/* * netfilter module to limit the number of parallel tcp * connections per IP address. * (c) 2000 Gerd Knorr * Nov 2002: Martin Bene : * only ignore TIME_WAIT or gone connections * (C) CC Computer Consultants GmbH, 2007 * * based on ... * * Kernel module to match connection tracking information. * GPL (C) 1999 Rusty Russell (rusty@rustcorp.com.au). */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CONNLIMIT_SLOTS 256U #ifdef CONFIG_LOCKDEP #define CONNLIMIT_LOCK_SLOTS 8U #else #define CONNLIMIT_LOCK_SLOTS 256U #endif #define CONNLIMIT_GC_MAX_NODES 8 /* we will save the tuples of all connections we care about */ struct xt_connlimit_conn { struct hlist_node node; struct nf_conntrack_tuple tuple; union nf_inet_addr addr; }; struct xt_connlimit_rb { struct rb_node node; struct hlist_head hhead; /* connections/hosts in same subnet */ union nf_inet_addr addr; /* search key */ }; static spinlock_t xt_connlimit_locks[CONNLIMIT_LOCK_SLOTS] __cacheline_aligned_in_smp; struct xt_connlimit_data { struct rb_root climit_root4[CONNLIMIT_SLOTS]; struct rb_root climit_root6[CONNLIMIT_SLOTS]; }; static u_int32_t connlimit_rnd __read_mostly; static struct kmem_cache *connlimit_rb_cachep __read_mostly; static struct kmem_cache *connlimit_conn_cachep __read_mostly; static inline unsigned int connlimit_iphash(__be32 addr) { return jhash_1word((__force __u32)addr, connlimit_rnd) % CONNLIMIT_SLOTS; } static inline unsigned int connlimit_iphash6(const union nf_inet_addr *addr, const union nf_inet_addr *mask) { union nf_inet_addr res; unsigned int i; for (i = 0; i < ARRAY_SIZE(addr->ip6); ++i) res.ip6[i] = addr->ip6[i] & mask->ip6[i]; return jhash2((u32 *)res.ip6, ARRAY_SIZE(res.ip6), connlimit_rnd) % CONNLIMIT_SLOTS; } static inline bool already_closed(const struct nf_conn *conn) { if (nf_ct_protonum(conn) == IPPROTO_TCP) return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT || conn->proto.tcp.state == TCP_CONNTRACK_CLOSE; else return 0; } static int same_source_net(const union nf_inet_addr *addr, const union nf_inet_addr *mask, const union nf_inet_addr *u3, u_int8_t family) { if (family == NFPROTO_IPV4) { return ntohl(addr->ip & mask->ip) - ntohl(u3->ip & mask->ip); } else { union nf_inet_addr lh, rh; unsigned int i; for (i = 0; i < ARRAY_SIZE(addr->ip6); ++i) { lh.ip6[i] = addr->ip6[i] & mask->ip6[i]; rh.ip6[i] = u3->ip6[i] & mask->ip6[i]; } return memcmp(&lh.ip6, &rh.ip6, sizeof(lh.ip6)); } } static bool add_hlist(struct hlist_head *head, const struct nf_conntrack_tuple *tuple, const union nf_inet_addr *addr) { struct xt_connlimit_conn *conn; conn = kmem_cache_alloc(connlimit_conn_cachep, GFP_ATOMIC); if (conn == NULL) return false; conn->tuple = *tuple; conn->addr = *addr; hlist_add_head(&conn->node, head); return true; } static unsigned int check_hlist(struct net *net, struct hlist_head *head, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_zone *zone, bool *addit) { const struct nf_conntrack_tuple_hash *found; struct xt_connlimit_conn *conn; struct hlist_node *n; struct nf_conn *found_ct; unsigned int length = 0; *addit = true; rcu_read_lock(); /* check the saved connections */ hlist_for_each_entry_safe(conn, n, head, node) { found = nf_conntrack_find_get(net, zone, &conn->tuple); if (found == NULL) { hlist_del(&conn->node); kmem_cache_free(connlimit_conn_cachep, conn); continue; } found_ct = nf_ct_tuplehash_to_ctrack(found); if (nf_ct_tuple_equal(&conn->tuple, tuple)) { /* * Just to be sure we have it only once in the list. * We should not see tuples twice unless someone hooks * this into a table without "-p tcp --syn". */ *addit = false; } else if (already_closed(found_ct)) { /* * we do not care about connections which are * closed already -> ditch it */ nf_ct_put(found_ct); hlist_del(&conn->node); kmem_cache_free(connlimit_conn_cachep, conn); continue; } nf_ct_put(found_ct); length++; } rcu_read_unlock(); return length; } static void tree_nodes_free(struct rb_root *root, struct xt_connlimit_rb *gc_nodes[], unsigned int gc_count) { struct xt_connlimit_rb *rbconn; while (gc_count) { rbconn = gc_nodes[--gc_count]; rb_erase(&rbconn->node, root); kmem_cache_free(connlimit_rb_cachep, rbconn); } } static unsigned int count_tree(struct net *net, struct rb_root *root, const struct nf_conntrack_tuple *tuple, const union nf_inet_addr *addr, const union nf_inet_addr *mask, u8 family, const struct nf_conntrack_zone *zone) { struct xt_connlimit_rb *gc_nodes[CONNLIMIT_GC_MAX_NODES]; struct rb_node **rbnode, *parent; struct xt_connlimit_rb *rbconn; struct xt_connlimit_conn *conn; unsigned int gc_count; bool no_gc = false; restart: gc_count = 0; parent = NULL; rbnode = &(root->rb_node); while (*rbnode) { int diff; bool addit; rbconn = container_of(*rbnode, struct xt_connlimit_rb, node); parent = *rbnode; diff = same_source_net(addr, mask, &rbconn->addr, family); if (diff < 0) { rbnode = &((*rbnode)->rb_left); } else if (diff > 0) { rbnode = &((*rbnode)->rb_right); } else { /* same source network -> be counted! */ unsigned int count; count = check_hlist(net, &rbconn->hhead, tuple, zone, &addit); tree_nodes_free(root, gc_nodes, gc_count); if (!addit) return count; if (!add_hlist(&rbconn->hhead, tuple, addr)) return 0; /* hotdrop */ return count + 1; } if (no_gc || gc_count >= ARRAY_SIZE(gc_nodes)) continue; /* only used for GC on hhead, retval and 'addit' ignored */ check_hlist(net, &rbconn->hhead, tuple, zone, &addit); if (hlist_empty(&rbconn->hhead)) gc_nodes[gc_count++] = rbconn; } if (gc_count) { no_gc = true; tree_nodes_free(root, gc_nodes, gc_count); /* tree_node_free before new allocation permits * allocator to re-use newly free'd object. * * This is a rare event; in most cases we will find * existing node to re-use. (or gc_count is 0). */ goto restart; } /* no match, need to insert new node */ rbconn = kmem_cache_alloc(connlimit_rb_cachep, GFP_ATOMIC); if (rbconn == NULL) return 0; conn = kmem_cache_alloc(connlimit_conn_cachep, GFP_ATOMIC); if (conn == NULL) { kmem_cache_free(connlimit_rb_cachep, rbconn); return 0; } conn->tuple = *tuple; conn->addr = *addr; rbconn->addr = *addr; INIT_HLIST_HEAD(&rbconn->hhead); hlist_add_head(&conn->node, &rbconn->hhead); rb_link_node(&rbconn->node, parent, rbnode); rb_insert_color(&rbconn->node, root); return 1; } static int count_them(struct net *net, struct xt_connlimit_data *data, const struct nf_conntrack_tuple *tuple, const union nf_inet_addr *addr, const union nf_inet_addr *mask, u_int8_t family, const struct nf_conntrack_zone *zone) { struct rb_root *root; int count; u32 hash; if (family == NFPROTO_IPV6) { hash = connlimit_iphash6(addr, mask); root = &data->climit_root6[hash]; } else { hash = connlimit_iphash(addr->ip & mask->ip); root = &data->climit_root4[hash]; } spin_lock_bh(&xt_connlimit_locks[hash % CONNLIMIT_LOCK_SLOTS]); count = count_tree(net, root, tuple, addr, mask, family, zone); spin_unlock_bh(&xt_connlimit_locks[hash % CONNLIMIT_LOCK_SLOTS]); return count; } static bool connlimit_mt(const struct sk_buff *skb, struct xt_action_param *par) { struct net *net = par->net; const struct xt_connlimit_info *info = par->matchinfo; union nf_inet_addr addr; struct nf_conntrack_tuple tuple; const struct nf_conntrack_tuple *tuple_ptr = &tuple; const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; enum ip_conntrack_info ctinfo; const struct nf_conn *ct; unsigned int connections; ct = nf_ct_get(skb, &ctinfo); if (ct != NULL) { tuple_ptr = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; zone = nf_ct_zone(ct); } else