// SPDX-License-Identifier: GPL-2.0-only /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2004 Netfilter Core Team * (C) 2006-2010 Patrick McHardy */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const unsigned int nf_ct_icmp_timeout = 30*HZ; bool icmp_pkt_to_tuple(const struct sk_buff *skb, unsigned int dataoff, struct net *net, struct nf_conntrack_tuple *tuple) { const struct icmphdr *hp; struct icmphdr _hdr; hp = skb_header_pointer(skb, dataoff, sizeof(_hdr), &_hdr); if (hp == NULL) return false; tuple->dst.u.icmp.type = hp->type; tuple->src.u.icmp.id = hp->un.echo.id; tuple->dst.u.icmp.code = hp->code; return true; } /* Add 1; spaces filled with 0. */ static const u_int8_t invmap[] = { [ICMP_ECHO] = ICMP_ECHOREPLY + 1, [ICMP_ECHOREPLY] = ICMP_ECHO + 1, [ICMP_TIMESTAMP] = ICMP_TIMESTAMPREPLY + 1, [ICMP_TIMESTAMPREPLY] = ICMP_TIMESTAMP + 1, [ICMP_INFO_REQUEST] = ICMP_INFO_REPLY + 1, [ICMP_INFO_REPLY] = ICMP_INFO_REQUEST + 1, [ICMP_ADDRESS] = ICMP_ADDRESSREPLY + 1, [ICMP_ADDRESSREPLY] = ICMP_ADDRESS + 1 }; bool nf_conntrack_invert_icmp_tuple(struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple *orig) { if (orig->dst.u.icmp.type >= sizeof(invmap) || !invmap[orig->dst.u.icmp.type]) return false; tuple->src.u.icmp.id = orig->src.u.icmp.id; tuple->dst.u.icmp.type = invmap[orig->dst.u.icmp.type] - 1; tuple->dst.u.icmp.code = orig->dst.u.icmp.code; return true; } /* Returns verdict for packet, or -1 for invalid. */ int nf_conntrack_icmp_packet(struct nf_conn *ct, struct sk_buff *skb, enum ip_conntrack_info ctinfo, const struct nf_hook_state *state) { /* Do not immediately delete the connection after the first successful reply to avoid excessive conntrackd traffic and also to handle correctly ICMP echo reply duplicates. */ unsigned int *timeout = nf_ct_timeout_lookup(ct); static const u_int8_t valid_new[] = { [ICMP_ECHO] = 1, [ICMP_TIMESTAMP] = 1, [ICMP_INFO_REQUEST] = 1, [ICMP_ADDRESS] = 1 }; if (state->pf != NFPROTO_IPV4) return -NF_ACCEPT; if (ct->tuplehash[0].tuple.dst.u.icmp.type >= sizeof(valid_new) || !valid_new[ct->tuplehash[0].tuple.dst.u.icmp.type]) { /* Can't create a new ICMP `conn' with this. */ pr_debug("icmp: can't create new conn with type %u\n", ct->tuplehash[0].tuple.dst.u.icmp.type); nf_ct_dump_tuple_ip(&ct->tuplehash[0].tuple); return -NF_ACCEPT; } if (!timeout) timeout = &nf_icmp_pernet(nf_ct_net(ct))->timeout; nf_ct_refresh_acct(ct, ctinfo, skb, *timeout); return NF_ACCEPT; } /* Check inner header is related to any of the existing connections */ int nf_conntrack_inet_error(struct nf_conn *tmpl, struct sk_buff *skb, unsigned int dataoff, const struct nf_hook_state *state, u8 l4proto, union nf_inet_addr *outer_daddr) { struct nf_conntrack_tuple innertuple, origtuple; const struct nf_conntrack_tuple_hash *h; const struct nf_conntrack_zone *zone; enum ip_conntrack_info ctinfo; struct nf_conntrack_zone tmp; union nf_inet_addr *ct_daddr; enum ip_conntrack_dir dir; struct nf_conn *ct; WARN_ON(skb_nfct(skb)); zone = nf_ct_zone_tmpl(tmpl, skb, &tmp); /* Are they talking about one of our connections? */ if (!nf_ct_get_tuplepr(skb, dataoff, state->pf, state->net, &origtuple)) return -NF_ACCEPT; /* Ordinarily, we'd expect the inverted