// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include #include #endif #include static void dissector_set_key(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { flow_dissector->used_keys |= (1 << key_id); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count) { unsigned int i; memset(flow_dissector, 0, sizeof(*flow_dissector)); for (i = 0; i < key_count; i++, key++) { /* User should make sure that every key target offset is within * boundaries of unsigned short. */ BUG_ON(key->offset > USHRT_MAX); BUG_ON(dissector_uses_key(flow_dissector, key->key_id)); dissector_set_key(flow_dissector, key->key_id); flow_dissector->offset[key->key_id] = key->offset; } /* Ensure that the dissector always includes control and basic key. * That way we are able to avoid handling lack of these in fast path. */ BUG_ON(!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL)); BUG_ON(!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_BASIC)); } EXPORT_SYMBOL(skb_flow_dissector_init); #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog) { enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; if (net == &init_net) { /* BPF flow dissector in the root namespace overrides * any per-net-namespace one. When attaching to root, * make sure we don't have any BPF program attached * to the non-root namespaces. */ struct net *ns; for_each_net(ns) { if (ns == &init_net) continue; if (rcu_access_pointer(ns->bpf.run_array[type])) return -EEXIST; } } else { /* Make sure root flow dissector is not attached * when attaching to the non-root namespace. */ if (rcu_access_pointer(init_net.bpf.run_array[type])) return -EEXIST; } return 0; } #endif /* CONFIG_BPF_SYSCALL */ /** * __skb_flow_get_ports - extract the upper layer ports and return them * @skb: sk_buff to extract the ports from * @thoff: transport header offset * @ip_proto: protocol for which to get port offset * @data: raw buffer pointer to the packet, if NULL use skb->data * @hlen: packet header length, if @data is NULL use skb_headlen(skb) * * The function will try to retrieve the ports at offset thoff + poff where poff * is the protocol port offset returned from proto_ports_offset */ __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, const void *data, int hlen) { int poff = proto_ports_offset(ip_proto); if (!data) { data = skb->data; hlen = skb_headlen(skb); } if (poff >= 0) { __be32 *ports, _ports; ports = __skb_header_pointer(skb, thoff + poff, sizeof(_ports), data, hlen, &_ports); if (ports) return *ports; } return 0; } EXPORT_SYMBOL(__skb_flow_get_ports); static bool icmp_has_id(u8 type) { switch (type) { case ICMP_ECHO: case ICMP_ECHOREPLY: case ICMP_TIMESTAMP: case ICMP_TIMESTAMPREPLY: case ICMPV6_ECHO_REQUEST: case ICMPV6_ECHO_REPLY: return true; } return false; } /** * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields * @skb: sk_buff to extract from * @key_icmp: struct flow_dissector_key_icmp to fill * @data: raw buffer pointer to the packet * @thoff: offset to extract at * @hlen: packet header length */ void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, const void *data, int thoff, int hlen) { struct icmphdr *ih, _ih; ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); if (!ih) return; key_icmp->type = ih->type; key_icmp->code = ih->code; /* As we use 0 to signal that the Id field is not present, * avoid confusion with packets without such field */ if (icmp_has_id(ih->type)) key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1; else key_icmp->id = 0; } EXPORT_SYMBOL(skb_flow_get_icmp_tci); /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet * using skb_flow_get_icmp_tci(). */ static void __skb_flow_dissect_icmp(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, int thoff, int hlen) { struct flow_dissector_key_icmp *key_icmp; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) return; key_icmp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ICMP, target_container); skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); } static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, int nhoff, int hlen) { struct flow_dissector_key_l2tpv3 *key_l2tpv3; struct { __be32 session_id; } *hdr, _hdr; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3)) return; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return; key_l2tpv3 = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3, target_container); key_l2tpv3->session_id = hdr->session_id; } void skb_flow_dissect_meta(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_meta *meta; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) return; meta = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_META, target_container); meta->ingress_ifindex = skb->skb_iif; } EXPORT_SYMBOL(skb_flow_dissect_meta); static void skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_control *ctrl; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) return; ctrl = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL, target_container); ctrl->addr_type = type; } void skb_flow_dissect_ct(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, u16 *ctinfo_map, size_t mapsize, bool post_ct, u16 zone) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) struct flow_dissector_key_ct *key; enum ip_conntrack_info ctinfo; struct nf_conn_labels *cl; struct