/* * IPv6 fragment reassembly for connection tracking * * Copyright (C)2004 USAGI/WIDE Project * * Author: * Yasuyuki Kozakai @USAGI * * Based on: net/ipv6/reassembly.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #define DEBUGP printk #else #define DEBUGP(format, args...) #endif #define NF_CT_FRAG6_HIGH_THRESH 262144 /* == 256*1024 */ #define NF_CT_FRAG6_LOW_THRESH 196608 /* == 192*1024 */ #define NF_CT_FRAG6_TIMEOUT IPV6_FRAG_TIMEOUT unsigned int nf_ct_frag6_high_thresh __read_mostly = 256*1024; unsigned int nf_ct_frag6_low_thresh __read_mostly = 192*1024; unsigned long nf_ct_frag6_timeout __read_mostly = IPV6_FRAG_TIMEOUT; struct nf_ct_frag6_skb_cb { struct inet6_skb_parm h; int offset; struct sk_buff *orig; }; #define NFCT_FRAG6_CB(skb) ((struct nf_ct_frag6_skb_cb*)((skb)->cb)) struct nf_ct_frag6_queue { struct hlist_node list; struct list_head lru_list; /* lru list member */ __u32 id; /* fragment id */ struct in6_addr saddr; struct in6_addr daddr; spinlock_t lock; atomic_t refcnt; struct timer_list timer; /* expire timer */ struct sk_buff *fragments; int len; int meat; struct timeval stamp; unsigned int csum; __u8 last_in; /* has first/last segment arrived? */ #define COMPLETE 4 #define FIRST_IN 2 #define LAST_IN 1 __u16 nhoffset; }; /* Hash table. */ #define FRAG6Q_HASHSZ 64 static struct hlist_head nf_ct_frag6_hash[FRAG6Q_HASHSZ]; static DEFINE_RWLOCK(nf_ct_frag6_lock); static u32 nf_ct_frag6_hash_rnd; static LIST_HEAD(nf_ct_frag6_lru_list); int nf_ct_frag6_nqueues = 0; static __inline__ void __fq_unlink(struct nf_ct_frag6_queue *fq) { hlist_del(&fq->list); list_del(&fq->lru_list); nf_ct_frag6_nqueues--; } static __inline__ void fq_unlink(struct nf_ct_frag6_queue *fq) { write_lock(&nf_ct_frag6_lock); __fq_unlink(fq); write_unlock(&nf_ct_frag6_lock); } static unsigned int ip6qhashfn(u32 id, struct in6_addr *saddr, struct in6_addr *daddr) { u32 a, b, c; a = saddr->s6_addr32[0]; b = saddr->s6_addr32[1]; c = saddr->s6_addr32[2]; a += JHASH_GOLDEN_RATIO; b += JHASH_GOLDEN_RATIO; c += nf_ct_frag6_hash_rnd; __jhash_mix(a, b, c); a += saddr->s6_addr32[3]; b += daddr->s6_addr32[0]; c += daddr->s6_addr32[1]; __jhash_mix(a, b, c); a += daddr->s6_addr32[2]; b += daddr->s6_addr32[3]; c += id; __jhash_mix(a, b, c); return c & (FRAG6Q_HASHSZ - 1); } static struct timer_list nf_ct_frag6_secret_timer; int nf_ct_frag6_secret_interval = 10 * 60 * HZ; static void nf_ct_frag6_secret_rebuild(unsigned long dummy) { unsigned long now = jiffies; int i; write_lock(&nf_ct_frag6_lock); get_random_bytes(&nf_ct_frag6_hash_rnd, sizeof(u32)); for (i = 0; i < FRAG6Q_HASHSZ; i++) { struct nf_ct_frag6_queue *q; struct hlist_node *p, *n; hlist_for_each_entry_safe(q, p, n, &nf_ct_frag6_hash[i], list) { unsigned int hval = ip6qhashfn(q->id, &q->saddr, &q->daddr); if (hval != i) { hlist_del(&q->list); /* Relink to new hash chain. */ hlist_add_head(&q->list, &nf_ct_frag6_hash[hval]); } } } write_unlock(&nf_ct_frag6_lock); mod_timer(&nf_ct_frag6_secret_timer, now + nf_ct_frag6_secret_interval); } atomic_t nf_ct_frag6_mem = ATOMIC_INIT(0); /* Memory Tracking Functions. */ static