/* * Linux IPv6 multicast routing support for BSD pim6sd * Based on net/ipv4/ipmr.c. * * (c) 2004 Mickael Hoerdt, * LSIIT Laboratory, Strasbourg, France * (c) 2004 Jean-Philippe Andriot, * 6WIND, Paris, France * Copyright (C)2007,2008 USAGI/WIDE Project * YOSHIFUJI Hideaki * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sock *mroute6_socket; /* Big lock, protecting vif table, mrt cache and mroute socket state. Note that the changes are semaphored via rtnl_lock. */ static DEFINE_RWLOCK(mrt_lock); /* * Multicast router control variables */ static struct mif_device vif6_table[MAXMIFS]; /* Devices */ static int maxvif; #define MIF_EXISTS(idx) (vif6_table[idx].dev != NULL) static struct mfc6_cache *mfc6_cache_array[MFC_LINES]; /* Forwarding cache */ static struct mfc6_cache *mfc_unres_queue; /* Queue of unresolved entries */ static atomic_t cache_resolve_queue_len; /* Size of unresolved */ /* Special spinlock for queue of unresolved entries */ static DEFINE_SPINLOCK(mfc_unres_lock); /* We return to original Alan's scheme. Hash table of resolved entries is changed only in process context and protected with weak lock mrt_lock. Queue of unresolved entries is protected with strong spinlock mfc_unres_lock. In this case data path is free of exclusive locks at all. */ static struct kmem_cache *mrt_cachep __read_mostly; static int ip6_mr_forward(struct sk_buff *skb, struct mfc6_cache *cache); static int ip6mr_cache_report(struct sk_buff *pkt, vifi_t vifi, int assert); static int ip6mr_fill_mroute(struct sk_buff *skb, struct mfc6_cache *c, struct rtmsg *rtm); static struct timer_list ipmr_expire_timer; #ifdef CONFIG_PROC_FS struct ipmr_mfc_iter { struct mfc6_cache **cache; int ct; }; static struct mfc6_cache *ipmr_mfc_seq_idx(struct ipmr_mfc_iter *it, loff_t pos) { struct mfc6_cache *mfc; it->cache = mfc6_cache_array; read_lock(&mrt_lock); for (it->ct = 0; it->ct < ARRAY_SIZE(mfc6_cache_array); it->ct++) for (mfc = mfc6_cache_array[it->ct]; mfc; mfc = mfc->next) if (pos-- == 0) return mfc; read_unlock(&mrt_lock); it->cache = &mfc_unres_queue; spin_lock_bh(&mfc_unres_lock); for (mfc = mfc_unres_queue; mfc; mfc = mfc->next) if (pos-- == 0) return mfc; spin_unlock_bh(&mfc_unres_lock); it->cache = NULL; return NULL; } /* * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif */ struct ipmr_vif_iter { int ct; }; static struct mif_device *ip6mr_vif_seq_idx(struct ipmr_vif_iter *iter, loff_t pos) { for (iter->ct = 0; iter->ct < maxvif; ++iter->ct) { if (!MIF_EXISTS(iter->ct)) continue; if (pos-- == 0) return &vif6_table[iter->ct]; } return NULL; } static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) __acquires(mrt_lock) { read_lock(&mrt_lock); return (*pos ? ip6mr_vif_seq_idx(seq->private, *pos - 1) : SEQ_START_TOKEN); } static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct ipmr_vif_iter *iter = seq->private; ++*pos; if (v == SEQ_START_TOKEN) return ip6mr_vif_seq_idx(iter, 0); while (++iter->ct < maxvif) { if (!MIF_EXISTS(iter->ct)) continue; return &vif6_table[iter->ct]; } return NULL; } static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) __releases(mrt_lock) { read_unlock(&mrt_lock); } static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); } else { const struct mif_device *vif = v; const char *name = vif->dev ? vif->dev->name : "none"; seq_printf(seq, "%2Zd %-10s %8ld %7ld %8ld %7ld %05X\n", vif - vif6_table, name, vif->bytes_in, vif->pkt_in, vif->bytes_out, vif->pkt_out, vif->flags); } return 0; } static struct seq_operations ip6mr_vif_seq_ops = { .start = ip6mr_vif_seq_start, .next = ip6mr_vif_seq_next, .stop = ip6mr_vif_seq_stop, .show = ip6mr_vif_seq_show, }; static int ip6mr_vif_open(struct inode *inode, struct file *file) { return seq_open_private(file, &ip6mr_vif_seq_ops, sizeof(struct ipmr_vif_iter)); } static struct file_operations ip6mr_vif_fops = { .owner = THIS_MODULE, .open = ip6mr_vif_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) { return (*pos ? ipmr_mfc_seq_idx(seq->private, *pos - 1) : SEQ_START_TOKEN); } static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct mfc6_cache *mfc = v; struct ipmr_mfc_iter *it = seq->private; ++*pos; if (v == SEQ_START_TOKEN) return ipmr_mfc_seq_idx(seq->private, 0); if (mfc->next) return mfc->next; if (it->cache == &mfc_unres_queue) goto end_of_list; BUG_ON(it->cache != mfc6_cache_array); while (++it->ct < ARRAY_SIZE(mfc6_cache_array)) { mfc = mfc6_cache_array[it->ct]; if (mfc) return mfc; } /* exhausted cache_array, show unresolved */ read_unlock(&mrt_lock); it->cache = &mfc_unres_queue; it->ct = 0; spin_lock_bh(&mfc_unres_lock); mfc = mfc_unres_queue; if (mfc) return mfc; end_of_list: spin_unlock_bh(&mfc_unres_lock); it->cache = NULL; return NULL; } static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) { struct ipmr_mfc_iter *it = seq->private; if (it->cache == &mfc_unres_queue) spin_unlock_bh(&mfc_unres_lock); else if (it->cache == mfc6_cache_array) read_unlock(&mrt_lock); } static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) { int n; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Group " "Origin " "Iif Pkts Bytes Wrong Oifs\n"); } else { const struct mfc6_cache *mfc = v; const struct ipmr_mfc_iter *it = seq->private; seq_printf(seq, NIP6_FMT " " NIP6_FMT " %-3d %8ld %8ld %8ld", NIP6(mfc->mf6c_mcastgrp), NIP6(mfc->mf6c_origin), mfc->mf6c_parent, mfc->mfc_un.res.pkt, mfc->mfc_un.res.bytes, mfc->mfc_un.res.wrong_if); if (it->cache != &mfc_unres_queue) { for (n = mfc->mfc_un.res.minvif; n < mfc->mfc_un.res.maxvif; n++) { if (MIF_EXISTS(n) && mfc->mfc_un.res.ttls[n] < 255) seq_printf(seq, " %2d:%-3d", n, mfc->mfc_un.res.ttls[n]); } } seq_putc(seq, '\n'); } return 0; } static struct seq_operations ipmr_mfc_seq_ops = { .start = ipmr_mfc_seq_start, .next = ipmr_mfc_seq_next, .stop = ipmr_mfc_seq_stop, .show = ipmr_mfc_seq_show, }; static int ipmr_mfc_open(struct inode *inode, struct file *file) { return seq_open_private(file, &ipmr_mfc_seq_ops, sizeof(struct ipmr_mfc_iter)); } static struct file_operations ip6mr_mfc_fops = { .owner = THIS_MODULE, .open = ipmr_mfc_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif /* * Delete a VIF entry */ static int mif6_delete(int vifi) { struct mif_device *v; struct net_device *dev; if (vifi < 0 || vifi >= maxvif) return -EADDRNOTAVAIL; v = &vif6_table[vifi]; write_lock_bh(&mrt_lock); dev = v->dev; v->dev = NULL; if (!dev) { write_unlock_bh(&mrt_lock); return -EADDRNOTAVAIL; } if (vifi + 1 == maxvif) { int tmp; for (tmp = vifi - 1; tmp >= 0; tmp--) { if (MIF_EXISTS(tmp)) break; } maxvif = tmp + 1; } write_unlock_bh(&mrt_lock); dev_set_allmulti(dev, -1); if (v->flags & MIFF_REGISTER) unregister_netdevice(dev); dev_put(dev); return 0; } /* Destroy an unresolved cache entry, killing queued skbs and reporting error to netlink readers. */ static void ip6mr_destroy_unres(struct mfc6_cache *c) { struct sk_buff *skb; atomic_dec(&cache_resolve_queue_len); while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) { if (ipv6_hdr(skb)->version == 0) { struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -ETIMEDOUT; rtnl_unicast(skb, &init_net, NETLINK_CB(skb).pid); } else kfree_skb(skb); } kmem_cache_free(mrt_cachep, c); } /* Single timer process for all the unresolved queue. */ static void ipmr_do_expire_process(unsigned long dummy) { unsigned long now = jiffies; unsigned long expires = 10 * HZ; struct mfc6_cache *c, **cp; cp = &mfc_unres_queue; while ((c = *cp) != NULL) { if (time_after(c->mfc_un.unres.expires, now)) { /* not yet... */ unsigned long interval = c->mfc_un.unres.expires - now; if (interval < expires) expires = interval; cp = &c->next; continue; } *cp = c->next; ip6mr_destroy_unres(c); } if (atomic_read(&cache_resolve_queue_len)) mod_timer(&ipmr_expire_timer, jiffies + expires); } static void ipmr_expire_process(unsigned long dummy) { if (!spin_trylock(&mfc_unres_lock)) { mod_timer(&ipmr_expire_timer, jiffies + 1); return; } if (atomic_read(&cache_resolve_queue_len)) ipmr_do_expire_process(dummy); spin_unlock(&mfc_unres_lock); } /* Fill oifs list. It is called under write locked mrt_lock. */ static void ip6mr_update_thresholds(struct mfc6_cache *cache, unsigned char *ttls) { int vifi; cache->mfc_un.res.minvif = MAXVIFS; cache->mfc_un.res.maxvif = 0; memset(cache->mfc_un.res.ttls, 255, MAXVIFS); for (vifi = 0; vifi < maxvif; vifi++) { if (MIF_EXISTS(vifi) && ttls[vifi] && ttls[vifi] < 255) { cache->mfc_un.res.ttls[vifi] = ttls[vifi]; if (cache->mfc_un.res.minvif > vifi) cache->mfc_un.res.minvif = vifi; if (cache->mfc_un.res.maxvif <= vifi) cache->mfc_un.res.maxvif = vifi + 1; } } } static int mif6_add(struct mif6ctl *vifc, int mrtsock) { int vifi = vifc->mif6c_mifi; struct mif_device *v = &vif6_table[vifi]; struct net_device *dev; /* Is vif busy ? */ if (MIF_EXISTS(vifi)) return -EADDRINUSE; switch (vifc->mif6c_flags) { case 0: dev = dev_get_by_index(&init_net, vifc->mif6c_pifi); if (!dev) return -EADDRNOTAVAIL; dev_put(dev); break; default: return -EINVAL; } dev_set_allmulti(dev, 1); /* * Fill in the VIF structures */ v->rate_limit = vifc->vifc_rate_limit; v->flags = vifc->mif6c_flags; if (!mrtsock) v->flags |= VIFF_STATIC; v->threshold = vifc->vifc_threshold; v->bytes_in = 0; v->bytes_out = 0; v->pkt_in = 0; v->pkt_out = 0; v->link = dev->ifindex; if (v->flags & MIFF_REGISTER) v->link = dev->iflink; /* And finish update writing critical data */ write_lock_bh(&mrt_lock); dev_hold(dev); v->dev = dev; if (vifi + 1 > maxvif) maxvif = vifi + 1; write_unlock_bh(&mrt_lock); return 0; } static struct mfc6_cache *ip6mr_cache_find(struct in6_addr *origin, struct in6_addr *mcastgrp) { int line = MFC6_HASH(mcastgrp, origin); struct mfc6_cache *c; for (c = mfc6_cache_array[line]; c; c = c->next) { if (ipv6_addr_equal(&c->mf6c_origin, origin) && ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) break; } return