tupleproto, but it's been preserved inside the ICMP. */ if (!nf_ct_invert_tuple(&innertuple, &origtuple)) return -NF_ACCEPT; h = nf_conntrack_find_get(state->net, zone, &innertuple); if (!h) return -NF_ACCEPT; /* Consider: A -> T (=This machine) -> B * Conntrack entry will look like this: * Original: A->B * Reply: B->T (SNAT case) OR A * * When this function runs, we got packet that looks like this: * iphdr|icmphdr|inner_iphdr|l4header (tcp, udp, ..). * * Above nf_conntrack_find_get() makes lookup based on inner_hdr, * so we should expect that destination of the found connection * matches outer header destination address. * * In above example, we can consider these two cases: * 1. Error coming in reply direction from B or M (middle box) to * T (SNAT case) or A. * Inner saddr will be B, dst will be T or A. * The found conntrack will be reply tuple (B->T/A). * 2. Error coming in original direction from A or M to B. * Inner saddr will be A, inner daddr will be B. * The found conntrack will be original tuple (A->B). * * In both cases, conntrack[dir].dst == inner.dst. * * A bogus packet could look like this: * Inner: B->T * Outer: B->X (other machine reachable by T). * * In this case, lookup yields connection A->B and will * set packet from B->X as *RELATED*, even though no connection * from X was ever seen. */ ct = nf_ct_tuplehash_to_ctrack(h); dir = NF_CT_DIRECTION(h); ct_daddr = &ct->tuplehash[dir].tuple.dst.u3; if (!nf_inet_addr_cmp(outer_daddr, ct_daddr)) { if (state->pf == AF_INET) { nf_l4proto_log_invalid(skb, state->net, state->pf, l4proto, "outer daddr %pI4 != inner %pI4", &outer_daddr->ip, &ct_daddr->ip); } else if (state->pf == AF_INET6) { nf_l4proto_log_invalid(skb, state->net, state->pf, l4proto, "outer daddr %pI6 != inner %pI6", &outer_daddr->ip6, &ct_daddr->ip6); } nf_ct_put(ct); return -NF_ACCEPT; } ctinfo = IP_CT_RELATED; if (dir == IP_CT_DIR_REPLY) ctinfo += IP_CT_IS_REPLY; /* Update skb to refer to this connection */ nf_ct_set(skb, ct, ctinfo); return NF_ACCEPT; } static void icmp_error_log(const struct sk_buff *skb, const struct nf_hook_state *state, const char *msg) { nf_l4proto_log_invalid(skb, state->net, state->pf, IPPROTO_ICMP, "%s", msg); } /* Small and modified version of icmp_rcv */ int nf_conntrack_icmpv4_error(struct nf_conn *tmpl, struct sk_buff *skb, unsigned int dataoff, const struct nf_hook_state *state) { union nf_inet_addr outer_daddr; const struct icmphdr *icmph; struct icmphdr _ih; /* Not enough header? */ icmph = skb_header_pointer(skb, dataoff, sizeof(_ih), &_ih); if (icmph == NULL) { icmp_error_log(skb, state, "short packet"); return -NF_ACCEPT; } /* See nf_conntrack_proto_tcp.c */ if (state->net->ct.sysctl_checksum && state->hook == NF_INET_PRE_ROUTING && nf_ip_checksum(skb, state->hook, dataoff, IPPROTO_ICMP)) { icmp_error_log(skb, state, "bad hw icmp checksum"); return -NF_ACCEPT; } /* * 18 is the highest 'known' ICMP type. Anything else is a mystery * * RFC 1122: 3.2.2 Unknown ICMP messages types MUST be silently * discarded. */ if (icmph->type > NR_ICMP_TYPES) { icmp_error_log(skb, state, "invalid icmp type"); return -NF_ACCEPT; } /* Need to track icmp error message? */ if (icmph->type != ICMP_DEST_UNREACH && icmph->type != ICMP_SOURCE_QUENCH && icmph->type != ICMP_TIME_EXCEEDED && icmph->type != ICMP_PARAMETERPROB && icmph->type != ICMP_REDIRECT) return NF_ACCEPT; memset(&outer_daddr, 0, sizeof(outer_daddr)); outer_daddr.ip = ip_hdr(skb)->daddr; dataoff += sizeof(*icmph); return nf_conntrack_inet_error(tmpl, skb, dataoff, state, IPPROTO_ICMP, &outer_daddr); } #if IS_ENABLED(CONFIG_NF_CT_NETLINK) #include #include static int icmp_tuple_to_nlattr(struct sk_buff *skb, const struct nf_conntrack_tuple *t) { if (nla_put_be16(skb, CTA_PROTO_ICMP_ID, t->src.u.icmp.id) || nla_put_u8(skb, CTA_PROTO_ICMP_TYPE, t->dst.u.icmp.type) || nla_put_u8(skb, CTA_PROTO_ICMP_CODE, t->dst.u.icmp.code)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static const struct nla_policy icmp_nla_policy[CTA_PROTO_MAX+1] = { [CTA_PROTO_ICMP_TYPE] = { .type = NLA_U8 }, [CTA_PROTO_ICMP_CODE] = { .type = NLA_U8 }, [CTA_PROTO_ICMP_ID] = { .type = NLA_U16 }, }; static int icmp_nlattr_to_tuple(struct nlattr *tb[], struct nf_conntrack_tuple *tuple) { if (!tb[CTA_PROTO_ICMP_TYPE] || !tb[CTA_PROTO_ICMP_CODE] || !tb[CTA_PROTO_ICMP_ID]) return -EINVAL; tuple->dst.u.icmp.type = nla_get_u8(tb[CTA_PROTO_ICMP_TYPE]); tuple->dst.u.icmp.code = nla_get_u8(tb[CTA_PROTO_ICMP_CODE]); tuple->src.u.icmp.id = nla_get_be16(tb[CTA_PROTO_ICMP_ID]); if (tuple->dst.u.icmp.type >= sizeof(invmap) || !invmap[tuple->dst.u.icmp.type]) return -EINVAL; return 0; } static unsigned int icmp_nlattr_tuple_size(void) { static unsigned int size __read_mostly; if (!size) size = nla_policy_len(icmp_nla_policy, CTA_PROTO_MAX + 1); return size; } #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT #include #include static int icmp_timeout_nlattr_to_obj(struct nlattr *tb[], struct net *net, void *data) { unsigned int *timeout = data; struct nf_icmp_net *in = nf_icmp_pernet(net); if (tb[CTA_TIMEOUT_ICMP_TIMEOUT]) { if (!timeout) timeout = &in->timeout; *timeout = ntohl(nla_get_be32(tb[CTA_TIMEOUT_ICMP_TIMEOUT])) * HZ; } else if (timeout) { /* Set default ICMP timeout. */ *timeout = in->timeout; } return 0; } static int icmp_timeout_obj_to_nlattr(struct sk_buff *skb, const void *data) { const unsigned int *timeout = data; if (nla_put_be32(skb, CTA_TIMEOUT_ICMP_TIMEOUT, htonl(*timeout / HZ))) goto nla_put_failure; return 0; nla_put_failure: return -ENOSPC; } static const struct nla_policy icmp_timeout_nla_policy[CTA_TIMEOUT_ICMP_MAX+1] = { [CTA_TIMEOUT_ICMP_TIMEOUT] = { .type = NLA_U32 }, }; #endif /* CONFIG_NF_CONNTRACK_TIMEOUT */ void nf_conntrack_icmp_init_net(struct net *net) { struct nf_icmp_net *in = nf_icmp_pernet(net); in->timeout = nf_ct_icmp_timeout; } const struct nf_conntrack_l4proto nf_conntrack_l4proto_icmp = { .l4proto = IPPROTO_ICMP, #if IS_ENABLED(CONFIG_NF_CT_NETLINK) .tuple_to_nlattr = icmp_tuple_to_nlattr, .nlattr_tuple_size = icmp_nlattr_tuple_size, .nlattr_to_tuple = icmp_nlattr_to_tuple, .nla_policy = icmp_nla_policy, #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT .ctnl_timeout = { .nlattr_to_obj = icmp_timeout_nlattr_to_obj, .obj_to_nlattr = icmp_timeout_obj_to_nlattr, .nlattr_max = CTA_TIMEOUT_ICMP_MAX, .obj_size = sizeof(unsigned int), .nla_policy = icmp_timeout_nla_policy, }, #endif /* CONFIG_NF_CONNTRACK_TIMEOUT */ };