/* * net/sched/sch_generic.c Generic packet scheduler routines. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, * Jamal Hadi Salim, 990601 * - Ingress support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Qdisc to use by default */ const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; EXPORT_SYMBOL(default_qdisc_ops); /* Main transmission queue. */ /* Modifications to data participating in scheduling must be protected with * qdisc_lock(qdisc) spinlock. * * The idea is the following: * - enqueue, dequeue are serialized via qdisc root lock * - ingress filtering is also serialized via qdisc root lock * - updates to tree and tree walking are only done under the rtnl mutex. */ static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) { const struct netdev_queue *txq = q->dev_queue; spinlock_t *lock = NULL; struct sk_buff *skb; if (q->flags & TCQ_F_NOLOCK) { lock = qdisc_lock(q); spin_lock(lock); } skb = skb_peek(&q->skb_bad_txq); if (skb) { /* check the reason of requeuing without tx lock first */ txq = skb_get_tx_queue(txq->dev, skb); if (!netif_xmit_frozen_or_stopped(txq)) { skb = __skb_dequeue(&q->skb_bad_txq); if (qdisc_is_percpu_stats(q)) { qdisc_qstats_cpu_backlog_dec(q, skb); qdisc_qstats_cpu_qlen_dec(q); } else { qdisc_qstats_backlog_dec(q, skb); q->q.qlen--; } } else { skb = NULL; } } if (lock) spin_unlock(lock); return skb; } static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) { struct sk_buff *skb = skb_peek(&q->skb_bad_txq); if (unlikely(skb)) skb = __skb_dequeue_bad_txq(q); return skb; } static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, struct sk_buff *skb) { spinlock_t *lock = NULL; if (q->flags & TCQ_F_NOLOCK) { lock = qdisc_lock(q); spin_lock(lock); } __skb_queue_tail(&q->skb_bad_txq, skb); if (lock) spin_unlock(lock); } static inline int __dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) { while (skb) { struct sk_buff *next = skb->next; __skb_queue_tail(&q->gso_skb, skb); q->qstats.requeues++; qdisc_qstats_backlog_inc(q, skb); q->q.qlen++; /* it's still part of the queue */ skb = next; } __netif_schedule(q); return 0; } static inline int dev_requeue_skb_locked(struct sk_buff *skb, struct Qdisc *q) { spinlock_t *lock = qdisc_lock(q); spin_lock(lock); while (skb) { struct sk_buff *next = skb->next; __skb_queue_tail(&q->gso_skb, skb); qdisc_qstats_cpu_requeues_inc(q); qdisc_qstats_cpu_backlog_inc(q, skb); qdisc_qstats_cpu_qlen_inc(q); skb = next; } spin_unlock(lock); __netif_schedule(q); return 0; } static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) { if (q->flags & TCQ_F_NOLOCK) return dev_requeue_skb_locked(skb, q); else return __dev_requeue_skb(skb, q); } static void try_bulk_dequeue_skb(struct Qdisc *q, struct sk_buff *skb, const struct netdev_queue *txq, int *packets) { int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; while (bytelimit > 0) { struct sk_buff *nskb = q->dequeue(q); if (!nskb) break; bytelimit -= nskb->len; /* covers GSO len */ skb->next = nskb; skb = nskb; (*packets)++; /* GSO counts as one pkt */ } skb->next = NULL; } /* This variant of try_bulk_dequeue_skb() makes sure * all skbs in the chain are for the same txq */ static void try_bulk_dequeue_skb_slow(struct Qdisc *q, struct sk_buff *skb, int *packets) { int mapping = skb_get_queue_mapping(skb); struct sk_buff *nskb; int cnt = 0; do { nskb = q->dequeue(q); if (!nskb) break; if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { qdisc_enqueue_skb_bad_txq(q, nskb); if (qdisc_is_percpu_stats(q)) { qdisc_qstats_cpu_backlog_inc(q, nskb); qdisc_qstats_cpu_qlen_inc(q); } else { qdisc_qstats_backlog_inc(q, nskb); q->q.qlen++; } break; } skb->next = nskb; skb = nskb; } while (++cnt < 8); (*packets) += cnt; skb->next = NULL; } /* Note that dequeue_skb can possibly return a SKB list (via skb->next). * A requeued skb (via q->gso_skb) can also be a SKB list. */ static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, int *packets) { const struct netdev_queue *txq = q->dev_queue; struct sk_buff *skb = NULL; *packets = 1; if (unlikely(!skb_queue_empty(&q->gso_skb))) { spinlock_t *lock = NULL; if (q->flags & TCQ_F_NOLOCK) { lock = qdisc_lock(q); spin_lock(lock); } skb = skb_peek(&q->gso_skb); /* skb may be null if another cpu pulls gso_skb off in between * empty check and lock. */ if (!skb) { if (lock) spin_unlock(lock); goto validate; } /* skb in gso_skb were already validated */ *validate = false; if (xfrm_offload(skb)) *validate = true; /* check the reason of requeuing without tx lock first */ txq = skb_get_tx_queue(txq->dev, skb); if (!netif_xmit_frozen_or_stopped(txq)) { skb = __skb_dequeue(&q->gso_skb); if (qdisc_is_percpu_stats(q)) { qdisc_qstats_cpu_backlog_dec(q, skb); qdisc_qstats_cpu_qlen_dec(q); } else { qdisc_qstats_backlog_dec(q, skb); q->q.qlen--; } } else { skb = NULL; } if (lock) spin_unlock(lock); goto trace; } validate: *validate = true; if ((q->flags & TCQ_F_ONETXQUEUE) && netif_xmit_frozen_or_stopped(txq)) return skb; skb = qdisc_dequeue_skb_bad_txq(q); if (unlikely(skb)) goto bulk; skb = q->dequeue(q); if (skb) { bulk: if (qdisc_may_bulk(q)) try_bulk_dequeue_skb(q, skb, txq, packets); else try_bulk_dequeue_skb_slow(q, skb, packets); } trace: trace_qdisc_dequeue(q, txq, *packets, skb); return skb; } /* * Transmit possibly several skbs, and handle the return status as * required. Owning running seqcount bit guarantees that * only one CPU can execute this function. * * Returns to the caller: * false - hardware queue frozen backoff * true - feel free to send more pkts */ bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, struct net_device *dev, struct netdev_queue *txq, spinlock_t *root_lock, bool validate) { int ret = NETDEV_TX_BUSY; bool again = false; /* And release qdisc */ if (root_lock) spin_unlock(root_lock); /* Note that we validate skb (GSO, checksum, ...) outside of locks */ if (validate) skb = validate_xmit_skb_list(skb, dev, &again); #ifdef CONFIG_XFRM_OFFLOAD if (unlikely(again)) { if (root_lock) spin_lock(root_lock); dev_requeue_skb(skb, q); return false; } #endif if (likely(skb)) { HARD_TX_LOCK(dev, txq, smp_processor_id()); if (!netif_xmit_frozen_or_stopped(txq)) skb = dev_hard_start_xmit(skb, dev, txq, &ret); HARD_TX_UNLOCK(dev, txq); } else { if (root_lock) spin_lock(root_lock); return true; } if (root_lock) spin_lock(root_lock); if (!dev_xmit_complete(ret)) { /* Driver returned NETDEV_TX_BUSY - requeue skb */ if (unlikely(ret != NETDEV_TX_BUSY)) net_warn_ratelimited("BUG %s code %d qlen %d\n", dev->name, ret, q->q.qlen); dev_requeue_skb(skb, q); return false; } if (ret && netif_xmit_frozen_or_stopped(txq)) return false; return true; } /* * NOTE: Called under qdisc_lock(q) with locally disabled BH. * * running seqcount guarantees only one CPU can process * this qdisc at a time. qdisc_lock(q) serializes queue accesses for * this queue. * * netif_tx_lock serializes accesses to device driver. * * qdisc_lock(q) and netif_tx_lock are mutually exclusive, * if one is grabbed, another must be free. * * Note, that this procedure can be called by a watchdog timer * * Returns to the caller: * 0 - queue is empty or throttled. * >0 - queue is not empty. * */ static inline bool qdisc_restart(struct Qdisc *q, int *packets) { spinlock_t *root_lock = NULL; struct netdev_queue *txq; struct net_device *dev; struct sk_buff *skb; bool validate; /* Dequeue packet */ skb = dequeue_skb(q, &validate, packets); if (unlikely(!skb)) return false; if (!