#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void dissector_set_key(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { flow_dissector->used_keys |= (1 << key_id); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count) { unsigned int i; memset(flow_dissector, 0, sizeof(*flow_dissector)); for (i = 0; i < key_count; i++, key++) { /* User should make sure that every key target offset is withing * boundaries of unsigned short. */ BUG_ON(key->offset > USHRT_MAX); BUG_ON(dissector_uses_key(flow_dissector, key->key_id)); dissector_set_key(flow_dissector, key->key_id); flow_dissector->offset[key->key_id] = key->offset; } /* Ensure that the dissector always includes control and basic key. * That way we are able to avoid handling lack of these in fast path. */ BUG_ON(!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL)); BUG_ON(!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_BASIC)); } EXPORT_SYMBOL(skb_flow_dissector_init); /** * __skb_flow_get_ports - extract the upper layer ports and return them * @skb: sk_buff to extract the ports from * @thoff: transport header offset * @ip_proto: protocol for which to get port offset * @data: raw buffer pointer to the packet, if NULL use skb->data * @hlen: packet header length, if @data is NULL use skb_headlen(skb) * * The function will try to retrieve the ports at offset thoff + poff where poff * is the protocol port offset returned from proto_ports_offset */ __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, void *data, int hlen) { int poff = proto_ports_offset(ip_proto); if (!data) { data = skb->data; hlen = skb_headlen(skb); } if (poff >= 0) { __be32 *ports, _ports; ports = __skb_header_pointer(skb, thoff + poff, sizeof(_ports), data, hlen, &_ports); if (ports) return *ports; } return 0; } EXPORT_SYMBOL(__skb_flow_get_ports); /** * __skb_flow_dissect - extract the flow_keys struct and return it * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified * @flow_dissector: list of keys to dissect * @target_container: target structure to put dissected values into * @data: raw buffer pointer to the packet, if NULL use skb->data * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) * @hlen: packet header length, if @data is NULL use skb_headlen(skb) * * The function will try to retrieve individual keys into target specified * by flow_dissector from either the skbuff or a raw buffer specified by the * rest parameters. * * Caller must take care of zeroing target container memory. */ bool __skb_flow_dissect(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { struct flow_dissector_key_control *key_control; struct flow_dissector_key_basic *key_basic; struct flow_dissector_key_addrs *key_addrs; struct flow_dissector_key_ports *key_ports; struct flow_dissector_key_tags *key_tags; struct flow_dissector_key_keyid *key_keyid; u8 ip_proto = 0; bool ret = false; if (!data) { data = skb->data; proto = skb->protocol; nhoff = skb_network_offset(skb); hlen = skb_headlen(skb); } /* It is ensured by skb_flow_dissector_init() that control key will * be always present. */ key_control = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL, target_container); /* It is ensured by skb_flow_dissector_init() that basic key will * be always present. */ key_basic = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_BASIC, target_container); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct ethhdr *eth = eth_hdr(skb); struct flow_dissector_key_eth_addrs *key_eth_addrs; key_eth_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS, target_container); memcpy(key_eth_addrs, ð->h_dest, sizeof(*key_eth_addrs)); } again: switch (proto) { case htons(ETH_P_IP): { const struct iphdr *iph; struct iphdr _iph; ip: iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph || iph->ihl < 5) goto out_bad; nhoff += iph->ihl * 4; ip_proto = iph->protocol; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container); memcpy(&key_addrs->v4addrs, &iph->saddr, sizeof(key_addrs->v4addrs)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } if (ip_is_fragment(iph)) { key_control->flags |= FLOW_DIS_IS_FRAGMENT; if (iph->frag_off & htons(IP_OFFSET)) { goto out_good; } else { key_control->flags |= FLOW_DIS_FIRST_FRAG; if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) goto out_good; } } if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) goto out_good; break; } case htons(ETH_P_IPV6): { const struct ipv6hdr *iph; struct ipv6hdr _iph; ipv6: iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph) goto out_bad; ip_proto = iph->nexthdr; nhoff += sizeof(struct ipv6hdr); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, target_container); memcpy(&key_addrs->v6addrs, &iph->saddr, sizeof(key_addrs->v6addrs)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } if ((dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL) || (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && ip6_flowlabel(iph)) { __be32 