/* * count the number of connections matching an arbitrary key. * * (C) 2017 Red Hat GmbH * Author: Florian Westphal * * split from xt_connlimit.c: * (c) 2000 Gerd Knorr * Nov 2002: Martin Bene : * only ignore TIME_WAIT or gone connections * (C) CC Computer Consultants GmbH, 2007 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CONNCOUNT_SLOTS 256U #ifdef CONFIG_LOCKDEP #define CONNCOUNT_LOCK_SLOTS 8U #else #define CONNCOUNT_LOCK_SLOTS 256U #endif #define CONNCOUNT_GC_MAX_NODES 8 #define MAX_KEYLEN 5 /* we will save the tuples of all connections we care about */ struct nf_conncount_tuple { struct list_head node; struct nf_conntrack_tuple tuple; struct nf_conntrack_zone zone; int cpu; u32 jiffies32; struct rcu_head rcu_head; }; struct nf_conncount_rb { struct rb_node node; struct nf_conncount_list list; u32 key[MAX_KEYLEN]; struct rcu_head rcu_head; }; static spinlock_t nf_conncount_locks[CONNCOUNT_LOCK_SLOTS] __cacheline_aligned_in_smp; struct nf_conncount_data { unsigned int keylen; struct rb_root root[CONNCOUNT_SLOTS]; struct net *net; struct work_struct gc_work; unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)]; unsigned int gc_tree; }; static u_int32_t conncount_rnd __read_mostly; static struct kmem_cache *conncount_rb_cachep __read_mostly; static struct kmem_cache *conncount_conn_cachep __read_mostly; static inline bool already_closed(const struct nf_conn *conn) { if (nf_ct_protonum(conn) == IPPROTO_TCP) return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT || conn->proto.tcp.state == TCP_CONNTRACK_CLOSE; else return false; } static int key_diff(const u32 *a, const u32 *b, unsigned int klen) { return memcmp(a, b, klen * sizeof(u32)); } enum nf_conncount_list_add nf_conncount_add(struct nf_conncount_list *list, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { struct nf_conncount_tuple *conn; if (WARN_ON_ONCE(list->count > INT_MAX)) return NF_CONNCOUNT_ERR; conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); if (conn == NULL) return NF_CONNCOUNT_ERR; conn->tuple = *tuple; conn->zone = *zone; conn->cpu = raw_smp_processor_id(); conn->jiffies32 = (u32)jiffies; spin_lock(&list->list_lock); if (list->dead == true) { kmem_cache_free(conncount_conn_cachep, conn); spin_unlock(&list->list_lock); return NF_CONNCOUNT_SKIP; } list_add_tail(&conn->node, &list->head); list->count++; spin_unlock(&list->list_lock); return NF_CONNCOUNT_ADDED; } EXPORT_SYMBOL_GPL(nf_conncount_add); static void __conn_free(struct rcu_head *h) { struct nf_conncount_tuple *conn; conn = container_of(h, struct nf_conncount_tuple, rcu_head); kmem_cache_free(conncount_conn_cachep, conn); } static bool conn_free(struct nf_conncount_list *list, struct nf_conncount_tuple *conn) { bool free_entry = false; spin_lock(&list->list_lock); if (list->count == 0) { spin_unlock(&list->list_lock); return free_entry; } list->count--; list_del_rcu(&conn->node); if (list->count == 0) free_entry = true; spin_unlock(&list->list_lock); call_rcu(&conn->rcu_head, __conn_free); return free_entry; } static const struct nf_conntrack_tuple_hash * find_or_evict(struct net *net, struct nf_conncount_list *list, struct nf_conncount_tuple *conn, bool *free_entry) { const struct nf_conntrack_tuple_hash *found; unsigned long a, b; int cpu = raw_smp_processor_id(); __s32 age; found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple); if (found) return found; b = conn->jiffies32; a = (u32)jiffies; /* conn might have been added just before by another cpu and * might still be unconfirmed. In this case, nf_conntrack_find() * returns no result. Thus only evict if this cpu added the * stale entry or if the entry is older than