nf_conn *ct; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) return; ct = nf_ct_get(skb, &ctinfo); if (!ct && !post_ct) return; key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CT, target_container); if (!ct) { key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED | TCA_FLOWER_KEY_CT_FLAGS_INVALID; key->ct_zone = zone; return; } if (ctinfo < mapsize) key->ct_state = ctinfo_map[ctinfo]; #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) key->ct_zone = ct->zone.id; #endif #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) key->ct_mark = ct->mark; #endif cl = nf_ct_labels_find(ct); if (cl) memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); #endif /* CONFIG_NF_CONNTRACK */ } EXPORT_SYMBOL(skb_flow_dissect_ct); void skb_flow_dissect_tunnel_info(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container) { struct ip_tunnel_info *info; struct ip_tunnel_key *key; /* A quick check to see if there might be something to do. */ if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) return; info = skb_tunnel_info(skb); if (!info) return; key = &info->key; switch (ip_tunnel_info_af(info)) { case AF_INET: skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS, flow_dissector, target_container); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { struct flow_dissector_key_ipv4_addrs *ipv4; ipv4 = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, target_container); ipv4->src = key->u.ipv4.src; ipv4->dst = key->u.ipv4.dst; } break; case AF_INET6: skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS, flow_dissector, target_container); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { struct flow_dissector_key_ipv6_addrs *ipv6; ipv6 = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, target_container); ipv6->src = key->u.ipv6.src; ipv6->dst = key->u.ipv6.dst; } break; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_dissector_key_keyid *keyid; keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID, target_container); keyid->keyid = tunnel_id_to_key32(key->tun_id); } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { struct flow_dissector_key_ports *tp; tp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS, target_container); tp->src = key->tp_src; tp->dst = key->tp_dst; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { struct flow_dissector_key_ip *ip; ip = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP, target_container); ip->tos = key->tos; ip->ttl = key->ttl; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { struct flow_dissector_key_enc_opts *enc_opt; enc_opt = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS, target_container); if (info->options_len) { enc_opt->len = info->options_len; ip_tunnel_info_opts_get(enc_opt->data, info); enc_opt->dst_opt_type = info->key.tun_flags & TUNNEL_OPTIONS_PRESENT; } } } EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); void skb_flow_dissect_hash(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_hash *key; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH)) return; key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_HASH, target_container); key->hash = skb_get_hash_raw(skb); } EXPORT_SYMBOL(skb_flow_dissect_hash); static enum flow_dissect_ret __skb_flow_dissect_mpls(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, int nhoff, int hlen, int lse_index, bool *entropy_label) { struct mpls_label *hdr, _hdr; u32 entry, label, bos; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) return FLOW_DISSECT_RET_OUT_GOOD; if (lse_index >= FLOW_DIS_MPLS_MAX) return FLOW_DISSECT_RET_OUT_GOOD; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return FLOW_DISSECT_RET_OUT_BAD; entry = ntohl(hdr->entry); label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { struct flow_dissector_key_mpls *key_mpls; struct flow_dissector_mpls_lse *lse; key_mpls = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_MPLS, target_container); lse = &key_mpls->ls[lse_index]; lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; lse->mpls_bos = bos; lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; lse->mpls_label = label; dissector_set_mpls_lse(key_mpls, lse_index); } if (*entropy_label && dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { struct flow_dissector_key_keyid *key_keyid; key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY, target_container); key_keyid->keyid = cpu_to_be32(label); } *entropy_label = label == MPLS_LABEL_ENTROPY; return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN; } static enum flow_dissect_ret __skb_flow_dissect_arp(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, int nhoff, int hlen) { struct flow_dissector_key_arp *key_arp; struct { unsigned char ar_sha[ETH_ALEN]; unsigned char ar_sip[4]; unsigned char ar_tha[ETH_ALEN]; unsigned char ar_tip[4]; } *arp_eth, _arp_eth; const struct arphdr *arp; struct arphdr _arp; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) return FLOW_DISSECT_RET_OUT_GOOD; arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, hlen, &_arp); if (!arp) return FLOW_DISSECT_RET_OUT_BAD; if (arp->ar_hrd != htons(ARPHRD_ETHER) || arp->ar_pro != htons(ETH_P_IP) || arp->ar_hln != ETH_ALEN || arp->ar_pln != 4 || (arp->ar_op != htons(ARPOP_REPLY) && arp->ar_op != htons(ARPOP_REQUEST))) return