c; } /* * Allocate a multicast cache entry */ static struct mfc6_cache *ip6mr_cache_alloc(void) { struct mfc6_cache *c = kmem_cache_alloc(mrt_cachep, GFP_KERNEL); if (c == NULL) return NULL; memset(c, 0, sizeof(*c)); c->mfc_un.res.minvif = MAXVIFS; return c; } static struct mfc6_cache *ip6mr_cache_alloc_unres(void) { struct mfc6_cache *c = kmem_cache_alloc(mrt_cachep, GFP_ATOMIC); if (c == NULL) return NULL; memset(c, 0, sizeof(*c)); skb_queue_head_init(&c->mfc_un.unres.unresolved); c->mfc_un.unres.expires = jiffies + 10 * HZ; return c; } /* * A cache entry has gone into a resolved state from queued */ static void ip6mr_cache_resolve(struct mfc6_cache *uc, struct mfc6_cache *c) { struct sk_buff *skb; /* * Play the pending entries through our router */ while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { if (ipv6_hdr(skb)->version == 0) { int err; struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); if (ip6mr_fill_mroute(skb, c, NLMSG_DATA(nlh)) > 0) { nlh->nlmsg_len = skb->tail - (u8 *)nlh; } else { nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -EMSGSIZE; } err = rtnl_unicast(skb, &init_net, NETLINK_CB(skb).pid); } else ip6_mr_forward(skb, c); } } /* * Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd * expects the following bizarre scheme. * * Called under mrt_lock. */ static int ip6mr_cache_report(struct sk_buff *pkt, vifi_t vifi, int assert) { struct sk_buff *skb; struct mrt6msg *msg; int ret; skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); if (!skb) return -ENOBUFS; /* I suppose that internal messages * do not require checksums */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* * Copy the IP header */ skb_put(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); /* * Add our header */ skb_put(skb, sizeof(*msg)); skb_reset_transport_header(skb); msg = (struct mrt6msg *)skb_transport_header(skb); msg->im6_mbz = 0; msg->im6_msgtype = assert; msg->im6_mif = vifi; msg->im6_pad = 0; ipv6_addr_copy(&msg->im6_src, &ipv6_hdr(pkt)->saddr); ipv6_addr_copy(&msg->im6_dst, &ipv6_hdr(pkt)->daddr); skb->dst = dst_clone(pkt->dst); skb->ip_summed = CHECKSUM_UNNECESSARY; skb_pull(skb, sizeof(struct ipv6hdr)); if (mroute6_socket == NULL) { kfree_skb(skb); return -EINVAL; } /* * Deliver to user space multicast routing algorithms */ if ((ret = sock_queue_rcv_skb(mroute6_socket, skb)) < 0) { if (net_ratelimit()) printk(KERN_WARNING "mroute6: pending queue full, dropping entries.\n"); kfree_skb(skb); } return ret; } /* * Queue a packet for resolution. It gets locked cache entry! */ static int ip6mr_cache_unresolved(vifi_t vifi, struct sk_buff *skb) { int err; struct mfc6_cache *c; spin_lock_bh(&mfc_unres_lock); for (c = mfc_unres_queue; c; c = c->next) { if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) break; } if (c == NULL) { /* * Create a new entry if allowable */ if (atomic_read(&cache_resolve_queue_len) >= 10 || (c = ip6mr_cache_alloc_unres()) == NULL) { spin_unlock_bh(&mfc_unres_lock); kfree_skb(skb); return -ENOBUFS; } /* * Fill in the new cache entry */ c->mf6c_parent = -1; c->mf6c_origin = ipv6_hdr(skb)->saddr; c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; /* * Reflect first query at pim6sd */ if ((err = ip6mr_cache_report(skb, vifi, MRT6MSG_NOCACHE)) < 