inline void frag_kfree_skb(struct sk_buff *skb, unsigned int *work) { if (work) *work -= skb->truesize; atomic_sub(skb->truesize, &nf_ct_frag6_mem); if (NFCT_FRAG6_CB(skb)->orig) kfree_skb(NFCT_FRAG6_CB(skb)->orig); kfree_skb(skb); } static inline void frag_free_queue(struct nf_ct_frag6_queue *fq, unsigned int *work) { if (work) *work -= sizeof(struct nf_ct_frag6_queue); atomic_sub(sizeof(struct nf_ct_frag6_queue), &nf_ct_frag6_mem); kfree(fq); } static inline struct nf_ct_frag6_queue *frag_alloc_queue(void) { struct nf_ct_frag6_queue *fq = kmalloc(sizeof(struct nf_ct_frag6_queue), GFP_ATOMIC); if (!fq) return NULL; atomic_add(sizeof(struct nf_ct_frag6_queue), &nf_ct_frag6_mem); return fq; } /* Destruction primitives. */ /* Complete destruction of fq. */ static void nf_ct_frag6_destroy(struct nf_ct_frag6_queue *fq, unsigned int *work) { struct sk_buff *fp; BUG_TRAP(fq->last_in&COMPLETE); BUG_TRAP(del_timer(&fq->timer) == 0); /* Release all fragment data. */ fp = fq->fragments; while (fp) { struct sk_buff *xp = fp->next; frag_kfree_skb(fp, work); fp = xp; } frag_free_queue(fq, work); } static __inline__ void fq_put(struct nf_ct_frag6_queue *fq, unsigned int *work) { if (atomic_dec_and_test(&fq->refcnt)) nf_ct_frag6_destroy(fq, work); } /* Kill fq entry. It is not destroyed immediately, * because caller (and someone more) holds reference count. */ static __inline__ void fq_kill(struct nf_ct_frag6_queue *fq) { if (del_timer(&fq->timer)) atomic_dec(&fq->refcnt); if (!(fq->last_in & COMPLETE)) { fq_unlink(fq); atomic_dec(&fq->refcnt); fq->last_in |= COMPLETE; } } static void nf_ct_frag6_evictor(void) { struct nf_ct_frag6_queue *fq; struct list_head *tmp; unsigned int work; work = atomic_read(&nf_ct_frag6_mem); if (work <= nf_ct_frag6_low_thresh) return; work -= nf_ct_frag6_low_thresh; while (work > 0) { read_lock(&nf_ct_frag6_lock); if (list_empty(&nf_ct_frag6_lru_list)) { read_unlock(&nf_ct_frag6_lock); return; } tmp = nf_ct_frag6_lru_list.next; BUG_ON(tmp == NULL); fq = list_entry(tmp, struct nf_ct_frag6_queue, lru_list); atomic_inc(&fq->refcnt); read_unlock(&nf_ct_frag6_lock); spin_lock(&fq->lock); if (!(fq->last_in&COMPLETE)) fq_kill(fq); spin_unlock(&fq->lock); fq_put(fq, &work); } } static void nf_ct_frag6_expire(unsigned long data) { struct nf_ct_frag6_queue *fq = (struct nf_ct_frag6_queue *) data; spin_lock(&fq->lock); if (fq->last_in & COMPLETE) goto out; fq_kill(fq); out: spin_unlock(&fq->lock); fq_put(fq, NULL); } /* Creation primitives. */ static struct nf_ct_frag6_queue *nf_ct_frag6_intern(unsigned int hash, struct nf_ct_frag6_queue *fq_in) { struct nf_ct_frag6_queue *fq; #ifdef CONFIG_SMP struct hlist_node *n; #endif write_lock(&nf_ct_frag6_lock); #ifdef CONFIG_SMP hlist_for_each_entry(fq, n, &nf_ct_frag6_hash[hash], list) { if (fq->id == fq_in->id && ipv6_addr_equal(&fq_in->saddr, &fq->saddr) && ipv6_addr_equal(&fq_in->daddr, &fq->daddr)) { atomic_inc(&fq->refcnt); write_unlock(&nf_ct_frag6_lock); fq_in->last_in |= COMPLETE; fq_put(fq_in, NULL); return fq; } } #endif fq = fq_in; if (!mod_timer(&fq->timer, jiffies + nf_ct_frag6_timeout)) atomic_inc(&fq->refcnt); atomic_inc(&fq->refcnt); hlist_add_head(&fq->list, &nf_ct_frag6_hash[hash]); INIT_LIST_HEAD(&fq->lru_list); list_add_tail(&fq->lru_list, &nf_ct_frag6_lru_list); nf_ct_frag6_nqueues++; write_unlock(&nf_ct_frag6_lock); return fq; } static struct nf_ct_frag6_queue * nf_ct_frag6_create(unsigned int hash, u32 id, struct in6_addr *src, struct in6_addr *dst) { struct nf_ct_frag6_queue *fq; if ((fq = frag_alloc_queue()) == NULL) { DEBUGP("Can't alloc new queue\n"); goto oom; } memset(fq, 0, sizeof(struct nf_ct_frag6_queue)); fq->id = id; ipv6_addr_copy(&fq->saddr, src); ipv6_addr_copy(&fq->daddr, dst); init_timer(&fq->timer); fq->timer.function = nf_ct_frag6_expire; fq->timer.data = (long) fq; spin_lock_init(&fq->lock); atomic_set(&fq->refcnt, 1); return nf_ct_frag6_intern(hash, fq); oom: return NULL; } static __inline__ struct nf_ct_frag6_queue * fq_find(u32 id, struct in6_addr *src, struct in6_addr *dst) { struct nf_ct_frag6_queue *fq; struct hlist_node *n; unsigned int hash = ip6qhashfn(id, src, dst); read_lock(&nf_ct_frag6_lock); hlist_for_each_entry(fq, n, &nf_ct_frag6_hash[hash], list) { if (fq->id == id && ipv6_addr_equal(src, &fq->saddr) && ipv6_addr_equal(dst, &fq->daddr)) { atomic_inc(&fq->refcnt); read_unlock(&nf_ct_frag6_lock); return fq; } } read_unlock(&nf_ct_frag6_lock); return nf_ct_frag6_create(hash, id, src, dst); } static int nf_ct_frag6_queue(struct nf_ct_frag6_queue *fq, struct sk_buff *skb, struct frag_hdr *fhdr, int nhoff) { struct sk_buff *prev, *next; int offset, end; if (fq->last_in & COMPLETE) { DEBUGP("Allready completed\n"); goto err; } offset = ntohs(fhdr->frag_off) & ~0x7; end = offset + (ntohs(skb->nh.ipv6h->payload_len) - ((u8 *) (fhdr + 1) - (u8 *) (skb->nh.ipv6h + 1))); if ((unsigned int)end > IPV6_MAXPLEN) { DEBUGP("offset is too large.\n"); return -1; } if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(skb->nh.raw, (u8*)(fhdr + 1) - skb->nh.raw, 0)); /* Is this the final fragment? */ if (!(fhdr->frag_off & htons(IP6_MF))) { /* If we already have some bits beyond end * or have different end, the segment is corrupted. */ if (end < fq->len || ((fq->last_in & LAST_IN) && end != fq->len)) { DEBUGP("already received last fragment\n"); goto err; } fq->last_in |= LAST_IN; fq->len = end; } else { /* Check if the fragment is rounded to 8 bytes. * Required by the RFC. */ if (end & 0x7) { /* RFC2460 says always send parameter problem in * this case. -DaveM */ DEBUGP("the end of this fragment is not rounded to 8 bytes.\n"); return -1; } if (end > fq->len) { /* Some bits beyond end -> corruption. */ if (fq->last_in & LAST_IN) { DEBUGP("last packet already reached.\n"); goto err; } fq->len = end; } } if (end == offset) goto err; /* Point into the IP datagram 'data' part. */ if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) { DEBUGP("queue: message is too short.