(q->flags & TCQ_F_NOLOCK)) root_lock = qdisc_lock(q); dev = qdisc_dev(q); txq = skb_get_tx_queue(dev, skb); return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); } void __qdisc_run(struct Qdisc *q) { int quota = dev_tx_weight; int packets; while (qdisc_restart(q, &packets)) { /* * Ordered by possible occurrence: Postpone processing if * 1. we've exceeded packet quota * 2. another process needs the CPU; */ quota -= packets; if (quota <= 0 || need_resched()) { __netif_schedule(q); break; } } } unsigned long dev_trans_start(struct net_device *dev) { unsigned long val, res; unsigned int i; if (is_vlan_dev(dev)) dev = vlan_dev_real_dev(dev); else if (netif_is_macvlan(dev)) dev = macvlan_dev_real_dev(dev); res = netdev_get_tx_queue(dev, 0)->trans_start; for (i = 1; i < dev->num_tx_queues; i++) { val = netdev_get_tx_queue(dev, i)->trans_start; if (val && time_after(val, res)) res = val; } return res; } EXPORT_SYMBOL(dev_trans_start); static void dev_watchdog(struct timer_list *t) { struct net_device *dev = from_timer(dev, t, watchdog_timer); netif_tx_lock(dev); if (!qdisc_tx_is_noop(dev)) { if (netif_device_present(dev) && netif_running(dev) && netif_carrier_ok(dev)) { int some_queue_timedout = 0; unsigned int i; unsigned long trans_start; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq; txq = netdev_get_tx_queue(dev, i); trans_start = txq->trans_start; if (netif_xmit_stopped(txq) && time_after(jiffies, (trans_start + dev->watchdog_timeo))) { some_queue_timedout = 1; txq->trans_timeout++; break; } } if (some_queue_timedout) { WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", dev->name, netdev_drivername(dev), i); dev->netdev_ops->ndo_tx_timeout(dev); } if (!mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + dev->watchdog_timeo))) dev_hold(dev); } } netif_tx_unlock(dev); dev_put(dev); } void __netdev_watchdog_up(struct net_device *dev) { if (dev->netdev_ops->ndo_tx_timeout) { if (dev->watchdog_timeo <= 0) dev->watchdog_timeo = 5*HZ; if (!mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + dev->watchdog_timeo))) dev_hold(dev); } } static void dev_watchdog_up(struct net_device *dev) { __netdev_watchdog_up(dev); } static void dev_watchdog_down(struct net_device *dev) { netif_tx_lock_bh(dev); if (del_timer(&dev->watchdog_timer)) dev_put(dev); netif_tx_unlock_bh(dev); } /** * netif_carrier_on - set carrier * @dev: network device * * Device has detected that carrier. */ void netif_carrier_on(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { if (dev->reg_state == NETREG_UNINITIALIZED) return; atomic_inc(&dev->carrier_up_count); linkwatch_fire_event(dev); if (netif_running(dev)) __netdev_watchdog_up(dev); } } EXPORT_SYMBOL(netif_carrier_on); /** * netif_carrier_off - clear carrier * @dev: network device * * Device has detected loss of carrier. */ void netif_carrier_off(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { if (dev->reg_state == NETREG_UNINITIALIZED) return; atomic_inc(&dev->carrier_down_count); linkwatch_fire_event(dev); } } EXPORT_SYMBOL(netif_carrier_off); /* "NOOP" scheduler: the best scheduler, recommended for all interfaces under all circumstances. It is difficult to invent anything faster or cheaper. */ static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); return NET_XMIT_CN; } static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) { return NULL; } struct Qdisc_ops noop_qdisc_ops __read_mostly = { .id = "noop", .priv_size = 0, .enqueue = noop_enqueue, .dequeue = noop_dequeue, .peek = noop_dequeue, .owner = THIS_MODULE, }; static struct netdev_queue noop_netdev_queue = { .qdisc = &noop_qdisc, .qdisc_sleeping = &noop_qdisc, }; struct Qdisc noop_qdisc = { .enqueue = noop_enqueue, .dequeue = noop_dequeue, .flags = TCQ_F_BUILTIN, .ops = &noop_qdisc_ops, .