to the * lesser of the new and old sizes. If @p is %NULL, krealloc() * behaves exactly like kmalloc(). If @size is 0 and @p is not a * %NULL pointer, the object pointed to is freed. */ void *krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; if (unlikely(!p)) return kmalloc_track_caller(new_size, flags); if (unlikely(!new_size)) { kfree(p); return NULL; } ret = kmalloc_track_caller(new_size, flags); if (ret) { memcpy(ret, p, min(new_size, ksize(p))); kfree(p); } return ret; } EXPORT_SYMBOL(krealloc); void kfree(const void *block) { bigblock_t *bb, **last = &bigblocks; unsigned long flags; if (!block) return; if (!((unsigned long)block & (PAGE_SIZE-1))) { /* might be on the big block list */ spin_lock_irqsave(&block_lock, flags); for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { if (bb->pages == block) { *last = bb->next; spin_unlock_irqrestore(&block_lock, flags); free_pages((unsigned long)block, bb->order); slob_free(bb, sizeof(bigblock_t)); return; } } spin_unlock_irqrestore(&block_lock, flags); } slob_free((slob_t *)block - 1, 0); return; } EXPORT_SYMBOL(kfree); size_t ksize(const void *block) { bigblock_t *bb; unsigned long flags; if (!block) return 0; if (!((unsigned long)block & (PAGE_SIZE-1))) { spin_lock_irqsave(&block_lock, flags); for (bb = bigblocks; bb; bb = bb->next) if (bb->pages == block) { spin_unlock_irqrestore(&slob_lock, flags); return PAGE_SIZE << bb->order; } spin_unlock_irqrestore(&block_lock, flags); } return ((slob_t *)block - 1)->units * SLOB_UNIT; } struct kmem_cache { unsigned int size, align; unsigned long flags; const char *name; void (*ctor)(void *, struct kmem_cache *, unsigned long); }; struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long), void (*dtor)(void*, struct kmem_cache *, unsigned long)) { struct kmem_cache *c; c = slob_alloc(sizeof(struct kmem_cache), flags, 0); if (c) { c->name = name; c->size = size; if (flags & SLAB_DESTROY_BY_RCU) { /* leave room for rcu footer at the end of object */ c->size += sizeof(struct slob_rcu); } c->flags = flags; c->ctor = ctor; /* ignore alignment unless it's forced */ c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; if (c->align < align) c->align = align; } else if (flags & SLAB_PANIC) panic("Cannot create slab cache %s\n", name); return c; } EXPORT_SYMBOL(kmem_cache_create); void kmem_cache_destroy(struct kmem_cache *c) { slob_free(c, sizeof(struct kmem_cache)); } EXPORT_SYMBOL(kmem_cache_destroy); void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags) { void *b; if (c->size < PAGE_SIZE) b = slob_alloc(c->size, flags, c->align); else b = (void *)__get_free_pages(flags, get_order(c->size)); if (c->ctor) c->ctor(b, c, 0); return b; } EXPORT_SYMBOL(kmem_cache_alloc); void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags) { void *ret = kmem_cache_alloc(c, flags); if (ret) memset(ret, 0, c->size); return ret; } EXPORT_SYMBOL(kmem_cache_zalloc); static void __kmem_cache_free(void *b, int size) { if (size < PAGE_SIZE) slob_free(b, size); else free_pages((unsigned long)b, get_order(size)); } static void kmem_rcu_free(struct rcu_head *head) { struct slob_rcu *slob_rcu = (struct slob_rcu *)head; void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); __kmem_cache_free(b, slob_rcu->size); } void kmem_cache_free(struct kmem_cache *c, void *b) { if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { struct slob_rcu *slob_rcu; slob_rcu = b + (c->size - sizeof(struct slob_rcu)); INIT_RCU_HEAD(&slob_rcu->head); slob_rcu->size = c->size; call_rcu(&slob_rcu->head, kmem_rcu_free); } else { __kmem_cache_free(b, c->size); } } EXPORT_SYMBOL(kmem_cache_free); unsigned int kmem_cache_size(struct kmem_cache *c) { return c->size; } EXPORT_SYMBOL(kmem_cache_size); const char *kmem_cache_name(struct kmem_cache *c) { return c->name; } EXPORT_SYMBOL(kmem_cache_name); static struct timer_list slob_timer = TIMER_INITIALIZER( (void (*)(unsigned long))slob_timer_cbk, 0, 0); int kmem_cache_shrink(struct kmem_cache *d) { return 0; } EXPORT_SYMBOL(kmem_cache_shrink); int kmem_ptr_validate(struct kmem_cache *a, const void *b) { return 0; } void __init kmem_cache_init(void) { slob_timer_cbk(); } static void slob_timer_cbk(void) { void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1); if (p) free_page((unsigned long)p); mod_timer(&slob_timer, jiffies + HZ); }