\n"); goto err; } if (pskb_trim_rcsum(skb, end - offset)) { DEBUGP("Can't trim\n"); goto err; } /* Find out which fragments are in front and at the back of us * in the chain of fragments so far. We must know where to put * this fragment, right? */ prev = NULL; for (next = fq->fragments; next != NULL; next = next->next) { if (NFCT_FRAG6_CB(next)->offset >= offset) break; /* bingo! */ prev = next; } /* We found where to put this one. Check for overlap with * preceding fragment, and, if needed, align things so that * any overlaps are eliminated. */ if (prev) { int i = (NFCT_FRAG6_CB(prev)->offset + prev->len) - offset; if (i > 0) { offset += i; if (end <= offset) { DEBUGP("overlap\n"); goto err; } if (!pskb_pull(skb, i)) { DEBUGP("Can't pull\n"); goto err; } if (skb->ip_summed != CHECKSUM_UNNECESSARY) skb->ip_summed = CHECKSUM_NONE; } } /* Look for overlap with succeeding segments. * If we can merge fragments, do it. */ while (next && NFCT_FRAG6_CB(next)->offset < end) { /* overlap is 'i' bytes */ int i = end - NFCT_FRAG6_CB(next)->offset; if (i < next->len) { /* Eat head of the next overlapped fragment * and leave the loop. The next ones cannot overlap. */ DEBUGP("Eat head of the overlapped parts.: %d", i); if (!pskb_pull(next, i)) goto err; /* next fragment */ NFCT_FRAG6_CB(next)->offset += i; fq->meat -= i; if (next->ip_summed != CHECKSUM_UNNECESSARY) next->ip_summed = CHECKSUM_NONE; break; } else { struct sk_buff *free_it = next; /* Old fragmnet is completely overridden with * new one drop it. */ next = next->next; if (prev) prev->next = next; else fq->fragments = next; fq->meat -= free_it->len; frag_kfree_skb(free_it, NULL); } } NFCT_FRAG6_CB(skb)->offset = offset; /* Insert this fragment in the chain of fragments. */ skb->next = next; if (prev) prev->next = skb; else fq->fragments = skb; skb->dev = NULL; skb_get_timestamp(skb, &fq->stamp); fq->meat += skb->len; atomic_add(skb->truesize, &nf_ct_frag6_mem); /* The first fragment. * nhoffset is obtained from the first fragment, of course. */ if (offset == 0) { fq->nhoffset = nhoff; fq->last_in |= FIRST_IN; } write_lock(&nf_ct_frag6_lock); list_move_tail(&fq->lru_list, &nf_ct_frag6_lru_list); write_unlock(&nf_ct_frag6_lock); return 0; err: return -1; } /* * Check if this packet is complete. * Returns NULL on failure by any reason, and pointer * to current nexthdr field in reassembled frame. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static struct sk_buff * nf_ct_frag6_reasm(struct nf_ct_frag6_queue *fq, struct net_device *dev) { struct sk_buff *fp, *op, *head = fq->fragments; int payload_len; fq_kill(fq); BUG_TRAP(head != NULL); BUG_TRAP(NFCT_FRAG6_CB(head)->offset == 0); /* Unfragmented part is taken from the first segment. */ payload_len = (head->data - head->nh.raw) - sizeof(struct ipv6hdr) + fq->len - sizeof(struct frag_hdr); if (payload_len > IPV6_MAXPLEN) { DEBUGP("payload len is too large.