// SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2017 - 2019, Intel Corporation. */ #define pr_fmt(fmt) "MPTCP: " fmt #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_MPTCP_IPV6) #include #endif #include #include "protocol.h" static int subflow_rebuild_header(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); int err = 0; if (subflow->request_mptcp && !subflow->token) { pr_debug("subflow=%p", sk); err = mptcp_token_new_connect(sk); } if (err) return err; return subflow->icsk_af_ops->rebuild_header(sk); } static void subflow_req_destructor(struct request_sock *req) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); pr_debug("subflow_req=%p", subflow_req); if (subflow_req->mp_capable) mptcp_token_destroy_request(subflow_req->token); tcp_request_sock_ops.destructor(req); } static void subflow_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener); struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct tcp_options_received rx_opt; pr_debug("subflow_req=%p, listener=%p", subflow_req, listener); memset(&rx_opt.mptcp, 0, sizeof(rx_opt.mptcp)); mptcp_get_options(skb, &rx_opt); subflow_req->mp_capable = 0; subflow_req->remote_key_valid = 0; #ifdef CONFIG_TCP_MD5SIG /* no MPTCP if MD5SIG is enabled on this socket or we may run out of * TCP option space. */ if (rcu_access_pointer(tcp_sk(sk_listener)->md5sig_info)) return; #endif if (rx_opt.mptcp.mp_capable && listener->request_mptcp) { int err; err = mptcp_token_new_request(req); if (err == 0) subflow_req->mp_capable = 1; subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq; } } static void subflow_v4_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { tcp_rsk(req)->is_mptcp = 1; tcp_request_sock_ipv4_ops.init_req(req, sk_listener, skb); subflow_init_req(req, sk_listener, skb); } #if IS_ENABLED(CONFIG_MPTCP_IPV6) static void subflow_v6_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { tcp_rsk(req)->is_mptcp = 1; tcp_request_sock_ipv6_ops.init_req(req, sk_listener, skb); subflow_init_req(req, sk_listener, skb); } #endif static void subflow_finish_connect(struct sock *sk, const struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); subflow->icsk_af_ops->sk_rx_dst_set(sk, skb); if (subflow->conn && !subflow->conn_finished) { pr_debug("subflow=%p, remote_key=%llu", mptcp_subflow_ctx(sk), subflow->remote_key); mptcp_finish_connect(sk); subflow->conn_finished = 1; if (skb) { pr_debug("synack seq=%u", TCP_SKB_CB(skb)->seq); subflow->ssn_offset = TCP_SKB_CB(skb)->seq; } } } static struct request_sock_ops subflow_request_sock_ops; static struct tcp_request_sock_ops subflow_request_sock_ipv4_ops; static int subflow_v4_conn_request(struct sock *sk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); pr_debug("subflow=%p", subflow); /* Never answer to SYNs sent to broadcast or multicast */ if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) goto drop; return tcp_conn_request(&subflow_request_sock_ops, &subflow_request_sock_ipv4_ops, sk, skb); drop: tcp_listendrop(sk); return 0; } #if IS_ENABLED(CONFIG_MPTCP_IPV6) static struct tcp_request_sock_ops subflow_request_sock_ipv6_ops; static struct inet_connection_sock_af_ops subflow_v6_specific; static struct inet_connection_sock_af_ops subflow_v6m_specific; static int subflow_v6_conn_request(struct sock *sk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); pr_debug("subflow=%p", subflow); if (skb->protocol == htons(ETH_P_IP)) return subflow_v4_conn_request(sk, skb); if (!ipv6_unicast_destination(skb)) goto drop; return tcp_conn_request(&subflow_request_sock_ops, &subflow_request_sock_ipv6_ops, sk, skb); drop: tcp_listendrop(sk); return 0; /* don't send reset */ } #endif static struct sock *subflow_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk); struct mptcp_subflow_request_sock *subflow_req; struct tcp_options_received opt_rx; struct sock *child; pr_debug("listener=%p, req=%p, conn=%p", listener, req, listener->conn); if (tcp_rsk(req)->is_mptcp == 0) goto create_child; /* if the sk is MP_CAPABLE, we try to fetch the client key */ subflow_req = mptcp_subflow_rsk(req); if (subflow_req->mp_capable) { if (TCP_SKB_CB(skb)->seq != subflow_req->ssn_offset + 1) { /* here we can receive and accept an in-window, * out-of-order pkt, which will not carry the MP_CAPABLE * opt even on mptcp enabled paths */ goto create_child; } opt_rx.mptcp.mp_capable = 0; mptcp_get_options(skb, &opt_rx); if (opt_rx.mptcp.mp_capable) { subflow_req->remote_key = opt_rx.mptcp.sndr_key; subflow_req->remote_key_valid = 1; } else { subflow_req->mp_capable = 0; } } create_child: child = listener->icsk_af_ops->syn_recv_sock(sk, skb, req, dst, req_unhash, own_req); if (child && *own_req) { struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(child); /* we have null ctx on TCP fallback, not fatal on MPC * handshake */ if (!ctx) return child; if (ctx->mp_capable) { if (mptcp_token_new_accept(ctx->token)) goto close_child; } } return child; close_child: pr_debug("closing child socket"); tcp_send_active_reset(child, GFP_ATOMIC); inet_csk_prepare_forced_close(child); tcp_done(child); return NULL; } static struct inet_connection_sock_af_ops subflow_specific; enum mapping_status { MAPPING_OK, MAPPING_INVALID, MAPPING_EMPTY, MAPPING_DATA_FIN }; static u64 expand_seq(u64 old_seq, u16 old_data_len, u64 seq) { if ((u32)seq == (u32)old_seq) return old_seq; /* Assume map covers data not mapped yet. */ return seq | ((old_seq + old_data_len + 1) & GENMASK_ULL(63, 32)); } static void warn_bad_map(struct mptcp_subflow_context *subflow, u32 ssn) { WARN_ONCE(1, "Bad mapping: ssn=%d map_seq=%d map_data_len=%d", ssn, subflow->map_subflow_seq, subflow->map_data_len); } static bool skb_is_fully_mapped(struct sock *ssk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); unsigned int skb_consumed; skb_consumed = tcp_sk(ssk)->copied_seq - TCP_SKB_CB(skb)->seq; if (WARN_ON_ONCE(skb_consumed >= skb->len)) return true; return skb->len - skb_consumed <= subflow->map_data_len - mptcp_subflow_get_map_offset(subflow); } static bool validate_mapping(struct sock *ssk, struct sk_buff *skb) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); u32 ssn = tcp_sk(ssk)->copied_seq - subflow->ssn_offset; if (unlikely(before(ssn, subflow->map_subflow_seq))) { /* Mapping covers data later in the subflow stream, * currently unsupported. */ warn_bad_map(subflow, ssn); return false; } if (unlikely(!before(ssn, subflow->map_subflow_seq + subflow->map_data_len))) { /* Mapping does covers past subflow data, invalid */ warn_bad_map(subflow, ssn + skb->len); return false; } return true; } static enum mapping_status get_mapping_status(struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct mptcp_ext *mpext; struct sk_buff *skb; u16 data_len; u64 map_seq; skb = skb_peek(&ssk->sk_receive_queue); if (!skb) return MAPPING_EMPTY; mpext = mptcp_get_ext(skb); if (!mpext || !mpext->use_map) { if (!subflow->map_valid && !skb->len) { /* the TCP stack deliver 0 len FIN pkt to the receive * queue, that is the only 0len pkts ever expected here, * and we can admit no mapping only for 0 len pkts */ if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) WARN_ONCE(1, "0len seq %d:%d flags %x", TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, TCP_SKB_CB(skb)->tcp_flags); sk_eat_skb(ssk, skb); return MAPPING_EMPTY; } if (!subflow->map_valid) return MAPPING_INVALID; goto validate_seq; } pr_debug("seq=%llu is64=%d ssn=%u data_len=%u data_fin=%d", mpext->data_seq, mpext->dsn64, mpext->subflow_seq, mpext->data_len, mpext->data_fin); data_len = mpext->data_len; if (data_len == 0) { pr_err("Infinite mapping not handled"); return MAPPING_INVALID; } if (mpext->data_fin == 1) { if (data_len == 1) { pr_debug("DATA_FIN with no payload"); if (subflow->map_valid) { /* A DATA_FIN might arrive in a DSS * option before the previous mapping * has been fully consumed. Continue * handling the existing mapping. */ skb_ext_del(skb, SKB_EXT_MPTCP); return MAPPING_OK; } else { return MAPPING_DATA_FIN; } } /* Adjust for DATA_FIN using 1 byte of sequence space */ data_len--; } if (!mpext->dsn64) { map_seq = expand_seq(subflow->map_seq, subflow->map_data_len, mpext->data_seq); pr_debug("expanded seq=%llu", subflow->map_seq); } else { map_seq = mpext->data_seq; } if (subflow->map_valid) { /* Allow replacing only with an identical map */ if (subflow->map_seq == map_seq && subflow->map_subflow_seq == mpext->subflow_seq && subflow->map_data_len == data_len) { skb_ext_del(skb, SKB_EXT_MPTCP); return MAPPING_OK; } /* If this skb data are fully covered by the current mapping, * the new map would need caching, which is not supported */ if (skb_is_fully_mapped(ssk, skb)) return MAPPING_INVALID; /* will validate the next map after consuming the current one */ return MAPPING_OK; } subflow->map_seq = map_seq; subflow->map_subflow_seq = mpext->subflow_seq; subflow->map_data_len = data_len; subflow->map_valid = 1; subflow->mpc_map = mpext->mpc_map; pr_debug("new map seq=%llu subflow_seq=%u data_len=%u", subflow->map_seq, subflow->map_subflow_seq, subflow->map_data_len); validate_seq: /* we revalidate valid mapping on new skb, because we must ensure * the current skb is completely covered by the available mapping */ if (!validate_mapping(ssk, skb)) return MAPPING_INVALID; skb_ext_del(skb, SKB_EXT_MPTCP); return MAPPING_OK; } static bool subflow_check_data_avail(struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); enum mapping_status status; struct mptcp_sock *msk; struct sk_buff *skb; pr_debug("msk=%p ssk=%p data_avail=%d skb=%p", subflow->conn, ssk, subflow->data_avail, skb_peek(&ssk->sk_receive_queue)); if (subflow->data_avail) return true; if (!subflow->conn) return false; msk = mptcp_sk(subflow->conn); for (;;) { u32 map_remaining; size_t delta; u64 ack_seq; u64 old_ack; status = get_mapping_status(ssk); pr_debug("msk=%p ssk=%p status=%d", msk, ssk, status); if (status == MAPPING_INVALID) { ssk->sk_err = EBADMSG; goto fatal; } if (status != MAPPING_OK) return false; skb = skb_peek(&ssk->sk_receive_queue); if (WARN_ON_ONCE(!skb)) return false; /* if msk lacks the remote key, this subflow must provide an * MP_CAPABLE-based mapping */ if (unlikely(!READ_ONCE(msk->can_ack))) { if (!subflow->mpc_map) { ssk->sk_err = EBADMSG; goto fatal; } WRITE_ONCE(msk->remote_key, subflow->remote_key); WRITE_ONCE(msk->ack_seq, subflow->map_seq); WRITE_ONCE(msk->can_ack, true); } old_ack = READ_ONCE(msk->ack_seq); ack_seq = mptcp_subflow_get_mapped_dsn(subflow); pr_debug("msk ack_seq=%llx subflow ack_seq=%llx", old_ack, ack_seq); if (ack_seq == old_ack) break; /* only accept in-sequence mapping. Old values are spurious * retransmission; we can hit "future" values on active backup * subflow switch, we relay on retransmissions to get * in-sequence data. * Cuncurrent subflows support will require subflow data * reordering */ map_remaining = subflow->map_data_len - mptcp_subflow_get_map_offset(subflow); if (before64(ack_seq, old_ack)) delta = min_t(size_t, old_ack - ack_seq, map_remaining); else delta = min_t(size_t, ack_seq - old_ack, map_remaining); /* discard mapped data */ pr_debug("discarding %zu bytes, current map len=%d", delta, map_remaining); if (delta) { struct mptcp_read_arg arg = { .msg = NULL, }; read_descriptor_t desc = { .count = delta, .arg.data = &arg, }; int ret; ret = tcp_read_sock(ssk, &desc, mptcp_read_actor); if (ret < 0) { ssk->sk_err = -ret; goto fatal; } if (ret < delta) return false; if (delta == map_remaining) subflow->map_valid = 0; } } return true; fatal: /* fatal protocol error, close the socket */ /* This barrier is coupled with smp_rmb() in tcp_poll() */ smp_wmb(); ssk->sk_error_report(ssk); tcp_set_state(ssk, TCP_CLOSE); tcp_send_active_reset(ssk, GFP_ATOMIC); return false; } bool mptcp_subflow_data_available(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct sk_buff *skb; /* check if current mapping is still valid */ if (subflow->map_valid && mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len) { subflow->map_valid = 0; subflow->data_avail = 0; pr_debug("Done with mapping: seq=%u data_len=%u", subflow->map_subflow_seq, subflow->map_data_len); } if (!subflow_check_data_avail(sk)) { subflow->data_avail = 0; return false; } skb = skb_peek(&sk->sk_receive_queue); subflow->data_avail = skb && before(tcp_sk(sk)->copied_seq, TCP_SKB_CB(skb)->end_seq); return subflow->data_avail; } static void subflow_data_ready(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct sock *parent = subflow->conn; if (!parent || !subflow->mp_capable) { subflow->tcp_data_ready(sk); if (parent) parent->sk_data_ready(parent); return; } if (mptcp_subflow_data_available(sk)) { set_bit(MPTCP_DATA_READY, &mptcp_sk(parent)->flags); parent->sk_data_ready(parent); } } static void subflow_write_space(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct sock *parent = subflow->conn; sk_stream_write_space(sk); if (parent && sk_stream_is_writeable(sk)) { set_bit(MPTCP_SEND_SPACE, &mptcp_sk(parent)->flags); smp_mb__after_atomic(); /* set SEND_SPACE before sk_stream_write_space clears NOSPACE */ sk_stream_write_space(parent); } } static struct inet_connection_sock_af_ops * subflow_default_af_ops(struct sock *sk) { #if IS_ENABLED(CONFIG_MPTCP_IPV6) if (sk->sk_family == AF_INET6) return &subflow_v6_specific; #endif return &subflow_specific; } #if IS_ENABLED(CONFIG_MPTCP_IPV6) void mptcpv6_handle_mapped(struct sock *sk, bool mapped) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct inet_connection_sock_af_ops *target; target = mapped ? &subflow_v6m_specific : subflow_default_af_ops(sk); pr_debug("subflow=%p