two jiffies. */ age = a - b; if (conn->cpu == cpu || age >= 2) { *free_entry = conn_free(list, conn); return ERR_PTR(-ENOENT); } return ERR_PTR(-EAGAIN); } void nf_conncount_lookup(struct net *net, struct nf_conncount_list *list, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone, bool *addit) { const struct nf_conntrack_tuple_hash *found; struct nf_conncount_tuple *conn, *conn_n; struct nf_conn *found_ct; unsigned int collect = 0; bool free_entry = false; /* best effort only */ *addit = tuple ? true : false; /* check the saved connections */ list_for_each_entry_safe(conn, conn_n, &list->head, node) { if (collect > CONNCOUNT_GC_MAX_NODES) break; found = find_or_evict(net, list, conn, &free_entry); if (IS_ERR(found)) { /* Not found, but might be about to be confirmed */ if (PTR_ERR(found) == -EAGAIN) { if (!tuple) continue; if (nf_ct_tuple_equal(&conn->tuple, tuple) && nf_ct_zone_id(&conn->zone, conn->zone.dir) == nf_ct_zone_id(zone, zone->dir)) *addit = false; } else if (PTR_ERR(found) == -ENOENT) collect++; continue; } found_ct = nf_ct_tuplehash_to_ctrack(found); if (tuple && nf_ct_tuple_equal(&conn->tuple, tuple) && nf_ct_zone_equal(found_ct, zone, zone->dir)) { /* * We should not see tuples twice unless someone hooks * this into a table without "-p tcp --syn". * * Attempt to avoid a re-add in this case. */ *addit = false; } else if (already_closed(found_ct)) { /* * we do not care about connections which are * closed already -> ditch it */ nf_ct_put(found_ct); conn_free(list, conn); collect++; continue; } nf_ct_put(found_ct); } } EXPORT_SYMBOL_GPL(nf_conncount_lookup); void nf_conncount_list_init(struct nf_conncount_list *list) { spin_lock_init(&list->list_lock); INIT_LIST_HEAD(&list->head); list->count = 1; list->dead = false; } EXPORT_SYMBOL_GPL(nf_conncount_list_init); /* Return true if the list is empty */ bool nf_conncount_gc_list(struct net *net, struct nf_conncount_list *list) { const struct nf_conntrack_tuple_hash *found; struct nf_conncount_tuple *conn, *conn_n; struct nf_conn *found_ct; unsigned int collected = 0; bool free_entry = false; list_for_each_entry_safe(conn, conn_n, &list->head, node) { found = find_or_evict(net, list, conn, &free_entry); if (IS_ERR(found)) { if (PTR_ERR(found) == -ENOENT) { if (free_entry) return true; collected++; } continue; } found_ct = nf_ct_tuplehash_to_ctrack(found); if (already_closed(found_ct)) { /* * we do not care about connections which are * closed already -> ditch it */ nf_ct_put(found_ct); if (conn_free(list, conn)) return true; collected++; continue; } nf_ct_put(found_ct); if (collected > CONNCOUNT_GC_MAX_NODES) return false; } return false; } EXPORT_SYMBOL_GPL(nf_conncount_gc_list); static void __tree_nodes_free(struct rcu_head *h) { struct nf_conncount_rb *rbconn; rbconn = container_of(h, struct nf_conncount_rb, rcu_head); kmem_cache_free(conncount_rb_cachep, rbconn); } static void tree_nodes_free(struct rb_root *root, struct nf_conncount_rb *gc_nodes[], unsigned int gc_count) { struct nf_conncount_rb *rbconn; while (gc_count) { rbconn = gc_nodes[--gc_count]; spin_lock(&rbconn->list.list_lock); if (rbconn->list.count == 0 && rbconn->list.dead == false) { rbconn->list.dead = true; rb_erase(&rbconn->node, root); call_rcu(&rbconn->rcu_head, __tree_nodes_free); } spin_unlock(&rbconn->list.list_lock); } } static void schedule_gc_worker(struct nf_conncount_data *data, int tree) { set_bit(tree, data->pending_trees); schedule_work(&data->gc_work); } static unsigned int insert_tree(struct net *net, struct nf_conncount_data *data, struct rb_root *root, unsigned int hash, const u32 *key, u8 keylen, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { enum nf_conncount_list_add ret; struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES]; struct rb_node **rbnode, *parent; struct nf_conncount_rb *rbconn; struct nf_conncount_tuple *conn; unsigned int count = 0, gc_count = 0; bool node_found = false; spin_lock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]); parent = NULL; rbnode = &(root->rb_node); while (*rbnode) { int diff; rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node); parent = *rbnode; diff = key_diff(key, rbconn->key, keylen); if (diff < 0) { rbnode = &((*rbnode)->rb_left); } else if (diff > 0) { rbnode = &((*rbnode)->rb_right); } else { /* unlikely: other cpu added node already */ node_found = true; ret = nf_conncount_add(&rbconn->list, tuple, zone); if (ret == NF_CONNCOUNT_ERR) { count = 0; /* hotdrop */ } else if (ret == NF_CONNCOUNT_ADDED) { count = rbconn->list.count; } else { /* NF_CONNCOUNT_SKIP, rbconn is already * reclaimed by gc, insert a new tree node */ node_found = false; } break; } if (gc_count >= ARRAY_SIZE(gc_nodes)) continue; if (nf_conncount_gc_list(net, &rbconn->list)) gc_nodes[gc_count++] = rbconn; } if (gc_count) { tree_nodes_free(root, gc_nodes, gc_count); /* tree_node_free before new allocation permits * allocator to re-use newly free'd object. * * This is a rare event; in most cases we will find * existing node to re-use. (or gc_count is 0). */ if (gc_count >= ARRAY_SIZE(gc_nodes)) schedule_gc_worker(data, hash); } if (node_found) goto out_unlock; /* expected case: match, insert new node */ rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC); if (rbconn == NULL) goto out_unlock; conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); if (conn == NULL) { kmem_cache_free(conncount_rb_cachep, rbconn); goto out_unlock; } conn->tuple = *tuple; conn->zone = *zone; memcpy(rbconn->key, key, sizeof(u32) * keylen); nf_conncount_list_init(&rbconn->list); list_add(&conn->node, &rbconn->list.head); count = 1; rb_link_node(&rbconn->node, parent, rbnode); rb_insert_color(&rbconn->node, root); out_unlock: spin_unlock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]); return count; } static unsigned int count_tree(struct net *net, struct nf_conncount_data *data, const u32 *key, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { enum nf_conncount_list_add ret; struct rb_root *root; struct rb_node *parent; struct nf_conncount_rb *rbconn; unsigned int hash; u8 keylen = data->keylen; hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS; root = &data->root[hash]; parent = rcu_dereference_raw(root->rb_node); while (parent) { int diff; bool addit; rbconn = rb_entry(parent, struct nf_conncount_rb, node); diff = key_diff(key, rbconn->key, keylen); if (diff < 0) { parent = rcu_dereference_raw(parent->rb_left); } else if (diff > 0) { parent = rcu_dereference_raw(parent->rb_right); } else { /* same source network -> be counted! */ nf_conncount_lookup(net, &rbconn->list, tuple, zone, &addit); if (!addit) return rbconn->list.count; ret = nf_conncount_add(&rbconn->list, tuple, zone); if (ret == NF_CONNCOUNT_ERR) { return 0; /* hotdrop */ } else if (ret == NF_CONNCOUNT_ADDED) { return rbconn->list.count; } else { /* NF_CONNCOUNT_SKIP, rbconn is already * reclaimed by gc, insert a new tree node */ break; } } } if (!tuple) return 0; return insert_tree(net, data, root, hash, key, keylen, tuple, zone); } static void tree_gc_worker(struct work_struct *work) { struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work); struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn; struct rb_root *root; struct rb_node *node; unsigned int tree, next_tree, gc_count = 0; tree = data->gc_tree % CONNCOUNT_LOCK_SLOTS; root = &data->root[tree]; rcu_read_lock(); for (node = rb_first(root); node != NULL; node = rb_next(node)) { rbconn = rb_entry(node, struct nf_conncount_rb, node); if (nf_conncount_gc_list(data->net, &rbconn->list)) gc_nodes[gc_count++] = rbconn; } rcu_read_unlock(); spin_lock_bh(&nf_conncount_locks[tree]); if (gc_count) { tree_nodes_free(root, gc_nodes, gc_count); } clear_bit(tree, data->pending_trees); next_tree = (tree + 1) % CONNCOUNT_SLOTS; next_tree = find_next_bit(data->pending_trees, next_tree, CONNCOUNT_SLOTS); if (next_tree < CONNCOUNT_SLOTS) { data->gc_tree = next_tree; schedule_work(work); } spin_unlock_bh(&nf_conncount_locks[tree]); } /* Count and return number of conntrack entries in 'net' with particular 'key'. * If 'tuple' is not null, insert it into the accounting data structure. * Call with RCU read lock. */ unsigned int nf_conncount_count(struct net *net, struct nf_conncount_data *data, const u32 *key, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone) { return count_tree(net, data, key, tuple, zone); } EXPORT_SYMBOL_GPL(nf_conncount_count); struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family, unsigned int keylen) { struct nf_conncount_data *data; int ret, i; if (keylen % sizeof(u32) || keylen / sizeof(u32) > MAX_KEYLEN || keylen == 0) return ERR_PTR(-EINVAL); net_get_random_once(&conncount_rnd, sizeof(conncount_rnd)); data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return ERR_PTR(-ENOMEM); ret = nf_ct_netns_get(net, family); if (ret < 0) { kfree(data); return ERR_PTR(ret); } for (i = 0; i < ARRAY_SIZE(data->root); ++i) data->root[i] = RB_ROOT; data->keylen = keylen / sizeof(u32); data->net = net; INIT_WORK(&data->gc_work, tree_gc_worker); return data; } EXPORT_SYMBOL_GPL(nf_conncount_init); void nf_conncount_cache_free(struct nf_conncount_list *list) { struct nf_conncount_tuple *conn, *conn_n; list_for_each_entry_safe(conn, conn_n, &list->head, node) kmem_cache_free(conncount_conn_cachep, conn); } EXPORT_SYMBOL_GPL(nf_conncount_cache_free); static void destroy_tree(struct rb_root *r) { struct nf_conncount_rb *rbconn; struct rb_node *node; while ((node = rb_first(r)) != NULL) { rbconn = rb_entry(node, struct nf_conncount_rb, node); rb_erase(node, r); nf_conncount_cache_free(&rbconn->list); kmem_cache_free(conncount_rb_cachep, rbconn); } } void nf_conncount_destroy(struct net *net, unsigned int family, struct nf_conncount_data *data) { unsigned int i; cancel_work_sync(&data->gc_work); nf_ct_netns_put(net, family); for (i = 0; i < ARRAY_SIZE(data->root); ++i) destroy_tree(&data->root[i]); kfree(data); } EXPORT_SYMBOL_GPL(nf_conncount_destroy); static int __init nf_conncount_modinit(void) { int i; BUILD_BUG_ON(CONNCOUNT_LOCK_SLOTS > CONNCOUNT_SLOTS); BUILD_BUG_ON((CONNCOUNT_SLOTS % CONNCOUNT_LOCK_SLOTS) != 0); for (i = 0; i < CONNCOUNT_LOCK_SLOTS; ++i) spin_lock_init(&nf_conncount_locks[i]); conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple", sizeof(struct nf_conncount_tuple), 0, 0, NULL); if (!conncount_conn_cachep) return -ENOMEM; conncount_rb_cachep = kmem_cache_create("nf_conncount_rb", sizeof(struct nf_conncount_rb), 0, 0, NULL); if (!conncount_rb_cachep) { kmem_cache_destroy(conncount_conn_cachep); return -ENOMEM; } return 0; } static void __exit nf_conncount_modexit(void) { kmem_cache_destroy(conncount_conn_cachep); kmem_cache_destroy(conncount_rb_cachep); } module_init(nf_conncount_modinit); module_exit(nf_conncount_modexit); MODULE_AUTHOR("Jan Engelhardt "); MODULE_AUTHOR("Florian Westphal "); MODULE_DESCRIPTION("netfilter: count number of connections matching a key"); MODULE_LICENSE("GPL");