FLOW_DISSECT_RET_OUT_BAD; arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), sizeof(_arp_eth), data, hlen, &_arp_eth); if (!arp_eth) return FLOW_DISSECT_RET_OUT_BAD; key_arp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ARP, target_container); memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); /* Only store the lower byte of the opcode; * this covers ARPOP_REPLY and ARPOP_REQUEST. */ key_arp->op = ntohs(arp->ar_op) & 0xff; ether_addr_copy(key_arp->sha, arp_eth->ar_sha); ether_addr_copy(key_arp->tha, arp_eth->ar_tha); return FLOW_DISSECT_RET_OUT_GOOD; } static enum flow_dissect_ret __skb_flow_dissect_gre(const struct sk_buff *skb, struct flow_dissector_key_control *key_control, struct flow_dissector *flow_dissector, void *target_container, const void *data, __be16 *p_proto, int *p_nhoff, int *p_hlen, unsigned int flags) { struct flow_dissector_key_keyid *key_keyid; struct gre_base_hdr *hdr, _hdr; int offset = 0; u16 gre_ver; hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, *p_hlen, &_hdr); if (!hdr) return FLOW_DISSECT_RET_OUT_BAD; /* Only look inside GRE without routing */ if (hdr->flags & GRE_ROUTING) return FLOW_DISSECT_RET_OUT_GOOD; /* Only look inside GRE for version 0 and 1 */ gre_ver = ntohs(hdr->flags & GRE_VERSION); if (gre_ver > 1) return FLOW_DISSECT_RET_OUT_GOOD; *p_proto = hdr->protocol; if (gre_ver) { /* Version1 must be PPTP, and check the flags */ if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) return FLOW_DISSECT_RET_OUT_GOOD; } offset += sizeof(struct gre_base_hdr); if (hdr->flags & GRE_CSUM) offset += sizeof_field(struct gre_full_hdr, csum) + sizeof_field(struct gre_full_hdr, reserved1); if (hdr->flags & GRE_KEY) { const __be32 *keyid; __be32 _keyid; keyid = __skb_header_pointer(skb, *p_nhoff + offset, sizeof(_keyid), data, *p_hlen, &_keyid); if (!keyid) return FLOW_DISSECT_RET_OUT_BAD; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID)) { key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID, target_container); if (gre_ver == 0) key_keyid->keyid = *keyid; else key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; } offset += sizeof_field(struct gre_full_hdr, key); } if (hdr->flags & GRE_SEQ) offset += sizeof_field(struct pptp_gre_header, seq); if (gre_ver == 0) { if (*p_proto == htons(ETH_P_TEB)) { const struct ethhdr *eth; struct ethhdr _eth; eth = __skb_header_pointer(skb, *p_nhoff + offset, sizeof(_eth), data, *p_hlen, &_eth); if (!eth) return FLOW_DISSECT_RET_OUT_BAD; *p_proto = eth->h_proto; offset += sizeof(*eth); /* Cap headers that we access via pointers at the * end of the Ethernet header as our maximum alignment * at that point is only 2 bytes. */ if (NET_IP_ALIGN) *p_hlen = *p_nhoff + offset; } } else { /* version 1, must be PPTP */ u8 _ppp_hdr[PPP_HDRLEN]; u8 *ppp_hdr; if (hdr->flags & GRE_ACK) offset += sizeof_field(struct pptp_gre_header, ack); ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, sizeof(_ppp_hdr), data, *p_hlen, _ppp_hdr); if (!ppp_hdr) return FLOW_DISSECT_RET_OUT_BAD; switch (PPP_PROTOCOL(ppp_hdr)) { case PPP_IP: *p_proto = htons(ETH_P_IP); break; case PPP_IPV6: *p_proto = htons(ETH_P_IPV6); break; default: /* Could probably catch some more like MPLS */ break; } offset += PPP_HDRLEN; } *p_nhoff += offset; key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) return FLOW_DISSECT_RET_OUT_GOOD; return FLOW_DISSECT_RET_PROTO_AGAIN; } /** * __skb_flow_dissect_batadv() - dissect batman-adv header * @skb: sk_buff to with the batman-adv header * @key_control: flow dissectors control key * @data: raw buffer pointer to the packet, if NULL use skb->data * @p_proto: pointer used to update the protocol to process next * @p_nhoff: pointer used to update inner network header offset * @hlen: packet header length * @flags: any combination of FLOW_DISSECTOR_F_* * * ETH_P_BATMAN packets are tried to be dissected. Only * &struct batadv_unicast packets are actually processed because they contain an * inner ethernet header and are usually followed by actual network header. This * allows the flow dissector to continue processing the packet. * * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, * otherwise FLOW_DISSECT_RET_OUT_BAD */ static enum flow_dissect_ret __skb_flow_dissect_batadv(const struct sk_buff *skb, struct flow_dissector_key_control *key_control, const void *data, __be16 *p_proto, int *p_nhoff, int hlen, unsigned int flags) { struct { struct batadv_unicast_packet batadv_unicast; struct ethhdr eth; } *hdr, _hdr; hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return FLOW_DISSECT_RET_OUT_BAD; if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) return FLOW_DISSECT_RET_OUT_BAD; if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) return FLOW_DISSECT_RET_OUT_BAD; *p_proto = hdr->eth.h_proto; *p_nhoff += sizeof(*hdr); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) return FLOW_DISSECT_RET_OUT_GOOD; return FLOW_DISSECT_RET_PROTO_AGAIN; } static void __skb_flow_dissect_tcp(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, int thoff, int hlen) { struct flow_dissector_key_tcp *key_tcp; struct tcphdr *th, _th; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) return; th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); if (!th) return; if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) return; key_tcp = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_TCP, target_container); key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); } static void __skb_flow_dissect_ports(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, int nhoff, u8 ip_proto, int hlen) { enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX; struct flow_dissector_key_ports *key_ports; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) dissector_ports = FLOW_DISSECTOR_KEY_PORTS; else if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE)) dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE; if (dissector_ports == FLOW_DISSECTOR_KEY_MAX) return; key_ports = skb_flow_dissector_target(flow_dissector, dissector_ports, target_container); key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, data, hlen); } static void __skb_flow_dissect_ipv4(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, const struct iphdr *iph) { struct flow_dissector_key_ip *key_ip; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) return; key_ip = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IP, target_container); key_ip->tos = iph->tos; key_ip->ttl = iph->ttl; } static void __skb_flow_dissect_ipv6(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, const struct ipv6hdr *iph) { struct flow_dissector_key_ip *key_ip; if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) return; key_ip = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IP, target_container); key_ip->tos = ipv6_get_dsfield(iph); key_ip->ttl = iph->hop_limit; } /* Maximum number of protocol headers that can be parsed in * __skb_flow_dissect */ #define MAX_FLOW_DISSECT_HDRS 15 static bool skb_flow_dissect_allowed(int *num_hdrs) { ++*num_hdrs; return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); } static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, struct flow_dissector *flow_dissector, void *target_container) { struct flow_dissector_key_ports *key_ports = NULL; struct flow_dissector_key_control *key_control; struct flow_dissector_key_basic *key_basic; struct flow_dissector_key_addrs *key_addrs; struct flow_dissector_key_tags *key_tags; key_control = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL, target_container); key_control->thoff = flow_keys->thoff; if (flow_keys->is_frag) key_control->flags |= FLOW_DIS_IS_FRAGMENT; if (flow_keys->is_first_frag) key_control->flags |= FLOW_DIS_FIRST_FRAG; if (flow_keys->is_encap) key_control->flags |= FLOW_DIS_ENCAPSULATION; key_basic = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_BASIC, target_container); key_basic->n_proto = flow_keys->n_proto; key_basic->ip_proto = flow_keys->ip_proto; if (flow_keys->addr_proto == ETH_P_IP && dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container); key_addrs->v4addrs.src = flow_keys->ipv4_src; key_addrs->v4addrs.dst = flow_keys->ipv4_dst; key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } else if (flow_keys->addr_proto == ETH_P_IPV6 && dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, target_container); memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src, sizeof(key_addrs->v6addrs.src)); memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst, sizeof(key_addrs->v6addrs.dst)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) key_ports = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PORTS, target_container); else if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE)) key_ports = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PORTS_RANGE, target_container); if (key_ports) { key_ports->src = flow_keys->sport; key_ports->dst = flow_keys->dport; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL, target_container); key_tags->flow_label = ntohl(flow_keys->flow_label); } } u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags) { struct bpf_flow_keys *flow_keys = ctx->flow_keys; u32 result; /* Pass parameters to the BPF program */ memset(flow_keys, 0, sizeof(*flow_keys)); flow_keys->n_proto = proto; flow_keys->nhoff = nhoff; flow_keys->thoff = flow_keys->nhoff; BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); flow_keys->flags = flags; result = bpf_prog_run_pin_on_cpu(prog, ctx); flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); flow_keys->thoff = clamp_t(u16, flow_keys->thoff, flow_keys->nhoff, hlen); return result; } static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr) { return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0; } /** * __skb_flow_dissect - extract the flow_keys struct and return it * @net: associated network namespace, derived from @skb if NULL * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified * @flow_dissector: list of keys to dissect * @target_container: target structure to put dissected values into * @data: raw buffer pointer to the packet, if NULL use skb->data * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) * @hlen: packet header length, if @data is NULL use skb_headlen(skb) * @flags: flags that control the dissection process, e.g. * FLOW_DISSECTOR_F_STOP_AT_ENCAP. * * The function will try to retrieve individual keys into target specified * by flow_dissector from either the skbuff or a raw buffer specified by the * rest parameters. * * Caller must take care of zeroing target container