/* * TCP NV: TCP with Congestion Avoidance * * TCP-NV is a successor of TCP-Vegas that has been developed to * deal with the issues that occur in modern networks. * Like TCP-Vegas, TCP-NV supports true congestion avoidance, * the ability to detect congestion before packet losses occur. * When congestion (queue buildup) starts to occur, TCP-NV * predicts what the cwnd size should be for the current * throughput and it reduces the cwnd proportionally to * the difference between the current cwnd and the predicted cwnd. * * NV is only recommeneded for traffic within a data center, and when * all the flows are NV (at least those within the data center). This * is due to the inherent unfairness between flows using losses to * detect congestion (congestion control) and those that use queue * buildup to detect congestion (congestion avoidance). * * Note: High NIC coalescence values may lower the performance of NV * due to the increased noise in RTT values. In particular, we have * seen issues with rx-frames values greater than 8. * * TODO: * 1) Add mechanism to deal with reverse congestion. */ #include #include #include #include #include /* TCP NV parameters * * nv_pad Max number of queued packets allowed in network * nv_pad_buffer Do not grow cwnd if this closed to nv_pad * nv_reset_period How often (in) seconds)to reset min_rtt * nv_min_cwnd Don't decrease cwnd below this if there are no losses * nv_cong_dec_mult Decrease cwnd by X% (30%) of congestion when detected * nv_ssthresh_factor On congestion set ssthresh to this * / 8 * nv_rtt_factor RTT averaging factor * nv_loss_dec_factor Decrease cwnd to this (80%) when losses occur * nv_dec_eval_min_calls Wait this many RTT measurements before dec cwnd * nv_inc_eval_min_calls Wait this many RTT measurements before inc cwnd * nv_ssthresh_eval_min_calls Wait this many RTT measurements before stopping * slow-start due to congestion * nv_stop_rtt_cnt Only grow cwnd for this many RTTs after non-congestion * nv_rtt_min_cnt Wait these many RTTs before making congesion decision * nv_cwnd_growth_rate_neg * nv_cwnd_growth_rate_pos * How quickly to double growth rate (not rate) of cwnd when not * congested. One value (nv_cwnd_growth_rate_neg) for when * rate < 1 pkt/RTT (after losses). The other (nv_cwnd_growth_rate_pos) * otherwise. */ static int nv_pad __read_mostly = 10; static int nv_pad_buffer __read_mostly = 2; static int nv_reset_period __read_mostly = 5; /* in seconds */ static int nv_min_cwnd __read_mostly = 2; static int nv_cong_dec_mult __read_mostly = 30 * 128 / 100; /* = 30% */ static int nv_ssthresh_factor __read_mostly = 8; /* = 1 */ static int nv_rtt_factor __read_mostly = 128; /* = 1/2*old + 1/2*new */ static int nv_loss_dec_factor __read_mostly = 819; /* => 80% */ static int nv_cwnd_growth_rate_neg __read_mostly = 8; static int nv_cwnd_growth_rate_pos __read_mostly; /* 0 => fixed like Reno */ static int nv_dec_eval_min_calls __read_mostly = 60; static int nv_inc_eval_min_calls __read_mostly = 20; static int nv_ssthresh_eval_min_calls __read_mostly = 30; static int nv_stop_rtt_cnt __read_mostly = 10; static int nv_rtt_min_cnt __read_mostly = 2; module_param(nv_pad, int, 0644); MODULE_PARM_DESC(nv_pad, "max queued packets allowed in network"); module_param(nv_reset_period, int, 0644); MODULE_PARM_DESC(nv_reset_period, "nv_min_rtt reset period (secs)"); module_param(nv_min_cwnd, int, 0644); MODULE_PARM_DESC(nv_min_cwnd, "NV will not decrease cwnd below this value" " without losses"); /* TCP NV Parameters */ struct tcpnv { unsigned long nv_min_rtt_reset_jiffies; /* when to switch to * nv_min_rtt_new */ s8 cwnd_growth_factor; /* Current cwnd growth factor, * < 0 => less than 1 packet/RTT */ u8 available8; u16 available16; u8 