0) { /* If the report failed throw the cache entry out - Brad Parker */ spin_unlock_bh(&mfc_unres_lock); kmem_cache_free(mrt_cachep, c); kfree_skb(skb); return err; } atomic_inc(&cache_resolve_queue_len); c->next = mfc_unres_queue; mfc_unres_queue = c; ipmr_do_expire_process(1); } /* * See if we can append the packet */ if (c->mfc_un.unres.unresolved.qlen > 3) { kfree_skb(skb); err = -ENOBUFS; } else { skb_queue_tail(&c->mfc_un.unres.unresolved, skb); err = 0; } spin_unlock_bh(&mfc_unres_lock); return err; } /* * MFC6 cache manipulation by user space */ static int ip6mr_mfc_delete(struct mf6cctl *mfc) { int line; struct mfc6_cache *c, **cp; line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); for (cp = &mfc6_cache_array[line]; (c = *cp) != NULL; cp = &c->next) { if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) { write_lock_bh(&mrt_lock); *cp = c->next; write_unlock_bh(&mrt_lock); kmem_cache_free(mrt_cachep, c); return 0; } } return -ENOENT; } static int ip6mr_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = ptr; struct mif_device *v; int ct; if (dev_net(dev) != &init_net) return NOTIFY_DONE; if (event != NETDEV_UNREGISTER) return NOTIFY_DONE; v = &vif6_table[0]; for (ct = 0; ct < maxvif; ct++, v++) { if (v->dev == dev) mif6_delete(ct); } return NOTIFY_DONE; } static struct notifier_block ip6_mr_notifier = { .notifier_call = ip6mr_device_event }; /* * Setup for IP multicast routing */ void __init ip6_mr_init(void) { mrt_cachep = kmem_cache_create("ip6_mrt_cache", sizeof(struct mfc6_cache), 0, SLAB_HWCACHE_ALIGN, NULL); if (!mrt_cachep) panic("cannot allocate ip6_mrt_cache"); setup_timer(&ipmr_expire_timer, ipmr_expire_process, 0); register_netdevice_notifier(&ip6_mr_notifier); #ifdef CONFIG_PROC_FS proc_net_fops_create(&init_net, "ip6_mr_vif", 0, &ip6mr_vif_fops); proc_net_fops_create(&init_net, "ip6_mr_cache", 0, &ip6mr_mfc_fops); #endif } static int ip6mr_mfc_add(struct mf6cctl *mfc, int mrtsock) { int line; struct mfc6_cache *uc, *c, **cp; unsigned char ttls[MAXVIFS]; int i; memset(ttls, 255, MAXVIFS); for (i = 0; i < MAXVIFS; i++) { if (IF_ISSET(i, &mfc->mf6cc_ifset)) ttls[i] = 1; } line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); for (cp = &mfc6_cache_array[line]; (c = *cp) != NULL; cp = &c->next) { if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) break; } if (c != NULL) { write_lock_bh(&mrt_lock); c->mf6c_parent = mfc->mf6cc_parent; ip6mr_update_thresholds(c, ttls); if (!mrtsock) c->mfc_flags |= MFC_STATIC; write_unlock_bh(&mrt_lock); return 0; } if (!ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) return -EINVAL; c = ip6mr_cache_alloc(); if (c == NULL) return -ENOMEM; c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; c->mf6c_parent = mfc->mf6cc_parent; ip6mr_update_thresholds(c, ttls); if (!mrtsock) c->mfc_flags |= MFC_STATIC; write_lock_bh(&mrt_lock); c->next = mfc6_cache_array[line]; mfc6_cache_array[line] = c; write_unlock_bh(&mrt_lock); /* * Check to see if we resolved a queued list. If so we * need to send on the frames and tidy up. */ spin_lock_bh(&mfc_unres_lock); for (cp = &mfc_unres_queue; (uc = *cp) != NULL; cp = &uc->next) { if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { *cp = uc->next; if (atomic_dec_and_test(&cache_resolve_queue_len)) del_timer(&ipmr_expire_timer); break; } } spin_unlock_bh(&mfc_unres_lock); if (uc) { ip6mr_cache_resolve(uc, c); kmem_cache_free(mrt_cachep, uc); } return 0; } /* * Close the multicast socket, and clear the vif tables etc */ static void mroute_clean_tables(struct sock *sk) { int i; /* * Shut down all active vif entries */ for (i = 0; i < maxvif; i++) { if (!