memory. */ bool __skb_flow_dissect(const struct net *net, const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { struct flow_dissector_key_control *key_control; struct flow_dissector_key_basic *key_basic; struct flow_dissector_key_addrs *key_addrs; struct flow_dissector_key_tags *key_tags; struct flow_dissector_key_vlan *key_vlan; enum flow_dissect_ret fdret; enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; bool mpls_el = false; int mpls_lse = 0; int num_hdrs = 0; u8 ip_proto = 0; bool ret; if (!data) { data = skb->data; proto = skb_vlan_tag_present(skb) ? skb->vlan_proto : skb->protocol; nhoff = skb_network_offset(skb); hlen = skb_headlen(skb); #if IS_ENABLED(CONFIG_NET_DSA) if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && proto == htons(ETH_P_XDSA))) { const struct dsa_device_ops *ops; int offset = 0; ops = skb->dev->dsa_ptr->tag_ops; /* Only DSA header taggers break flow dissection */ if (ops->needed_headroom) { if (ops->flow_dissect) ops->flow_dissect(skb, &proto, &offset); else dsa_tag_generic_flow_dissect(skb, &proto, &offset); hlen -= offset; nhoff += offset; } } #endif } /* It is ensured by skb_flow_dissector_init() that control key will * be always present. */ key_control = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL, target_container); /* It is ensured by skb_flow_dissector_init() that basic key will * be always present. */ key_basic = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_BASIC, target_container); if (skb) { if (!net) { if (skb->dev) net = dev_net(skb->dev); else if (skb->sk) net = sock_net(skb->sk); } } WARN_ON_ONCE(!net); if (net) { enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; struct bpf_prog_array *run_array; rcu_read_lock(); run_array = rcu_dereference(init_net.bpf.run_array[type]); if (!run_array) run_array = rcu_dereference(net->bpf.run_array[type]); if (run_array) { struct bpf_flow_keys flow_keys; struct bpf_flow_dissector ctx = { .flow_keys = &flow_keys, .data = data, .data_end = data + hlen, }; __be16 n_proto = proto; struct bpf_prog *prog; u32 result; if (skb) { ctx.skb = skb; /* we can't use 'proto' in the skb case * because it might be set to skb->vlan_proto * which has been pulled from the data */ n_proto = skb->protocol; } prog = READ_ONCE(run_array->items[0].prog); result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff, hlen, flags); if (result == BPF_FLOW_DISSECTOR_CONTINUE) goto dissect_continue; __skb_flow_bpf_to_target(&flow_keys, flow_dissector, target_container); rcu_read_unlock(); return result == BPF_OK; } dissect_continue: rcu_read_unlock(); } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct ethhdr *eth = eth_hdr(skb); struct flow_dissector_key_eth_addrs *key_eth_addrs; key_eth_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS, target_container); memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs)); } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) { struct flow_dissector_key_num_of_vlans *key_num_of_vlans; key_num_of_vlans = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS, target_container); key_num_of_vlans->num_of_vlans = 0; } proto_again: fdret = FLOW_DISSECT_RET_CONTINUE; switch (proto) { case htons(ETH_P_IP): { const struct iphdr *iph; struct iphdr _iph; iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph || iph->ihl < 5) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } nhoff += iph->ihl * 4; ip_proto = iph->protocol; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container); memcpy(&key_addrs->v4addrs.src, &iph->saddr, sizeof(key_addrs->v4addrs.src)); memcpy(&key_addrs->v4addrs.dst, &iph->daddr, sizeof(key_addrs->v4addrs.dst)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } __skb_flow_dissect_ipv4(skb, flow_dissector, target_container, data, iph); if (ip_is_fragment(iph)) { key_control->flags |= FLOW_DIS_IS_FRAGMENT; if (iph->frag_off & htons(IP_OFFSET)) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } else { key_control->flags |= FLOW_DIS_FIRST_FRAG; if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } } } break; } case htons(ETH_P_IPV6): { const struct ipv6hdr *iph; struct ipv6hdr _iph; iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } ip_proto = iph->nexthdr; nhoff += sizeof(struct ipv6hdr); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, target_container); memcpy(&key_addrs->v6addrs.src, &iph->saddr, sizeof(key_addrs->v6addrs.src)); memcpy(&key_addrs->v6addrs.dst, &iph->daddr, sizeof(key_addrs->v6addrs.dst)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } if ((dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL) || (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && ip6_flowlabel(iph)) { __be32 flow_label = ip6_flowlabel(iph); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL, target_container); key_tags->flow_label = ntohl(flow_label); } if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } } __skb_flow_dissect_ipv6(skb, flow_dissector, target_container, data, iph); break; } case htons(ETH_P_8021AD): case htons(ETH_P_8021Q): { const struct vlan_hdr *vlan = NULL; struct vlan_hdr _vlan; __be16 saved_vlan_tpid = proto; if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && skb && skb_vlan_tag_present(skb)) { proto = skb->protocol; } else { vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan); if (!vlan) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } proto = vlan->h_vlan_encapsulated_proto; nhoff += sizeof(*vlan); } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) && !