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), .dev_queue = &noop_netdev_queue, .running = SEQCNT_ZERO(noop_qdisc.running), .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), }; EXPORT_SYMBOL(noop_qdisc); static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, struct netlink_ext_ack *extack) { /* register_qdisc() assigns a default of noop_enqueue if unset, * but __dev_queue_xmit() treats noqueue only as such * if this is NULL - so clear it here. */ qdisc->enqueue = NULL; return 0; } struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { .id = "noqueue", .priv_size = 0, .init = noqueue_init, .enqueue = noop_enqueue, .dequeue = noop_dequeue, .peek = noop_dequeue, .owner = THIS_MODULE, }; static const u8 prio2band[TC_PRIO_MAX + 1] = { 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 }; /* 3-band FIFO queue: old style, but should be a bit faster than generic prio+fifo combination. */ #define PFIFO_FAST_BANDS 3 /* * Private data for a pfifo_fast scheduler containing: * - rings for priority bands */ struct pfifo_fast_priv { struct skb_array q[PFIFO_FAST_BANDS]; }; static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, int band) { return &priv->q[band]; } static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, struct sk_buff **to_free) { int band = prio2band[skb->priority & TC_PRIO_MAX]; struct pfifo_fast_priv *priv = qdisc_priv(qdisc); struct skb_array *q = band2list(priv, band); int err; err = skb_array_produce(q, skb); if (unlikely(err)) return qdisc_drop_cpu(skb, qdisc, to_free); qdisc_qstats_cpu_qlen_inc(qdisc); qdisc_qstats_cpu_backlog_inc(qdisc, skb); return NET_XMIT_SUCCESS; } static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) { struct pfifo_fast_priv *priv = qdisc_priv(qdisc); struct sk_buff *skb = NULL; int band; for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { struct skb_array *q = band2list(priv, band); if (__skb_array_empty(q)) continue; skb = skb_array_consume_bh(q); } if (likely(skb)) { qdisc_qstats_cpu_backlog_dec(qdisc, skb); qdisc_bstats_cpu_update(qdisc, skb); qdisc_qstats_cpu_qlen_dec(qdisc); } return skb; } static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) { struct pfifo_fast_priv *priv = qdisc_priv(qdisc); struct sk_buff *skb = NULL; int band; for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { struct skb_array *q = band2list(priv, band); skb = __skb_array_peek(q); } return skb; } static void pfifo_fast_reset(struct Qdisc *qdisc) { int i, band; struct pfifo_fast_priv *priv = qdisc_priv(qdisc); for (band = 0; band < PFIFO_FAST_BANDS; band++) { struct skb_array *q = band2list(priv, band); struct sk_buff *skb; /* NULL ring is possible if destroy path is due to a failed * skb_array_init() in pfifo_fast_init() case. */ if (!q->ring.queue) continue; while ((skb = skb_array_consume_bh(q)) != NULL) kfree_skb(skb); } for_each_possible_cpu(i) { struct gnet_stats_queue *q = per_cpu_ptr(qdisc->cpu_qstats, i); q->backlog = 0; q->qlen = 0; } } static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) { struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) goto nla_put_failure; return skb->len; nla_put_failure: return -1; } static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, struct netlink_ext_ack *extack) { unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; struct pfifo_fast_priv *priv = qdisc_priv(qdisc); int prio; /* guard against zero length rings */ if (!qlen) return -EINVAL; for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { struct skb_array *q = band2list(priv, prio); int err; err = skb_array_init(q, qlen, GFP_KERNEL); if (err) return -ENOMEM; } /* Can by-pass the queue discipline */ qdisc->flags |= TCQ_F_CAN_BYPASS; return 0; } static void pfifo_fast_destroy(struct Qdisc *sch) { struct pfifo_fast_priv *priv = qdisc_priv(sch); int prio; for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { struct skb_array *q = band2list(priv, prio); /* NULL ring is possible if destroy path is due to a failed * skb_array_init() in pfifo_fast_init() case. */ if (!q->ring.queue) continue; /* Destroy ring but no need to kfree_skb because a call to * pfifo_fast_reset() has already done that work. */ ptr_ring_cleanup(&q->ring, NULL); } } static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, unsigned int new_len) { struct pfifo_fast_priv *priv = qdisc_priv(sch); struct skb_array *bands[PFIFO_FAST_BANDS]; int prio; for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { struct skb_array *q = band2list(priv, prio); bands[prio] = q; } return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, GFP_KERNEL); } struct Qdisc_ops pfifo_fast_ops __read_mostly = { .id = "pfifo_fast", .priv_size = sizeof(struct pfifo_fast_priv), .enqueue = pfifo_fast_enqueue, .dequeue = pfifo_fast_dequeue, .peek = pfifo_fast_peek, .init = pfifo_fast_init, .destroy = pfifo_fast_destroy, .reset = pfifo_fast_reset, .dump = pfifo_fast_dump, .change_tx_queue_len = pfifo_fast_change_tx_queue_len, .owner = THIS_MODULE, .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, }; EXPORT_SYMBOL(pfifo_fast_ops); static struct lock_class_key qdisc_tx_busylock; static struct lock_class_key qdisc_running_key; struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, struct netlink_ext_ack *extack) { void *p; struct Qdisc *sch; unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size; int err = -ENOBUFS; struct net_device *dev; if (!dev_queue) { NL_SET_ERR_MSG(extack, "No device queue given"); err = -EINVAL; goto errout; } dev = dev_queue->dev; p = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); if (!p) goto errout; sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); /* if we got non aligned memory, ask more and do alignment ourself */ if (sch != p) { kfree(p); p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); if (!p) goto errout; sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); sch->padded = (char *) sch - (char *) p; } __skb_queue_head_init(&sch->gso_skb); __skb_queue_head_init(&sch->skb_bad_txq); qdisc_skb_head_init(&sch->q); spin_lock_init(&sch->q.lock); if (ops->static_flags & TCQ_F_CPUSTATS) { sch->cpu_bstats = netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu); if (!sch->cpu_bstats) goto errout1; sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); if (!sch->cpu_qstats) { free_percpu(sch->cpu_bstats); goto errout1; } } spin_lock_init(&sch->busylock); lockdep_set_class(&sch->busylock, dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); seqcount_init(&sch->running); lockdep_set_class(&sch->running, dev->qdisc_running_key ?: &qdisc_running_key); sch->ops = ops; sch->flags = ops->static_flags; sch->enqueue = ops->enqueue; sch->dequeue = ops->dequeue; sch->dev_queue = dev_queue; dev_hold(dev); refcount_set(&sch->refcnt, 