family=%d ops=%p target=%p mapped=%d", subflow, sk->sk_family, icsk->icsk_af_ops, target, mapped); if (likely(icsk->icsk_af_ops == target)) return; subflow->icsk_af_ops = icsk->icsk_af_ops; icsk->icsk_af_ops = target; } #endif int mptcp_subflow_create_socket(struct sock *sk, struct socket **new_sock) { struct mptcp_subflow_context *subflow; struct net *net = sock_net(sk); struct socket *sf; int err; err = sock_create_kern(net, sk->sk_family, SOCK_STREAM, IPPROTO_TCP, &sf); if (err) return err; lock_sock(sf->sk); /* kernel sockets do not by default acquire net ref, but TCP timer * needs it. */ sf->sk->sk_net_refcnt = 1; get_net(net); #ifdef CONFIG_PROC_FS this_cpu_add(*net->core.sock_inuse, 1); #endif err = tcp_set_ulp(sf->sk, "mptcp"); release_sock(sf->sk); if (err) return err; subflow = mptcp_subflow_ctx(sf->sk); pr_debug("subflow=%p", subflow); *new_sock = sf; sock_hold(sk); subflow->conn = sk; return 0; } static struct mptcp_subflow_context *subflow_create_ctx(struct sock *sk, gfp_t priority) { struct inet_connection_sock *icsk = inet_csk(sk); struct mptcp_subflow_context *ctx; ctx = kzalloc(sizeof(*ctx), priority); if (!ctx) return NULL; rcu_assign_pointer(icsk->icsk_ulp_data, ctx); INIT_LIST_HEAD(&ctx->node); pr_debug("subflow=%p", ctx); ctx->tcp_sock = sk; return ctx; } static void __subflow_state_change(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); rcu_read_unlock(); } static bool subflow_is_done(const struct sock *sk) { return sk->sk_shutdown & RCV_SHUTDOWN || sk->sk_state == TCP_CLOSE; } static void subflow_state_change(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct sock *parent = READ_ONCE(subflow->conn); __subflow_state_change(sk); /* as recvmsg() does not acquire the subflow socket for ssk selection * a fin packet carrying a DSS can be unnoticed if we don't trigger * the data available machinery here. */ if (parent && subflow->mp_capable && mptcp_subflow_data_available(sk)) { set_bit(MPTCP_DATA_READY, &mptcp_sk(parent)->flags); parent->sk_data_ready(parent); } if (parent && !(parent->sk_shutdown & RCV_SHUTDOWN) && !subflow->rx_eof && subflow_is_done(sk)) { subflow->rx_eof = 1; parent->sk_shutdown |= RCV_SHUTDOWN; __subflow_state_change(parent); } } static int subflow_ulp_init(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct mptcp_subflow_context *ctx; struct tcp_sock *tp = tcp_sk(sk); int err = 0; /* disallow attaching ULP to a socket unless it has been * created with sock_create_kern() */ if (!sk->sk_kern_sock) { err = -EOPNOTSUPP; goto out; } ctx = subflow_create_ctx(sk, GFP_KERNEL); if (!ctx) { err = -ENOMEM; goto out; } pr_debug("subflow=%p, family=%d", ctx, sk->sk_family); tp->is_mptcp = 1; ctx->icsk_af_ops = icsk->icsk_af_ops; icsk->icsk_af_ops = subflow_default_af_ops(sk); ctx->tcp_data_ready = sk->sk_data_ready; ctx->tcp_state_change = sk->sk_state_change; ctx->tcp_write_space = sk->sk_write_space; sk->sk_data_ready = subflow_data_ready; sk->sk_write_space = subflow_write_space; sk->sk_state_change = subflow_state_change; out: return err; } static void subflow_ulp_release(struct sock *sk) { struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(sk); if (!ctx) return; if (ctx->conn) sock_put(ctx->conn); kfree_rcu(ctx, rcu); } static void subflow_ulp_fallback(struct sock *sk, struct mptcp_subflow_context *old_ctx) { struct inet_connection_sock *icsk = inet_csk(sk); mptcp_subflow_tcp_fallback(sk, old_ctx); icsk->icsk_ulp_ops = NULL; rcu_assign_pointer(icsk->icsk_ulp_data, NULL); tcp_sk(sk)->is_mptcp = 0; } static void subflow_ulp_clone(const struct request_sock *req, struct sock *newsk, const gfp_t priority) { struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); struct mptcp_subflow_context *old_ctx = mptcp_subflow_ctx(newsk); struct mptcp_subflow_context *new_ctx; if (!tcp_rsk(req)->is_mptcp || !subflow_req->mp_capable) { subflow_ulp_fallback(newsk, old_ctx); return; } new_ctx = subflow_create_ctx(newsk, priority); if (!new_ctx) { subflow_ulp_fallback(newsk, old_ctx); return; } /* see comments in subflow_syn_recv_sock(), MPTCP connection is fully * established only after we receive the remote key */ new_ctx->conn_finished = 1; new_ctx->icsk_af_ops = old_ctx->icsk_af_ops; new_ctx->tcp_data_ready = old_ctx->tcp_data_ready; new_ctx->tcp_state_change = old_ctx->tcp_state_change; new_ctx->tcp_write_space = old_ctx->tcp_write_space; new_ctx->mp_capable = 1; new_ctx->fourth_ack = subflow_req->remote_key_valid; new_ctx->can_ack = subflow_req->remote_key_valid; new_ctx->remote_key = subflow_req->remote_key; new_ctx->local_key = subflow_req->local_key; new_ctx->token = subflow_req->token; new_ctx->ssn_offset = subflow_req->ssn_offset; new_ctx->idsn = subflow_req->idsn; } static struct tcp_ulp_ops subflow_ulp_ops __read_mostly = { .name = "mptcp", .owner = THIS_MODULE, .init = subflow_ulp_init, .release = subflow_ulp_release, .clone = subflow_ulp_clone, }; static int subflow_ops_init(struct request_sock_ops *subflow_ops) { subflow_ops->obj_size = sizeof(struct mptcp_subflow_request_sock); subflow_ops->slab_name = "request_sock_subflow"; subflow_ops->slab = kmem_cache_create(subflow_ops->slab_name, subflow_ops->obj_size, 0, SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU, NULL); if (!subflow_ops->slab) return -ENOMEM; subflow_ops->destructor = subflow_req_destructor; return 0; } void mptcp_subflow_init(void) { subflow_request_sock_ops = tcp_request_sock_ops; if (subflow_ops_init(&subflow_request_sock_ops) != 0) panic("MPTCP: failed to init subflow request sock ops\n"); subflow_request_sock_ipv4_ops = tcp_request_sock_ipv4_ops; subflow_request_sock_ipv4_ops.init_req = subflow_v4_init_req; subflow_specific = ipv4_specific; subflow_specific.conn_request = subflow_v4_conn_request; subflow_specific.syn_recv_sock = subflow_syn_recv_sock; subflow_specific.sk_rx_dst_set = subflow_finish_connect; subflow_specific.rebuild_header = subflow_rebuild_header; #if IS_ENABLED(CONFIG_MPTCP_IPV6) subflow_request_sock_ipv6_ops = tcp_request_sock_ipv6_ops; subflow_request_sock_ipv6_ops.init_req = subflow_v6_init_req; subflow_v6_specific = ipv6_specific; subflow_v6_specific.conn_request = subflow_v6_conn_request; subflow_v6_specific.syn_recv_sock = subflow_syn_recv_sock; subflow_v6_specific.sk_rx_dst_set = subflow_finish_connect; subflow_v6_specific.rebuild_header = subflow_rebuild_header; subflow_v6m_specific = subflow_v6_specific; subflow_v6m_specific.queue_xmit = ipv4_specific.queue_xmit; subflow_v6m_specific.send_check = ipv4_specific.send_check; subflow_v6m_specific.net_header_len = ipv4_specific.net_header_len; subflow_v6m_specific.mtu_reduced = ipv4_specific.mtu_reduced; subflow_v6m_specific.net_frag_header_len = 0; #endif if (tcp_register_ulp(&subflow_ulp_ops) != 0) panic("MPTCP: failed to register subflows to ULP\n"); }