(key_control->flags & FLOW_DIS_ENCAPSULATION)) { struct flow_dissector_key_num_of_vlans *key_nvs; key_nvs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS, target_container); key_nvs->num_of_vlans++; } if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; } else { fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; } if (dissector_uses_key(flow_dissector, dissector_vlan)) { key_vlan = skb_flow_dissector_target(flow_dissector, dissector_vlan, target_container); if (!vlan) { key_vlan->vlan_id = skb_vlan_tag_get_id(skb); key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); } else { key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & VLAN_VID_MASK; key_vlan->vlan_priority = (ntohs(vlan->h_vlan_TCI) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; } key_vlan->vlan_tpid = saved_vlan_tpid; key_vlan->vlan_eth_type = proto; } fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; } case htons(ETH_P_PPP_SES): { struct { struct pppoe_hdr hdr; __be16 proto; } *hdr, _hdr; u16 ppp_proto; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } /* least significant bit of the most significant octet * indicates if protocol field was compressed */ ppp_proto = ntohs(hdr->proto); if (ppp_proto & 0x0100) { ppp_proto = ppp_proto >> 8; nhoff += PPPOE_SES_HLEN - 1; } else { nhoff += PPPOE_SES_HLEN; } if (ppp_proto == PPP_IP) { proto = htons(ETH_P_IP); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; } else if (ppp_proto == PPP_IPV6) { proto = htons(ETH_P_IPV6); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; } else if (ppp_proto == PPP_MPLS_UC) { proto = htons(ETH_P_MPLS_UC); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; } else if (ppp_proto == PPP_MPLS_MC) { proto = htons(ETH_P_MPLS_MC); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; } else if (ppp_proto_is_valid(ppp_proto)) { fdret = FLOW_DISSECT_RET_OUT_GOOD; } else { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PPPOE)) { struct flow_dissector_key_pppoe *key_pppoe; key_pppoe = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PPPOE, target_container); key_pppoe->session_id = hdr->hdr.sid; key_pppoe->ppp_proto = htons(ppp_proto); key_pppoe->type = htons(ETH_P_PPP_SES); } break; } case htons(ETH_P_TIPC): { struct tipc_basic_hdr *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TIPC)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_TIPC, target_container); key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; } fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): fdret = __skb_flow_dissect_mpls(skb, flow_dissector, target_container, data, nhoff, hlen, mpls_lse, &mpls_el); nhoff += sizeof(struct mpls_label); mpls_lse++; break; case htons(ETH_P_FCOE): if ((hlen - nhoff) < FCOE_HEADER_LEN) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } nhoff += FCOE_HEADER_LEN; fdret = FLOW_DISSECT_RET_OUT_GOOD; break; case htons(ETH_P_ARP): case htons(ETH_P_RARP): fdret = __skb_flow_dissect_arp(skb, flow_dissector, target_container, data, nhoff, hlen); break; case htons(ETH_P_BATMAN): fdret = __skb_flow_dissect_batadv(skb, key_control, data, &proto, &nhoff, hlen, flags); break; case htons(ETH_P_1588): { struct ptp_header *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } nhoff += ntohs(hdr->message_length); fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } case htons(ETH_P_PRP): case htons(ETH_P_HSR): { struct hsr_tag *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } proto = hdr->encap_proto; nhoff += HSR_HLEN; fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; } default: fdret = FLOW_DISSECT_RET_OUT_BAD; break; } /* Process result of proto processing */ switch (fdret) { case FLOW_DISSECT_RET_OUT_GOOD: goto out_good; case FLOW_DISSECT_RET_PROTO_AGAIN: if (skb_flow_dissect_allowed(&num_hdrs)) goto proto_again; goto out_good; case FLOW_DISSECT_RET_CONTINUE: case FLOW_DISSECT_RET_IPPROTO_AGAIN: break; case FLOW_DISSECT_RET_OUT_BAD: default: goto out_bad; } ip_proto_again: fdret = FLOW_DISSECT_RET_CONTINUE; switch (ip_proto) { case IPPROTO_GRE: if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, target_container, data, &proto, &nhoff, &hlen, flags); break; case NEXTHDR_HOP: case NEXTHDR_ROUTING: case NEXTHDR_DEST: { u8 _opthdr[2], *opthdr; if (proto != htons(ETH_P_IPV6)) break; opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), data, hlen, &_opthdr); if (!opthdr) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } ip_proto = opthdr[0]; nhoff += (opthdr[1] + 1) << 3; fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; break; } case NEXTHDR_FRAGMENT: { struct frag_hdr _fh, *fh; if (proto != htons(ETH_P_IPV6)) break; fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), data, hlen, &_fh); if (!fh) { fdret = FLOW_DISSECT_RET_OUT_BAD; break; } key_control->flags |= FLOW_DIS_IS_FRAGMENT; nhoff += sizeof(_fh); ip_proto = fh->nexthdr; if (!