1); return sch; errout1: kfree(p); errout: return ERR_PTR(err); } struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, unsigned int parentid, struct netlink_ext_ack *extack) { struct Qdisc *sch; if (!try_module_get(ops->owner)) { NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); return NULL; } sch = qdisc_alloc(dev_queue, ops, extack); if (IS_ERR(sch)) { module_put(ops->owner); return NULL; } sch->parent = parentid; if (!ops->init || ops->init(sch, NULL, extack) == 0) return sch; qdisc_destroy(sch); return NULL; } EXPORT_SYMBOL(qdisc_create_dflt); /* Under qdisc_lock(qdisc) and BH! */ void qdisc_reset(struct Qdisc *qdisc) { const struct Qdisc_ops *ops = qdisc->ops; struct sk_buff *skb, *tmp; if (ops->reset) ops->reset(qdisc); skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { __skb_unlink(skb, &qdisc->gso_skb); kfree_skb_list(skb); } skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { __skb_unlink(skb, &qdisc->skb_bad_txq); kfree_skb_list(skb); } qdisc->q.qlen = 0; qdisc->qstats.backlog = 0; } EXPORT_SYMBOL(qdisc_reset); void qdisc_free(struct Qdisc *qdisc) { if (qdisc_is_percpu_stats(qdisc)) { free_percpu(qdisc->cpu_bstats); free_percpu(qdisc->cpu_qstats); } kfree((char *) qdisc - qdisc->padded); } void qdisc_destroy(struct Qdisc *qdisc) { const struct Qdisc_ops *ops = qdisc->ops; struct sk_buff *skb, *tmp; if (qdisc->flags & TCQ_F_BUILTIN || !refcount_dec_and_test(&qdisc->refcnt)) return; #ifdef CONFIG_NET_SCHED qdisc_hash_del(qdisc); qdisc_put_stab(rtnl_dereference(qdisc->stab)); #endif gen_kill_estimator(&qdisc->rate_est); if (ops->reset) ops->reset(qdisc); if (ops->destroy) ops->destroy(qdisc); module_put(ops->owner); dev_put(qdisc_dev(qdisc)); skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { __skb_unlink(skb, &qdisc->gso_skb); kfree_skb_list(skb); } skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { __skb_unlink(skb, &qdisc->skb_bad_txq); kfree_skb_list(skb); } qdisc_free(qdisc); } EXPORT_SYMBOL(qdisc_destroy); /* Attach toplevel qdisc to device queue. */ struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, struct Qdisc *qdisc) { struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; spinlock_t *root_lock; root_lock = qdisc_lock(oqdisc); spin_lock_bh(root_lock); /* ... and graft new one */ if (qdisc == NULL) qdisc = &noop_qdisc; dev_queue->qdisc_sleeping = qdisc; rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); spin_unlock_bh(root_lock); return oqdisc; } EXPORT_SYMBOL(dev_graft_qdisc); static void attach_one_default_qdisc(struct net_device *dev, struct netdev_queue *dev_queue, void *_unused) { struct Qdisc *qdisc; const struct Qdisc_ops *ops = default_qdisc_ops; if (dev->priv_flags & IFF_NO_QUEUE) ops = &noqueue_qdisc_ops; qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); if (!qdisc) { netdev_info(dev, "activation failed\n"); return; } if (!netif_is_multiqueue(dev)) qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; dev_queue->qdisc_sleeping = qdisc; } static void attach_default_qdiscs(struct net_device *dev) { struct netdev_queue *txq; struct Qdisc *qdisc; txq = netdev_get_tx_queue(dev, 0); if (!netif_is_multiqueue(dev) || dev->priv_flags & IFF_NO_QUEUE) { netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); dev->qdisc = txq->qdisc_sleeping; qdisc_refcount_inc(dev->qdisc); } else { qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); if (qdisc) { dev->qdisc = qdisc; qdisc->ops->attach(qdisc); } } #ifdef CONFIG_NET_SCHED if (dev->qdisc != &noop_qdisc) qdisc_hash_add(dev->qdisc, false); #endif } static void transition_one_qdisc(struct net_device *dev, struct netdev_queue *dev_queue, void *_need_watchdog) { struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; int *need_watchdog_p = _need_watchdog; if (!