(vif6_table[i].flags & VIFF_STATIC)) mif6_delete(i); } /* * Wipe the cache */ for (i = 0; i < ARRAY_SIZE(mfc6_cache_array); i++) { struct mfc6_cache *c, **cp; cp = &mfc6_cache_array[i]; while ((c = *cp) != NULL) { if (c->mfc_flags & MFC_STATIC) { cp = &c->next; continue; } write_lock_bh(&mrt_lock); *cp = c->next; write_unlock_bh(&mrt_lock); kmem_cache_free(mrt_cachep, c); } } if (atomic_read(&cache_resolve_queue_len) != 0) { struct mfc6_cache *c; spin_lock_bh(&mfc_unres_lock); while (mfc_unres_queue != NULL) { c = mfc_unres_queue; mfc_unres_queue = c->next; spin_unlock_bh(&mfc_unres_lock); ip6mr_destroy_unres(c); spin_lock_bh(&mfc_unres_lock); } spin_unlock_bh(&mfc_unres_lock); } } static int ip6mr_sk_init(struct sock *sk) { int err = 0; rtnl_lock(); write_lock_bh(&mrt_lock); if (likely(mroute6_socket == NULL)) mroute6_socket = sk; else err = -EADDRINUSE; write_unlock_bh(&mrt_lock); rtnl_unlock(); return err; } int ip6mr_sk_done(struct sock *sk) { int err = 0; rtnl_lock(); if (sk == mroute6_socket) { write_lock_bh(&mrt_lock); mroute6_socket = NULL; write_unlock_bh(&mrt_lock); mroute_clean_tables(sk); } else err = -EACCES; rtnl_unlock(); return err; } /* * Socket options and virtual interface manipulation. The whole * virtual interface system is a complete heap, but unfortunately * that's how BSD mrouted happens to think. Maybe one day with a proper * MOSPF/PIM router set up we can clean this up. */ int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, int optlen) { int ret; struct mif6ctl vif; struct mf6cctl mfc; mifi_t mifi; if (optname != MRT6_INIT) { if (sk != mroute6_socket && !capable(CAP_NET_ADMIN)) return -EACCES; } switch (optname) { case MRT6_INIT: if (sk->sk_type != SOCK_RAW || inet_sk(sk)->num != IPPROTO_ICMPV6) return -EOPNOTSUPP; if (optlen < sizeof(int)) return -EINVAL; return ip6mr_sk_init(sk); case MRT6_DONE: return ip6mr_sk_done(sk); case MRT6_ADD_MIF: if (optlen < sizeof(vif)) return -EINVAL; if (copy_from_user(&vif, optval, sizeof(vif))) return -EFAULT; if (vif.mif6c_mifi >= MAXVIFS) return -ENFILE; rtnl_lock(); ret = mif6_add(&vif, sk == mroute6_socket); rtnl_unlock(); return ret; case MRT6_DEL_MIF: if (optlen < sizeof(mifi_t)) return -EINVAL; if (copy_from_user(&mifi, optval, sizeof(mifi_t))) return -EFAULT; rtnl_lock(); ret = mif6_delete(mifi); rtnl_unlock(); return ret; /* * Manipulate the forwarding caches. These live * in a sort of kernel/user symbiosis. */ case MRT6_ADD_MFC: case MRT6_DEL_MFC: if (optlen < sizeof(mfc)) return -EINVAL; if (copy_from_user(&mfc, optval, sizeof(mfc))) return -EFAULT; rtnl_lock(); if (optname == MRT6_DEL_MFC) ret = ip6mr_mfc_delete(&mfc); else ret = ip6mr_mfc_add(&mfc, sk == mroute6_socket); rtnl_unlock(); return ret; /* * Spurious command, or MRT_VERSION which you cannot * set. */ default: return -ENOPROTOOPT; } } /* * Getsock opt support for the multicast routing system. */ int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) { int olr; int val; switch (optname) { case MRT6_VERSION: val = 0x0305; break; default: return -ENOPROTOOPT; } if (get_user(olr, optlen)) return -EFAULT; olr = min_t(int, olr, sizeof(int)); if (olr < 0) return -EINVAL; if (put_user(olr, optlen)) return -EFAULT; if (copy_to_user(optval, &val, olr)) return -EFAULT; return 0; } /* * The IP multicast ioctl support routines. */ int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg) { struct sioc_sg_req6 sr; struct sioc_mif_req6 vr; struct mif_device *vif; struct mfc6_cache *c; switch (cmd) { case SIOCGETMIFCNT_IN6: if (copy_from_user(&vr, arg, sizeof(vr))) return -EFAULT; if (vr.mifi >= maxvif) return -EINVAL; read_lock(&mrt_lock); vif = &vif6_table[vr.mifi]; if (MIF_EXISTS(vr.mifi)) { vr.icount = vif->pkt_in; vr.ocount = vif->pkt_out; vr.ibytes = vif->bytes_in; vr.obytes = vif->bytes_out; read_unlock(&mrt_lock); if (copy_to_user(arg, &vr, sizeof(vr))) return -EFAULT; return 0; } read_unlock(&mrt_lock); return -EADDRNOTAVAIL; case SIOCGETSGCNT_IN6: if (copy_from_user(&sr, arg, sizeof(sr))) return -EFAULT; read_lock(&mrt_lock); c = ip6mr_cache_find(&sr.src.sin6_addr, &sr.grp.sin6_addr); if (c) { sr.pktcnt = c->mfc_un.res.pkt; sr.bytecnt = c->mfc_un.res.bytes; sr.wrong_if = c->mfc_un.res.wrong_if; read_unlock(&mrt_lock); if (copy_to_user(arg, &sr, sizeof(sr))) return -EFAULT; return 0; } read_unlock(&mrt_lock); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } static inline int ip6mr_forward2_finish(struct sk_buff *skb) { /* XXX stats */ return dst_output(skb); } /* * Processing handlers for ip6mr_forward */ static int ip6mr_forward2(struct sk_buff *skb, struct mfc6_cache *c, int vifi) { struct ipv6hdr *ipv6h; struct mif_device *vif = &vif6_table[vifi]; struct net_device *dev; struct dst_entry *dst; struct flowi fl; if (vif->dev == NULL) goto out_free; ipv6h = ipv6_hdr(skb); fl = (struct flowi) { .oif = vif->link, .nl_u = { .ip6_u = { .daddr = ipv6h->daddr, } } }; dst = ip6_route_output(&init_net, NULL, &fl); if (!dst) goto out_free; dst_release(skb->dst); skb->dst = dst; /* * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally * not only before forwarding, but after forwarding on all output * interfaces. It is clear, if mrouter runs a multicasting * program, it should receive packets not depending to what interface * program is joined. * If we will not make it, the program will have to join on all * interfaces. On the other hand, multihoming host (or router, but * not mrouter) cannot join to more than one interface - it will * result in receiving multiple packets. */ dev = vif->dev; skb->dev = dev; vif->pkt_out++; vif->bytes_out += skb->len; /* We are about to write */ /* XXX: extension headers? */ if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev))) goto out_free; ipv6h = ipv6_hdr(skb); ipv6h->hop_limit--; IP6CB(skb)->flags |= IP6SKB_FORWARDED; return NF_HOOK(PF_INET6, NF_INET_FORWARD, skb, skb->dev, dev, ip6mr_forward2_finish); out_free: kfree_skb(skb); return 0; } static int ip6mr_find_vif(struct net_device *dev) { int ct; for (ct = maxvif - 1; ct >= 0; ct--) { if (vif6_table[ct].dev == dev) break; } return ct; } static int ip6_mr_forward(struct sk_buff *skb, struct mfc6_cache *cache) { int