nv_allow_cwnd_growth:1, /* whether cwnd can grow */ nv_reset:1, /* whether to reset values */ nv_catchup:1; /* whether we are growing because * of temporary cwnd decrease */ u8 nv_eval_call_cnt; /* call count since last eval */ u8 nv_min_cwnd; /* nv won't make a ca decision if cwnd is * smaller than this. It may grow to handle * TSO, LRO and interrupt coalescence because * with these a small cwnd cannot saturate * the link. Note that this is different from * the file local nv_min_cwnd */ u8 nv_rtt_cnt; /* RTTs without making ca decision */; u32 nv_last_rtt; /* last rtt */ u32 nv_min_rtt; /* active min rtt. Used to determine slope */ u32 nv_min_rtt_new; /* min rtt for future use */ u32 nv_base_rtt; /* If non-zero it represents the threshold for * congestion */ u32 nv_lower_bound_rtt; /* Used in conjunction with nv_base_rtt. It is * set to 80% of nv_base_rtt. It helps reduce * unfairness between flows */ u32 nv_rtt_max_rate; /* max rate seen during current RTT */ u32 nv_rtt_start_seq; /* current RTT ends when packet arrives * acking beyond nv_rtt_start_seq */ u32 nv_last_snd_una; /* Previous value of tp->snd_una. It is * used to determine bytes acked since last * call to bictcp_acked */ u32 nv_no_cong_cnt; /* Consecutive no congestion decisions */ }; #define NV_INIT_RTT U32_MAX #define NV_MIN_CWND 4 #define NV_MIN_CWND_GROW 2 #define NV_TSO_CWND_BOUND 80 static inline void tcpnv_reset(struct tcpnv *ca, struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); ca->nv_reset = 0; ca->nv_no_cong_cnt = 0; ca->nv_rtt_cnt = 0; ca->nv_last_rtt = 0; ca->nv_rtt_max_rate = 0; ca->nv_rtt_start_seq = tp->snd_una; ca->nv_eval_call_cnt = 0; ca->nv_last_snd_una = tp->snd_una; } static void tcpnv_init(struct sock *sk) { struct tcpnv *ca = inet_csk_ca(sk); int base_rtt; tcpnv_reset(ca, sk); /* See if base_rtt is available from socket_ops bpf program. * It is meant to be used in environments, such as communication * within a datacenter, where we have reasonable estimates of * RTTs */ base_rtt = tcp_call_bpf(sk, BPF_SOCK_OPS_BASE_RTT, 0, NULL); if (base_rtt > 0) { ca->nv_base_rtt = base_rtt; ca->nv_lower_bound_rtt = (base_rtt * 205) >> 8; /* 80% */ } else { ca->nv_base_rtt = 0; ca->nv_lower_bound_rtt = 0; } ca->nv_allow_cwnd_growth = 1; ca->nv_min_rtt_reset_jiffies = jiffies + 2 * HZ; ca->nv_min_rtt = NV_INIT_RTT; ca->nv_min_rtt_new = NV_INIT_RTT; ca->nv_min_cwnd = NV_MIN_CWND; ca->nv_catchup = 0; ca->cwnd_growth_factor = 0; } /* If provided, apply upper (base_rtt) and lower (lower_bound_rtt) * bounds to RTT. */ inline u32 nv_get_bounded_rtt(struct tcpnv *ca, u32 val) { if (ca->nv_lower_bound_rtt > 0 && val < ca->nv_lower_bound_rtt) return ca->nv_lower_bound_rtt; else if (ca->nv_base_rtt > 0 && val > ca->nv_base_rtt) return ca->nv_base_rtt; else return val; } static void tcpnv_cong_avoid(struct sock *sk, u32 ack, u32 acked) { struct tcp_sock *tp = tcp_sk(sk); struct tcpnv *ca = inet_csk_ca(sk); u32 cnt; if (!tcp_is_cwnd_limited(sk)) return; /* Only grow cwnd if NV has not detected congestion */ if (!ca->nv_allow_cwnd_growth) return; if (tcp_in_slow_start(tp)) { acked = tcp_slow_start(tp, acked); if (!acked) return; } if (ca->cwnd_growth_factor < 0) { cnt = tp->snd_cwnd << -ca->cwnd_growth_factor; tcp_cong_avoid_ai(tp, cnt, acked); } else { cnt = max(4U, tp->snd_cwnd >> ca->cwnd_growth_factor); tcp_cong_avoid_ai(tp, cnt, acked); } } static u32 tcpnv_recalc_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); return max((tp->snd_cwnd * nv_loss_dec_factor) >> 10, 2U); } static void tcpnv_state(struct sock *sk, u8 new_state) { struct tcpnv *ca = inet_csk_ca(sk); if (new_state == TCP_CA_Open && ca->nv_reset) { tcpnv_reset(ca, sk); } else if (new_state == TCP_CA_Loss || new_state == TCP_CA_CWR || new_state == TCP_CA_Recovery) { ca->nv_reset = 1; ca->nv_allow_cwnd_growth = 0; if (new_state == TCP_CA_Loss) { /* Reset cwnd growth factor to Reno value */ if (ca->cwnd_growth_factor > 0) ca->cwnd_growth_factor = 0; /* Decrease growth rate if allowed */ if (nv_cwnd_growth_rate_neg > 0 && ca->cwnd_growth_factor > -8) ca->cwnd_growth_factor--; } } } /* Do congestion avoidance calculations for TCP-NV */ static void tcpnv_acked(struct sock *sk, const struct ack_sample *sample) { const struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct tcpnv *ca = inet_csk_ca(sk); unsigned long now = jiffies; u64 rate64; u32 rate, max_win, cwnd_by_slope; u32 avg_rtt; u32 bytes_acked = 0; /* Some calls are for duplicates without timetamps */ if (sample->rtt_us < 0) return; /* If not in TCP_CA_Open or TCP_CA_Disorder states, skip. */ if (icsk->icsk_ca_state != TCP_CA_Open && icsk->icsk_ca_state != TCP_CA_Disorder) return; /* Stop cwnd growth if we were in catch up mode */ if (ca->nv_catchup && tp->snd_cwnd >= nv_min_cwnd) { ca->nv_catchup = 0; ca->nv_allow_cwnd_growth = 0; } bytes_acked = tp->snd_una - ca->nv_last_snd_una; ca->nv_last_snd_una = tp->snd_una; if (sample->in_flight == 0) return; /* Calculate moving average of RTT */ if (nv_rtt_factor > 0) { if (ca->nv_last_rtt > 0) { avg_rtt = (((u64)sample->rtt_us) * nv_rtt_factor + ((u64)ca->nv_last_rtt) * (256 - nv_rtt_factor)) >> 8; } else { avg_rtt = sample->rtt_us; ca->nv_min_rtt = avg_rtt << 1; } ca->nv_last_rtt = avg_rtt; } else { avg_rtt = sample->rtt_us; } /* rate in 100's bits per second */ rate64 = ((u64)sample->in_flight) * 80000; do_div(rate64, avg_rtt ?: 1); rate = (u32)rate64; /* Remember the maximum rate seen during this RTT * Note: It may be more than one RTT. This function should be * called at least nv_dec_eval_min_calls times. */ if (ca->nv_rtt_max_rate < rate) ca->nv_rtt_max_rate = rate; /* We have valid information, increment counter */ if (ca->nv_eval_call_cnt < 255) ca->nv_eval_call_cnt++; /* Apply bounds to rtt. Only used to update min_rtt */ avg_rtt = nv_get_bounded_rtt(ca, avg_rtt); /* update min rtt if necessary */ if (avg_rtt < ca->nv_min_rtt) ca->nv_min_rtt = avg_rtt; /* update future min_rtt if necessary */ if (avg_rtt < ca->nv_min_rtt_new) ca->nv_min_rtt_new = avg_rtt; /* nv_min_rtt is updated with the minimum (possibley averaged) rtt * seen in the last sysctl_tcp_nv_reset_period seconds (i.e. a * warm reset). This new nv_min_rtt will be continued to be updated * and be used for another sysctl_tcp_nv_reset_period seconds, * when it will be updated again. * In practice we introduce some randomness, so the actual period used * is chosen randomly from the range: * [sysctl_tcp_nv_reset_period*3/4, sysctl_tcp_nv_reset_period*5/4) */ if (time_after_eq(now, ca->nv_min_rtt_reset_jiffies)) { unsigned char rand; ca->nv_min_rtt = ca->nv_min_rtt_new; ca->nv_min_rtt_new = NV_INIT_RTT; get_random_bytes(&rand, 1); ca->nv_min_rtt_reset_jiffies = now + ((nv_reset_period * (384 + rand) * HZ) >> 9); /* Every so often we decrease ca->nv_min_cwnd in case previous * value is no longer accurate. */ ca->nv_min_cwnd = max(ca->nv_min_cwnd / 2, NV_MIN_CWND); } /* Once per RTT check if we need to do congestion avoidance */ if (before(ca->nv_rtt_start_seq, tp->snd_una)) { ca->nv_rtt_start_seq = tp->snd_nxt; if (ca->nv_rtt_cnt < 0xff) /* Increase counter for RTTs without CA decision */ ca->nv_rtt_cnt++; /* If this function is only called once within an RTT * the cwnd is probably too small (in some cases due to * tso, lro or interrupt coalescence), so we increase * ca->nv_min_cwnd. */ if (ca->nv_eval_call_cnt == 1 && bytes_acked >= (ca->nv_min_cwnd - 1) * tp->mss_cache && ca->nv_min_cwnd < (NV_TSO_CWND_BOUND + 1)) { ca->nv_min_cwnd = min(ca->nv_min_cwnd + NV_MIN_CWND_GROW, NV_TSO_CWND_BOUND + 1); ca->nv_rtt_start_seq = tp->snd_nxt + ca->nv_min_cwnd * tp->mss_cache; ca->nv_eval_call_cnt = 0; ca->nv_allow_cwnd_growth = 1; return; } /* Find the ideal cwnd for current rate from slope * slope = 80000.0 * mss / nv_min_rtt * cwnd_by_slope = nv_rtt_max_rate / slope */ cwnd_by_slope = (u32) div64_u64(((u64)ca->nv_rtt_max_rate) * ca->nv_min_rtt, 80000ULL * tp->mss_cache); max_win = cwnd_by_slope + nv_pad; /* If cwnd > max_win, decrease cwnd * if cwnd < max_win, grow cwnd * else leave the same */ if (tp->snd_cwnd > max_win) { /* there is congestion, check that it is ok * to make a CA decision * 1. We should have at least nv_dec_eval_min_calls * data points before making a CA decision * 2. We only make a congesion decision after * nv_rtt_min_cnt RTTs */ if (ca->nv_rtt_cnt < nv_rtt_min_cnt) { return; } else if (tp->snd_ssthresh == TCP_INFINITE_SSTHRESH) { if (ca->nv_eval_call_cnt < nv_ssthresh_eval_min_calls) return; /* otherwise we will decrease cwnd */ } else if (ca->nv_eval_call_cnt < nv_dec_eval_min_calls) { if (ca->nv_allow_cwnd_growth && ca->nv_rtt_cnt > nv_stop_rtt_cnt) ca->nv_allow_cwnd_growth = 0; return; } /* We have enough data to determine we are congested */ ca->nv_allow_cwnd_growth = 0; tp->snd_ssthresh = (nv_ssthresh_factor * max_win) >> 3; if (tp->snd_cwnd - max_win > 2) { /* gap > 2, we do exponential cwnd decrease */ int dec; dec = max(2U, ((tp->snd_cwnd - max_win) * nv_cong_dec_mult) >> 7); tp->snd_cwnd -= dec; } else if (nv_cong_dec_mult > 0) { tp->snd_cwnd = max_win; } if (ca->cwnd_growth_factor > 0) ca->cwnd_growth_factor = 0; ca->nv_no_cong_cnt = 0; } else if (tp->snd_cwnd <= max_win - nv_pad_buffer) { /* There is no congestion, grow cwnd if allowed*/ if (ca->nv_eval_call_cnt < nv_inc_eval_min_calls) return; ca->nv_allow_cwnd_growth = 1; ca->nv_no_cong_cnt++; if (ca->cwnd_growth_factor < 0 && nv_cwnd_growth_rate_neg > 0 && ca->nv_no_cong_cnt > nv_cwnd_growth_rate_neg) { ca->cwnd_growth_factor++; ca->nv_no_cong_cnt = 0; } else if (ca->cwnd_growth_factor >= 0 && nv_cwnd_growth_rate_pos > 0 && ca->nv_no_cong_cnt > nv_cwnd_growth_rate_pos) { ca->cwnd_growth_factor++; ca->nv_no_cong_cnt = 0; } } else { /* cwnd is in-between, so do nothing */ return; } /* update state */ ca->nv_eval_call_cnt = 0; ca->nv_rtt_cnt = 0; ca->nv_rtt_max_rate = 0; /* Don't want to make cwnd < nv_min_cwnd * (it wasn't before, if it is now is because nv * decreased it). */ if (tp->snd_cwnd < nv_min_cwnd) tp->snd_cwnd = nv_min_cwnd; } } /* Extract info for Tcp socket info provided via netlink */ static size_t tcpnv_get_info(struct sock *sk, u32 ext, int *attr, union tcp_cc_info *info) { const struct tcpnv *ca = inet_csk_ca(sk); if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) { info->vegas.tcpv_enabled = 1; info->vegas.tcpv_rttcnt = ca->nv_rtt_cnt; info->vegas.tcpv_rtt = ca->nv_last_rtt; info->vegas.tcpv_minrtt = ca->nv_min_rtt; *attr = INET_DIAG_VEGASINFO; return sizeof(struct tcpvegas_info); } return 0; } static struct tcp_congestion_ops tcpnv __read_mostly = { .init = tcpnv_init, .ssthresh = tcpnv_recalc_ssthresh, .cong_avoid = tcpnv_cong_avoid, .set_state = tcpnv_state, .undo_cwnd = tcp_reno_undo_cwnd, .pkts_acked = tcpnv_acked, .get_info = tcpnv_get_info, .owner = THIS_MODULE, .name = "nv", }; static int __init tcpnv_register(void) { BUILD_BUG_ON(sizeof(struct tcpnv) > ICSK_CA_PRIV_SIZE); return tcp_register_congestion_control(&tcpnv); } static void __exit tcpnv_unregister(void) { tcp_unregister_congestion_control(&tcpnv); } module_init(tcpnv_register); module_exit(tcpnv_unregister); MODULE_AUTHOR("Lawrence Brakmo"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("TCP NV"); MODULE_VERSION("1.0");