(fh->frag_off & htons(IP6_OFFSET))) { key_control->flags |= FLOW_DIS_FIRST_FRAG; if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; break; } } fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } case IPPROTO_IPIP: if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } proto = htons(ETH_P_IP); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case IPPROTO_IPV6: if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } proto = htons(ETH_P_IPV6); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { fdret = FLOW_DISSECT_RET_OUT_GOOD; break; } fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case IPPROTO_MPLS: proto = htons(ETH_P_MPLS_UC); fdret = FLOW_DISSECT_RET_PROTO_AGAIN; break; case IPPROTO_TCP: __skb_flow_dissect_tcp(skb, flow_dissector, target_container, data, nhoff, hlen); break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: __skb_flow_dissect_icmp(skb, flow_dissector, target_container, data, nhoff, hlen); break; case IPPROTO_L2TP: __skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container, data, nhoff, hlen); break; default: break; } if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) __skb_flow_dissect_ports(skb, flow_dissector, target_container, data, nhoff, ip_proto, hlen); /* Process result of IP proto processing */ switch (fdret) { case FLOW_DISSECT_RET_PROTO_AGAIN: if (skb_flow_dissect_allowed(&num_hdrs)) goto proto_again; break; case FLOW_DISSECT_RET_IPPROTO_AGAIN: if (skb_flow_dissect_allowed(&num_hdrs)) goto ip_proto_again; break; case FLOW_DISSECT_RET_OUT_GOOD: case FLOW_DISSECT_RET_CONTINUE: break; case FLOW_DISSECT_RET_OUT_BAD: default: goto out_bad; } out_good: ret = true; out: key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); key_basic->n_proto = proto; key_basic->ip_proto = ip_proto; return ret; out_bad: ret = false; goto out; } EXPORT_SYMBOL(__skb_flow_dissect); static siphash_aligned_key_t hashrnd; static __always_inline void __flow_hash_secret_init(void) { net_get_random_once(&hashrnd, sizeof(hashrnd)); } static const void *flow_keys_hash_start(const struct flow_keys *flow) { BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); return &flow->FLOW_KEYS_HASH_START_FIELD; } static inline size_t flow_keys_hash_length(const struct flow_keys *flow) { size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: diff -= sizeof(flow->addrs.v4addrs); break; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: diff -= sizeof(flow->addrs.v6addrs); break; case FLOW_DISSECTOR_KEY_TIPC: diff -= sizeof(flow->addrs.tipckey); break; } return sizeof(*flow) - diff; } __be32 flow_get_u32_src(const struct flow_keys *flow) { switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: return flow->addrs.v4addrs.src; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: return (__force __be32)ipv6_addr_hash( &flow->addrs.v6addrs.src); case FLOW_DISSECTOR_KEY_TIPC: return flow->addrs.tipckey.key; default: return 0; } } EXPORT_SYMBOL(flow_get_u32_src); __be32 flow_get_u32_dst(const struct flow_keys *flow) { switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: return flow->addrs.v4addrs.dst; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: return (__force __be32)ipv6_addr_hash( &flow->addrs.v6addrs.dst); default: return 0; } } EXPORT_SYMBOL(flow_get_u32_dst); /* Sort the source and destination IP and the ports, * to have consistent hash within the two directions */ static inline void __flow_hash_consistentify(struct flow_keys *keys) { int addr_diff, i; switch (keys->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: if ((__force u32)keys->addrs.v4addrs.dst < (__force u32)keys->addrs.v4addrs.src) swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); if ((__force u16)keys->ports.dst < (__force u16)keys->ports.src) { swap(keys->ports.src, keys->ports.dst); } break; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: addr_diff = memcmp(&keys->addrs.v6addrs.dst, &keys->addrs.v6addrs.src, sizeof(keys->addrs.v6addrs.dst)); if (addr_diff < 0) { for (i = 0; i < 4; i++) swap(keys->addrs.v6addrs.src.s6_addr32[i], keys->addrs.v6addrs.dst.s6_addr32[i]); } if ((__force u16)keys->ports.dst < (__force u16)keys->ports.src) { swap(keys->ports.src, keys->ports.dst); } break; } } static inline u32 __flow_hash_from_keys(struct flow_keys *keys, const siphash_key_t *keyval) { u32 hash; __flow_hash_consistentify(keys); hash = siphash(flow_keys_hash_start(keys), flow_keys_hash_length(keys), keyval); if (!hash) hash = 1; return hash; } u32 flow_hash_from_keys(struct flow_keys *keys) { __flow_hash_secret_init(); return __flow_hash_from_keys(keys, &hashrnd); } EXPORT_SYMBOL(flow_hash_from_keys); static inline u32 ___skb_get_hash(const struct sk_buff *skb, struct flow_keys *keys, const siphash_key_t *keyval) { skb_flow_dissect_flow_keys(skb, keys, FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); return __flow_hash_from_keys(keys, keyval); } struct _flow_keys_digest_data { __be16 n_proto; u8 ip_proto; u8 padding; __be32 ports; __be32 src; __be32 dst; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow) { struct _flow_keys_digest_data *data = (struct _flow_keys_digest_data *)digest; BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); memset(digest, 0, sizeof(*digest)); data->n_proto = flow->basic.n_proto; data->ip_proto = flow->basic.ip_proto; data->ports = flow->ports.ports; data->src = flow->addrs.v4addrs.src; data->dst = flow->addrs.v4addrs.dst; } EXPORT_SYMBOL(make_flow_keys_digest); static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; u32 __skb_get_hash_symmetric(const struct sk_buff *skb) { struct flow_keys keys; __flow_hash_secret_init(); memset(&keys, 0, sizeof(keys)); __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric, &keys, NULL, 0, 0, 0, FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); return __flow_hash_from_keys(&keys, &hashrnd); } EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric); /** * __skb_get_hash: calculate a flow hash * @skb: sk_buff to calculate flow hash from * * This function calculates a flow hash based on src/dst addresses * and src/dst port numbers. Sets hash in skb to non-zero hash value * on success, zero indicates no valid hash. Also, sets l4_hash in skb * if hash is a canonical 4-tuple hash over transport ports. */ void __skb_get_hash(struct sk_buff *skb) { struct flow_keys keys; u32 hash; __flow_hash_secret_init(); hash = ___skb_get_hash(skb, &keys, &hashrnd); __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); } EXPORT_SYMBOL(__skb_get_hash); __u32 skb_get_hash_perturb(const struct sk_buff *skb, const siphash_key_t *perturb) { struct flow_keys keys; return ___skb_get_hash(skb, &keys, perturb); } EXPORT_SYMBOL(skb_get_hash_perturb); u32 __skb_get_poff(const struct sk_buff *skb, const void *data, const struct flow_keys_basic *keys, int hlen) { u32 poff = keys->control.thoff; /* skip L4 headers for fragments after the first */ if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) return poff; switch (keys->basic.ip_proto) { case IPPROTO_TCP: { /* access doff as u8 to avoid unaligned access */ const u8 *doff; u8 _doff; doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), data, hlen, &_doff); if (!doff) return poff; poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); break; } case IPPROTO_UDP: case IPPROTO_UDPLITE: poff += sizeof(struct udphdr); break; /* For the rest, we do not really care about header * extensions at this point for now. */ case IPPROTO_ICMP: poff += sizeof(struct icmphdr); break; case IPPROTO_ICMPV6: poff += sizeof(struct icmp6hdr); break; case IPPROTO_IGMP: poff += sizeof(struct igmphdr); break; case IPPROTO_DCCP: poff += sizeof(struct dccp_hdr); break; case IPPROTO_SCTP: poff += sizeof(struct sctphdr); break; } return poff; } /** * skb_get_poff - get the offset to the payload * @skb: sk_buff to get the payload offset from * * The function will get the offset to the payload as far as it could * be dissected. The main user is currently BPF, so that we can dynamically * truncate packets without needing to push actual payload to the user * space and can analyze headers only, instead. */ u32 skb_get_poff(const struct sk_buff *skb) { struct flow_keys_basic keys; if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) return 0; return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) { memset(keys, 0, sizeof(*keys)); memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, sizeof(keys->addrs.v6addrs.src)); memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, sizeof(keys->addrs.v6addrs.dst)); keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; keys->ports.src = fl6->fl6_sport; keys->ports.dst = fl6->fl6_dport; keys->keyid.keyid = fl6->fl6_gre_key; keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); keys->basic.ip_proto = fl6->flowi6_proto; return flow_hash_from_keys(keys); } EXPORT_SYMBOL(__get_hash_from_flowi6); static const struct flow_dissector_key flow_keys_dissector_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, { .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, .offset = offsetof(struct flow_keys, addrs.v4addrs), }, { .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, .offset = offsetof(struct flow_keys, addrs.v6addrs), }, { .key_id = FLOW_DISSECTOR_KEY_TIPC, .offset = offsetof(struct flow_keys, addrs.tipckey), }, { .key_id = FLOW_DISSECTOR_KEY_PORTS, .offset = offsetof(struct flow_keys, ports), }, { .key_id = FLOW_DISSECTOR_KEY_VLAN, .offset = offsetof(struct flow_keys, vlan), }, { .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, .offset = offsetof(struct flow_keys, tags), }, { .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, .offset = offsetof(struct flow_keys, keyid), }, }; static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, { .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, .offset = offsetof(struct flow_keys, addrs.v4addrs), }, { .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, .offset = offsetof(struct flow_keys, addrs.v6addrs), }, { .key_id = FLOW_DISSECTOR_KEY_PORTS, .offset = offsetof(struct flow_keys, ports), }, }; static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, }; struct flow_dissector flow_keys_dissector __read_mostly; EXPORT_SYMBOL(flow_keys_dissector); struct flow_dissector flow_keys_basic_dissector __read_mostly; EXPORT_SYMBOL(flow_keys_basic_dissector); static int __init init_default_flow_dissectors(void) { skb_flow_dissector_init(&flow_keys_dissector, flow_keys_dissector_keys, ARRAY_SIZE(flow_keys_dissector_keys)); skb_flow_dissector_init(&flow_keys_dissector_symmetric, flow_keys_dissector_symmetric_keys, ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); skb_flow_dissector_init(&flow_keys_basic_dissector, flow_keys_basic_dissector_keys, ARRAY_SIZE(flow_keys_basic_dissector_keys)); return 0; } core_initcall(init_default_flow_dissectors);