psend = -1; int vif, ct; vif = cache->mf6c_parent; cache->mfc_un.res.pkt++; cache->mfc_un.res.bytes += skb->len; vif6_table[vif].pkt_in++; vif6_table[vif].bytes_in += skb->len; /* * Forward the frame */ for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) { if (ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) { if (psend != -1) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) ip6mr_forward2(skb2, cache, psend); } psend = ct; } } if (psend != -1) { ip6mr_forward2(skb, cache, psend); return 0; } kfree_skb(skb); return 0; } /* * Multicast packets for forwarding arrive here */ int ip6_mr_input(struct sk_buff *skb) { struct mfc6_cache *cache; read_lock(&mrt_lock); cache = ip6mr_cache_find(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); /* * No usable cache entry */ if (cache == NULL) { int vif; vif = ip6mr_find_vif(skb->dev); if (vif >= 0) { int err = ip6mr_cache_unresolved(vif, skb); read_unlock(&mrt_lock); return err; } read_unlock(&mrt_lock); kfree_skb(skb); return -ENODEV; } ip6_mr_forward(skb, cache); read_unlock(&mrt_lock); return 0; } static int ip6mr_fill_mroute(struct sk_buff *skb, struct mfc6_cache *c, struct rtmsg *rtm) { int ct; struct rtnexthop *nhp; struct net_device *dev = vif6_table[c->mf6c_parent].dev; u8 *b = skb->tail; struct rtattr *mp_head; if (dev) RTA_PUT(skb, RTA_IIF, 4, &dev->ifindex); mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0)); for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { if (c->mfc_un.res.ttls[ct] < 255) { if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4)) goto rtattr_failure; nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp))); nhp->rtnh_flags = 0; nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; nhp->rtnh_ifindex = vif6_table[ct].dev->ifindex; nhp->rtnh_len = sizeof(*nhp); } } mp_head->rta_type = RTA_MULTIPATH; mp_head->rta_len = skb->tail - (u8 *)mp_head; rtm->rtm_type = RTN_MULTICAST; return 1; rtattr_failure: nlmsg_trim(skb, b); return -EMSGSIZE; } int ip6mr_get_route(struct sk_buff *skb, struct rtmsg *rtm, int nowait) { int err; struct mfc6_cache *cache; struct rt6_info *rt = (struct rt6_info *)skb->dst; read_lock(&mrt_lock); cache = ip6mr_cache_find(&rt->rt6i_src.addr, &rt->rt6i_dst.addr); if (!cache) { struct sk_buff *skb2; struct ipv6hdr *iph; struct net_device *dev; int vif; if (nowait) { read_unlock(&mrt_lock); return -EAGAIN; } dev = skb->dev; if (dev == NULL || (vif = ip6mr_find_vif(dev)) < 0) { read_unlock(&mrt_lock); return -ENODEV; } /* really correct? */ skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); if (!skb2) { read_unlock(&mrt_lock); return -ENOMEM; } skb_reset_transport_header(skb2); skb_put(skb2, sizeof(struct ipv6hdr)); skb_reset_network_header(skb2); iph = ipv6_hdr(skb2); iph->version = 0; iph->priority = 0; iph->flow_lbl[0] = 0; iph->flow_lbl[1] = 0; iph->flow_lbl[2] = 0; iph->payload_len = 0; iph->nexthdr = IPPROTO_NONE; iph->hop_limit = 0; ipv6_addr_copy(&iph->saddr, &rt->rt6i_src.addr); ipv6_addr_copy(&iph->daddr, &rt->rt6i_dst.addr); err = ip6mr_cache_unresolved(vif, skb2); read_unlock(&mrt_lock); return err; } if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY)) cache->mfc_flags |= MFC_NOTIFY; err = ip6mr_fill_mroute(skb, cache, rtm); read_unlock(&mrt_lock); return err; }