flow_label = ip6_flowlabel(iph); if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL, target_container); key_tags->flow_label = ntohl(flow_label); } if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) goto out_good; } if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) goto out_good; break; } case htons(ETH_P_8021AD): case htons(ETH_P_8021Q): { const struct vlan_hdr *vlan; struct vlan_hdr _vlan; vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan); if (!vlan) goto out_bad; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_VLANID)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_VLANID, target_container); key_tags->vlan_id = skb_vlan_tag_get_id(skb); } proto = vlan->h_vlan_encapsulated_proto; nhoff += sizeof(*vlan); goto again; } case htons(ETH_P_PPP_SES): { struct { struct pppoe_hdr hdr; __be16 proto; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) goto out_bad; proto = hdr->proto; nhoff += PPPOE_SES_HLEN; switch (proto) { case htons(PPP_IP): goto ip; case htons(PPP_IPV6): goto ipv6; default: goto out_bad; } } case htons(ETH_P_TIPC): { struct { __be32 pre[3]; __be32 srcnode; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) goto out_bad; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TIPC_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_TIPC_ADDRS, target_container); key_addrs->tipcaddrs.srcnode = hdr->srcnode; key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS; } goto out_good; } case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): { struct mpls_label *hdr, _hdr[2]; mpls: hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) goto out_bad; if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) { if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY, target_container); key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK); } goto out_good; } goto out_good; } case htons(ETH_P_FCOE): if ((hlen - nhoff) < FCOE_HEADER_LEN) goto out_bad; nhoff += FCOE_HEADER_LEN; goto out_good; default: goto out_bad; } ip_proto_again: switch (ip_proto) { case IPPROTO_GRE: { struct gre_hdr { __be16 flags; __be16 proto; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) goto out_bad; /* * Only look inside GRE if version zero and no * routing */ if (hdr->flags & (GRE_VERSION | GRE_ROUTING)) break; proto = hdr->proto; nhoff += 4; if (hdr->flags & GRE_CSUM) nhoff += 4; if (hdr->flags & GRE_KEY) { const __be32 *keyid; __be32 _keyid; keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid), data, hlen, &_keyid); if (!keyid) goto out_bad; if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID)) { key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID, target_container); key_keyid->keyid = *keyid; } nhoff += 4; } if (hdr->flags & GRE_SEQ) nhoff += 4; if (proto == htons(ETH_P_TEB)) { const struct ethhdr *eth; struct ethhdr _eth; eth = __skb_header_pointer(skb, nhoff, sizeof(_eth), data, hlen, &_eth); if (!eth) goto out_bad; proto = eth->h_proto; nhoff += sizeof(*eth); /* Cap headers that we access via pointers at the * end of the Ethernet header as our maximum alignment * at that point is only 2 bytes. */ if (NET_IP_ALIGN) hlen = nhoff; } key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) goto out_good; goto again; } case NEXTHDR_HOP: case NEXTHDR_ROUTING: case NEXTHDR_DEST: { u8 _opthdr[2], *opthdr; if (proto != htons(ETH_P_IPV6)) break; opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), data, hlen, &_opthdr); if (!opthdr) goto out_bad; ip_proto = opthdr[0]; nhoff += (opthdr[1] + 1) << 3; goto ip_proto_again; } case NEXTHDR_FRAGMENT: { struct frag_hdr _fh, *fh; if (proto != htons(ETH_P_IPV6)) break; fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), data, hlen, &_fh); if (!fh) goto out_bad; key_control->flags |= FLOW_DIS_IS_FRAGMENT; nhoff += sizeof(_fh); ip_proto = fh->nexthdr; if (!(fh->frag_off & htons(IP6_OFFSET))) { key_control->flags |= FLOW_DIS_FIRST_FRAG; if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) goto ip_proto_again; } goto out_good; } case IPPROTO_IPIP: proto = htons(ETH_P_IP); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) goto out_good; goto ip; case IPPROTO_IPV6: proto = htons(ETH_P_IPV6); key_control->flags |= FLOW_DIS_ENCAPSULATION; if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) goto out_good; goto ipv6; case IPPROTO_MPLS: proto = htons(ETH_P_MPLS_UC); goto mpls; default: break; } if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) { key_ports = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PORTS, target_container); key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, data, hlen); } out_good: ret = true; out_bad: key_basic->n_proto = proto; key_basic->ip_proto = ip_proto; key_control->thoff = (u16)nhoff; return ret; } EXPORT_SYMBOL(__skb_flow_dissect); static u32 hashrnd __read_mostly; static __always_inline void __flow_hash_secret_init(void) { net_get_random_once(&hashrnd, sizeof(hashrnd)); } static __always_inline u32 __flow_hash_words(const u32 *words, u32 length, u32 keyval) { return jhash2(words, length, keyval); } static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow) { const void *p = flow; BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32)); return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET); } static inline size_t flow_keys_hash_length(const struct flow_keys *flow) { size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); BUILD_BUG_ON(offsetof(typeof(*flow), addrs) != sizeof(*flow) - sizeof(flow->addrs)); switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: diff -= sizeof(flow->addrs.v4addrs); break; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: diff -= sizeof(flow->addrs.v6addrs); break; case FLOW_DISSECTOR_KEY_TIPC_ADDRS: diff -= sizeof(flow->addrs.tipcaddrs); break; } return (sizeof(*flow) - diff) / sizeof(u32); } __be32 flow_get_u32_src(const struct flow_keys *flow) { switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: return flow->addrs.v4addrs.src; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: return (__force __be32)ipv6_addr_hash( &flow->addrs.v6addrs.src); case FLOW_DISSECTOR_KEY_TIPC_ADDRS: return flow->addrs.tipcaddrs.srcnode; default: return 0; } } EXPORT_SYMBOL(flow_get_u32_src); __be32 flow_get_u32_dst(const struct flow_keys *flow) { switch (flow->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: return flow->addrs.v4addrs.dst; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: return (__force __be32)ipv6_addr_hash( &flow->addrs.v6addrs.dst); default: return 0; } } EXPORT_SYMBOL(flow_get_u32_dst); static inline void __flow_hash_consistentify(struct flow_keys *keys) { int addr_diff, i; switch (keys->control.addr_type) { case FLOW_DISSECTOR_KEY_IPV4_ADDRS: addr_diff = (__force u32)keys->addrs.v4addrs.dst - (__force u32)keys->addrs.v4addrs.src; if ((addr_diff < 0) || (addr_diff == 0 && ((__force u16)keys->ports.dst < (__force u16)keys->ports.src))) { swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); swap(keys->ports.src, keys->ports.dst); } break; case FLOW_DISSECTOR_KEY_IPV6_ADDRS: addr_diff = memcmp(&keys->addrs.v6addrs.dst, &keys->addrs.v6addrs.src, sizeof(keys->addrs.v6addrs.dst)); if ((addr_diff < 0) || (addr_diff == 0 && ((__force u16)keys->ports.dst < (__force u16)keys->ports.src))) { for (i = 0; i < 4; i++) swap(keys->addrs.v6addrs.src.s6_addr32[i], keys->addrs.v6addrs.dst.s6_addr32[i]); swap(keys->ports.src, keys->ports.dst); } break; } } static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval) { u32 hash; __flow_hash_consistentify(keys); hash = __flow_hash_words(flow_keys_hash_start(keys), flow_keys_hash_length(keys), keyval); if (!hash) hash = 1; return hash; } u32 flow_hash_from_keys(struct flow_keys *keys) { __flow_hash_secret_init(); return __flow_hash_from_keys(keys, hashrnd); } EXPORT_SYMBOL(flow_hash_from_keys); static inline u32 ___skb_get_hash(const struct sk_buff *skb, struct flow_keys *keys, u32 keyval) { skb_flow_dissect_flow_keys(skb, keys, FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); return __flow_hash_from_keys(keys, keyval); } struct _flow_keys_digest_data { __be16 n_proto; u8 ip_proto; u8 padding; __be32 ports; __be32 src; __be32 dst; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow) { struct _flow_keys_digest_data *data = (struct _flow_keys_digest_data *)digest; BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); memset(digest, 0, sizeof(*digest)); data->n_proto = flow->basic.n_proto; data->ip_proto = flow->basic.ip_proto; data->ports = flow->ports.ports; data->src = flow->addrs.v4addrs.src; data->dst = flow->addrs.v4addrs.dst; } EXPORT_SYMBOL(make_flow_keys_digest); /** * __skb_get_hash: calculate a flow hash * @skb: sk_buff to calculate flow hash from * * This function calculates a flow hash based on src/dst addresses * and src/dst port numbers. Sets hash in skb to non-zero hash value * on success, zero indicates no valid hash. Also, sets l4_hash in skb * if hash is a canonical 4-tuple hash over transport ports. */ void __skb_get_hash(struct sk_buff *skb) { struct flow_keys keys; __flow_hash_secret_init(); __skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd), flow_keys_have_l4(&keys)); } EXPORT_SYMBOL(__skb_get_hash); __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb) { struct flow_keys keys; return ___skb_get_hash(skb, &keys, perturb); } EXPORT_SYMBOL(skb_get_hash_perturb); __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) { struct flow_keys keys; memset(&keys, 0, sizeof(keys)); memcpy(&keys.addrs.v6addrs.src, &fl6->saddr, sizeof(keys.addrs.v6addrs.src)); memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr, sizeof(keys.addrs.v6addrs.dst)); keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; keys.ports.src = fl6->fl6_sport; keys.ports.dst = fl6->fl6_dport; keys.keyid.keyid = fl6->fl6_gre_key; keys.tags.flow_label = (__force u32)fl6->flowlabel; keys.basic.ip_proto = fl6->flowi6_proto; __skb_set_sw_hash(skb, flow_hash_from_keys(&keys), flow_keys_have_l4(&keys)); return skb->hash; } EXPORT_SYMBOL(__skb_get_hash_flowi6); __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) { struct flow_keys keys; memset(&keys, 0, sizeof(keys)); keys.addrs.v4addrs.src = fl4->saddr; keys.addrs.v4addrs.dst = fl4->daddr; keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; keys.ports.src = fl4->fl4_sport; keys.ports.dst = fl4->fl4_dport; keys.keyid.keyid = fl4->fl4_gre_key; keys.basic.ip_proto = fl4->flowi4_proto; __skb_set_sw_hash(skb, flow_hash_from_keys(&keys), flow_keys_have_l4(&keys)); return skb->hash; } EXPORT_SYMBOL(__skb_get_hash_flowi4); u32 __skb_get_poff(const struct sk_buff *skb, void *data, const struct flow_keys *keys, int hlen) { u32 poff = keys->control.thoff; /* skip L4 headers for fragments after the first */ if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) return poff; switch (keys->basic.ip_proto) { case IPPROTO_TCP: { /* access doff as u8 to avoid unaligned access */ const u8 *doff; u8 _doff; doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), data, hlen, &_doff); if (!doff) return poff; poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); break; } case IPPROTO_UDP: case IPPROTO_UDPLITE: poff += sizeof(struct udphdr); break; /* For the rest, we do not really care about header * extensions at this point for now. */ case IPPROTO_ICMP: poff += sizeof(struct icmphdr); break; case IPPROTO_ICMPV6: poff += sizeof(struct icmp6hdr); break; case IPPROTO_IGMP: poff += sizeof(struct igmphdr); break; case IPPROTO_DCCP: poff += sizeof(struct dccp_hdr); break; case IPPROTO_SCTP: poff += sizeof(struct sctphdr); break; } return poff; } /** * skb_get_poff - get the offset to the payload * @skb: sk_buff to get the payload offset from * * The function will get the offset to the payload as far as it could * be dissected. The main user is currently BPF, so that we can dynamically * truncate packets without needing to push actual payload to the user * space and can analyze headers only, instead. */ u32 skb_get_poff(const struct sk_buff *skb) { struct flow_keys keys; if (!skb_flow_dissect_flow_keys(skb, &keys, 0)) return 0; return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) { memset(keys, 0, sizeof(*keys)); memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, sizeof(keys->addrs.v6addrs.src)); memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, sizeof(keys->addrs.v6addrs.dst)); keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; keys->ports.src = fl6->fl6_sport; keys->ports.dst = fl6->fl6_dport; keys->keyid.keyid = fl6->fl6_gre_key; keys->tags.flow_label = (__force u32)fl6->flowlabel; keys->basic.ip_proto = fl6->flowi6_proto; return flow_hash_from_keys(keys); } EXPORT_SYMBOL(__get_hash_from_flowi6); __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys) { memset(keys, 0, sizeof(*keys)); keys->addrs.v4addrs.src = fl4->saddr; keys->addrs.v4addrs.dst = fl4->daddr; keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; keys->ports.src = fl4->fl4_sport; keys->ports.dst = fl4->fl4_dport; keys->keyid.keyid = fl4->fl4_gre_key; keys->basic.ip_proto = fl4->flowi4_proto; return flow_hash_from_keys(keys); } EXPORT_SYMBOL(__get_hash_from_flowi4); static const struct flow_dissector_key flow_keys_dissector_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, { .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, .offset = offsetof(struct flow_keys, addrs.v4addrs), }, { .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, .offset = offsetof(struct flow_keys, addrs.v6addrs), }, { .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS, .offset = offsetof(struct flow_keys, addrs.tipcaddrs), }, { .key_id = FLOW_DISSECTOR_KEY_PORTS, .offset = offsetof(struct flow_keys, ports), }, { .key_id = FLOW_DISSECTOR_KEY_VLANID, .offset = offsetof(struct flow_keys, tags), }, { .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, .offset = offsetof(struct flow_keys, tags), }, { .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, .offset = offsetof(struct flow_keys, keyid), }, }; static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = { { .key_id = FLOW_DISSECTOR_KEY_CONTROL, .offset = offsetof(struct flow_keys, control), }, { .key_id = FLOW_DISSECTOR_KEY_BASIC, .offset = offsetof(struct flow_keys, basic), }, }; struct flow_dissector flow_keys_dissector __read_mostly; EXPORT_SYMBOL(flow_keys_dissector); struct flow_dissector flow_keys_buf_dissector __read_mostly; static int __init init_default_flow_dissectors(void) { skb_flow_dissector_init(&flow_keys_dissector, flow_keys_dissector_keys, ARRAY_SIZE(flow_keys_dissector_keys)); skb_flow_dissector_init(&flow_keys_buf_dissector, flow_keys_buf_dissector_keys, ARRAY_SIZE(flow_keys_buf_dissector_keys)); return 0; } late_initcall_sync(init_default_flow_dissectors);