\n"); goto out_oversize; } /* Head of list must not be cloned. */ if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) { DEBUGP("skb is cloned but can't expand head"); goto out_oom; } /* If the first fragment is fragmented itself, we split * it to two chunks: the first with data and paged part * and the second, holding only fragments. */ if (skb_shinfo(head)->frag_list) { struct sk_buff *clone; int i, plen = 0; if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) { DEBUGP("Can't alloc skb\n"); goto out_oom; } clone->next = head->next; head->next = clone; skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; skb_shinfo(head)->frag_list = NULL; for (i=0; inr_frags; i++) plen += skb_shinfo(head)->frags[i].size; clone->len = clone->data_len = head->data_len - plen; head->data_len -= clone->len; head->len -= clone->len; clone->csum = 0; clone->ip_summed = head->ip_summed; NFCT_FRAG6_CB(clone)->orig = NULL; atomic_add(clone->truesize, &nf_ct_frag6_mem); } /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ head->nh.raw[fq->nhoffset] = head->h.raw[0]; memmove(head->head + sizeof(struct frag_hdr), head->head, (head->data - head->head) - sizeof(struct frag_hdr)); head->mac.raw += sizeof(struct frag_hdr); head->nh.raw += sizeof(struct frag_hdr); skb_shinfo(head)->frag_list = head->next; head->h.raw = head->data; skb_push(head, head->data - head->nh.raw); atomic_sub(head->truesize, &nf_ct_frag6_mem); for (fp=head->next; fp; fp = fp->next) { head->data_len += fp->len; head->len += fp->len; if (head->ip_summed != fp->ip_summed) head->ip_summed = CHECKSUM_NONE; else if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_add(head->csum, fp->csum); head->truesize += fp->truesize; atomic_sub(fp->truesize, &nf_ct_frag6_mem); } head->next = NULL; head->dev = dev; skb_set_timestamp(head, &fq->stamp); head->nh.ipv6h->payload_len = htons(payload_len); /* Yes, and fold redundant checksum back. 8) */ if (head->ip_summed == CHECKSUM_COMPLETE) head->csum = csum_partial(head->nh.raw, head->h.raw-head->nh.raw, head->csum); fq->fragments = NULL; /* all original skbs are linked into the NFCT_FRAG6_CB(head).orig */ fp = skb_shinfo(head)->frag_list; if (NFCT_FRAG6_CB(fp)->orig == NULL) /* at above code, head skb is divided into two skbs. */ fp = fp->next; op = NFCT_FRAG6_CB(head)->orig; for (; fp; fp = fp->next) { struct sk_buff *orig = NFCT_FRAG6_CB(fp)->orig; op->next = orig; op = orig; NFCT_FRAG6_CB(fp)->orig = NULL; } return head; out_oversize: if (net_ratelimit()) printk(KERN_DEBUG "nf_ct_frag6_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: if (net_ratelimit()) printk(KERN_DEBUG "nf_ct_frag6_reasm: no memory for reassembly\n"); out_fail: return NULL; } /* * find the header just before Fragment Header. * * if success return 0 and set ... * (*prevhdrp): the value of "Next Header Field" in the header * just before Fragment Header. * (*prevhoff): the offset of "Next Header Field" in the header * just before Fragment Header. * (*fhoff) : the offset of Fragment Header. * * Based on ipv6_skip_hdr() in net/ipv6/exthdr.c * */ static int find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff) { u8 nexthdr = skb->nh.ipv6h->nexthdr; u8 prev_nhoff = (u8 *)&skb->nh.ipv6h->nexthdr - skb->data; int start = (u8 *)(skb->nh.ipv6h+1) - skb->data; int len = skb->len - start; u8 prevhdr = NEXTHDR_IPV6; while (nexthdr != NEXTHDR_FRAGMENT) { struct ipv6_opt_hdr hdr; int hdrlen; if (!ipv6_ext_hdr(nexthdr)) { return -1; } if (len < (int)sizeof(struct ipv6_opt_hdr)) { DEBUGP("too short\n"); return -1; } if (nexthdr == NEXTHDR_NONE) { DEBUGP("next header is none\n"); return -1; } if (skb_copy_bits(skb, start, &hdr, sizeof(hdr))) BUG(); if (nexthdr == NEXTHDR_AUTH) hdrlen = (hdr.hdrlen+2)<<2; else hdrlen = ipv6_optlen(&hdr); prevhdr = nexthdr; prev_nhoff = start; nexthdr = hdr.nexthdr; len -= hdrlen; start += hdrlen; } if (len < 0) return -1; *prevhdrp = prevhdr; *prevhoff = prev_nhoff; *fhoff = start; return 0; } struct sk_buff *nf_ct_frag6_gather(struct sk_buff *skb) { struct sk_buff *clone; struct net_device *dev = skb->dev; struct frag_hdr *fhdr; struct nf_ct_frag6_queue *fq; struct ipv6hdr *hdr; int fhoff, nhoff; u8 prevhdr; struct sk_buff *ret_skb = NULL; /* Jumbo payload inhibits frag. header */ if (skb->nh.ipv6h->payload_len == 0) { DEBUGP("payload len = 0\n"); return skb; } if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0) return skb; clone = skb_clone(skb, GFP_ATOMIC); if (clone == NULL) { DEBUGP("Can't clone skb\n"); return skb; } NFCT_FRAG6_CB(clone)->orig = skb; if (!pskb_may_pull(clone, fhoff + sizeof(*fhdr))) { DEBUGP("message is too short.\n"); goto ret_orig; } clone->h.raw = clone->data + fhoff; hdr = clone->nh.ipv6h; fhdr = (struct frag_hdr *)clone->h.raw; if (!(fhdr->frag_off & htons(0xFFF9))) { DEBUGP("Invalid fragment offset\n"); /* It is not a fragmented frame */ goto ret_orig; } if (atomic_read(&nf_ct_frag6_mem) > nf_ct_frag6_high_thresh) nf_ct_frag6_evictor(); fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr); if (fq == NULL) { DEBUGP("Can't find and can't create new queue\n"); goto ret_orig; } spin_lock(&fq->lock); if (nf_ct_frag6_queue(fq, clone, fhdr, nhoff) < 0) { spin_unlock(&fq->lock); DEBUGP("Can't insert skb to queue\n"); fq_put(fq, NULL); goto ret_orig; } if (fq->last_in == (FIRST_IN|LAST_IN) && fq->meat == fq->len) { ret_skb = nf_ct_frag6_reasm(fq, dev); if (ret_skb == NULL) DEBUGP("Can't reassemble fragmented packets\n"); } spin_unlock(&fq->lock); fq_put(fq, NULL); return ret_skb; ret_orig: kfree_skb(clone); return skb; } void nf_ct_frag6_output(unsigned int hooknum, struct sk_buff *skb, struct net_device *in, struct net_device *out, int (*okfn)(struct sk_buff *)) { struct sk_buff *s, *s2; for (s = NFCT_FRAG6_CB(skb)->orig; s;) { nf_conntrack_put_reasm(s->nfct_reasm); nf_conntrack_get_reasm(skb); s->nfct_reasm = skb; s2 = s->next; NF_HOOK_THRESH(PF_INET6, hooknum, s, in, out, okfn, NF_IP6_PRI_CONNTRACK_DEFRAG + 1); s = s2; } nf_conntrack_put_reasm(skb); } int nf_ct_frag6_kfree_frags(struct sk_buff *skb) { struct sk_buff *s, *s2; for (s = NFCT_FRAG6_CB(skb)->orig; s; s = s2) { s2 = s->next; kfree_skb(s); } kfree_skb(skb); return 0; } int nf_ct_frag6_init(void) { nf_ct_frag6_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^ (jiffies ^ (jiffies >> 6))); init_timer(&nf_ct_frag6_secret_timer); nf_ct_frag6_secret_timer.function = nf_ct_frag6_secret_rebuild; nf_ct_frag6_secret_timer.expires = jiffies + nf_ct_frag6_secret_interval; add_timer(&nf_ct_frag6_secret_timer); return 0; } void nf_ct_frag6_cleanup(void) { del_timer(&nf_ct_frag6_secret_timer); nf_ct_frag6_low_thresh = 0; nf_ct_frag6_evictor(); }