if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), par->family, net, &tuple)) { goto hotdrop; } if (par->family == NFPROTO_IPV6) { const struct ipv6hdr *iph = ipv6_hdr(skb); memcpy(&addr.ip6, (info->flags & XT_CONNLIMIT_DADDR) ? &iph->daddr : &iph->saddr, sizeof(addr.ip6)); } else { const struct iphdr *iph = ip_hdr(skb); addr.ip = (info->flags & XT_CONNLIMIT_DADDR) ? iph->daddr : iph->saddr; } connections = count_them(net, info->data, tuple_ptr, &addr, &info->mask, par->family, zone); if (connections == 0) /* kmalloc failed, drop it entirely */ goto hotdrop; return (connections > info->limit) ^ !!(info->flags & XT_CONNLIMIT_INVERT); hotdrop: par->hotdrop = true; return false; } static int connlimit_mt_check(const struct xt_mtchk_param *par) { struct xt_connlimit_info *info = par->matchinfo; unsigned int i; int ret; if (unlikely(!connlimit_rnd)) { u_int32_t rand; do { get_random_bytes(&rand, sizeof(rand)); } while (!rand); cmpxchg(&connlimit_rnd, 0, rand); } ret = nf_ct_l3proto_try_module_get(par->family); if (ret < 0) { pr_info("cannot load conntrack support for " "address family %u\n", par->family); return ret; } /* init private data */ info->data = kmalloc(sizeof(struct xt_connlimit_data), GFP_KERNEL); if (info->data == NULL) { nf_ct_l3proto_module_put(par->family); return -ENOMEM; } for (i = 0; i < ARRAY_SIZE(info->data->climit_root4); ++i) info->data->climit_root4[i] = RB_ROOT; for (i = 0; i < ARRAY_SIZE(info->data->climit_root6); ++i) info->data->climit_root6[i] = RB_ROOT; return 0; } static void destroy_tree(struct rb_root *r) { struct xt_connlimit_conn *conn; struct xt_connlimit_rb *rbconn; struct hlist_node *n; struct rb_node *node; while ((node = rb_first(r)) != NULL) { rbconn = container_of(node, struct xt_connlimit_rb, node); rb_erase(node, r); hlist_for_each_entry_safe(conn, n, &rbconn->hhead, node) kmem_cache_free(connlimit_conn_cachep, conn); kmem_cache_free(connlimit_rb_cachep, rbconn); } } static void connlimit_mt_destroy(const struct xt_mtdtor_param *par) { const struct xt_connlimit_info *info = par->matchinfo; unsigned int i; nf_ct_l3proto_module_put(par->family); for (i = 0; i < ARRAY_SIZE(info->data->climit_root4); ++i) destroy_tree(&info->data->climit_root4[i]); for (i = 0; i < ARRAY_SIZE(info->data->climit_root6); ++i) destroy_tree(&info->data->climit_root6[i]); kfree(info->data); } static struct xt_match connlimit_mt_reg __read_mostly = { .name = "connlimit", .revision = 1, .family = NFPROTO_UNSPEC, .checkentry = connlimit_mt_check, .match = connlimit_mt, .matchsize = sizeof(struct xt_connlimit_info), .destroy = connlimit_mt_destroy, .me = THIS_MODULE, }; static int __init connlimit_mt_init(void) { int ret, i; BUILD_BUG_ON(CONNLIMIT_LOCK_SLOTS > CONNLIMIT_SLOTS); BUILD_BUG_ON((CONNLIMIT_SLOTS % CONNLIMIT_LOCK_SLOTS) != 0); for (i = 0; i < CONNLIMIT_LOCK_SLOTS; ++i) spin_lock_init(&xt_connlimit_locks[i]); connlimit_conn_cachep = kmem_cache_create("xt_connlimit_conn", sizeof(struct xt_connlimit_conn), 0, 0, NULL); if (!connlimit_conn_cachep) return -ENOMEM; connlimit_rb_cachep = kmem_cache_create("xt_connlimit_rb", sizeof(struct xt_connlimit_rb), 0, 0, NULL); if (!connlimit_rb_cachep) { kmem_cache_destroy(connlimit_conn_cachep); return -ENOMEM; } ret = xt_register_match(&connlimit_mt_reg); if (ret != 0) { kmem_cache_destroy(connlimit_conn_cachep); kmem_cache_destroy(connlimit_rb_cachep); } return ret; } static void __exit connlimit_mt_exit(void) { xt_unregister_match(&connlimit_mt_reg); kmem_cache_destroy(connlimit_conn_cachep); kmem_cache_destroy(connlimit_rb_cachep); } module_init(connlimit_mt_init); module_exit(connlimit_mt_exit); MODULE_AUTHOR("Jan Engelhardt "); MODULE_DESCRIPTION("Xtables: Number of connections matching"); MODULE_LICENSE("GPL"); MODULE_ALIAS("ipt_connlimit"); MODULE_ALIAS("ip6t_connlimit");