(new_qdisc->flags & TCQ_F_BUILTIN)) clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); rcu_assign_pointer(dev_queue->qdisc, new_qdisc); if (need_watchdog_p) { dev_queue->trans_start = 0; *need_watchdog_p = 1; } } void dev_activate(struct net_device *dev) { int need_watchdog; /* No queueing discipline is attached to device; * create default one for devices, which need queueing * and noqueue_qdisc for virtual interfaces */ if (dev->qdisc == &noop_qdisc) attach_default_qdiscs(dev); if (!netif_carrier_ok(dev)) /* Delay activation until next carrier-on event */ return; need_watchdog = 0; netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); if (dev_ingress_queue(dev)) transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); if (need_watchdog) { netif_trans_update(dev); dev_watchdog_up(dev); } } EXPORT_SYMBOL(dev_activate); static void dev_deactivate_queue(struct net_device *dev, struct netdev_queue *dev_queue, void *_qdisc_default) { struct Qdisc *qdisc_default = _qdisc_default; struct Qdisc *qdisc; qdisc = rtnl_dereference(dev_queue->qdisc); if (qdisc) { spin_lock_bh(qdisc_lock(qdisc)); if (!(qdisc->flags & TCQ_F_BUILTIN)) set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); rcu_assign_pointer(dev_queue->qdisc, qdisc_default); qdisc_reset(qdisc); spin_unlock_bh(qdisc_lock(qdisc)); } } static bool some_qdisc_is_busy(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *dev_queue; spinlock_t *root_lock; struct Qdisc *q; int val; dev_queue = netdev_get_tx_queue(dev, i); q = dev_queue->qdisc_sleeping; if (q->flags & TCQ_F_NOLOCK) { val = test_bit(__QDISC_STATE_SCHED, &q->state); } else { root_lock = qdisc_lock(q); spin_lock_bh(root_lock); val = (qdisc_is_running(q) || test_bit(__QDISC_STATE_SCHED, &q->state)); spin_unlock_bh(root_lock); } if (val) return true; } return false; } static void dev_qdisc_reset(struct net_device *dev, struct netdev_queue *dev_queue, void *none) { struct Qdisc *qdisc = dev_queue->qdisc_sleeping; if (qdisc) qdisc_reset(qdisc); } /** * dev_deactivate_many - deactivate transmissions on several devices * @head: list of devices to deactivate * * This function returns only when all outstanding transmissions * have completed, unless all devices are in dismantle phase. */ void dev_deactivate_many(struct list_head *head) { struct net_device *dev; list_for_each_entry(dev, head, close_list) { netdev_for_each_tx_queue(dev, dev_deactivate_queue, &noop_qdisc); if (dev_ingress_queue(dev)) dev_deactivate_queue(dev, dev_ingress_queue(dev), &noop_qdisc); dev_watchdog_down(dev); } /* Wait for outstanding qdisc-less dev_queue_xmit calls. * This is avoided if all devices are in dismantle phase : * Caller will call synchronize_net() for us */ synchronize_net(); /* Wait for outstanding qdisc_run calls. */ list_for_each_entry(dev, head, close_list) { while (some_qdisc_is_busy(dev)) yield(); /* The new qdisc is assigned at this point so we can safely * unwind stale skb lists and qdisc statistics */ netdev_for_each_tx_queue(dev, dev_qdisc_reset, NULL); if (dev_ingress_queue(dev)) dev_qdisc_reset(dev, dev_ingress_queue(dev), NULL); } } void dev_deactivate(struct net_device *dev) { LIST_HEAD(single); list_add(&dev->close_list, &single); dev_deactivate_many(&single); list_del(&single); } EXPORT_SYMBOL(dev_deactivate); static int qdisc_change_tx_queue_len(struct net_device *dev, struct netdev_queue *dev_queue) { struct Qdisc *qdisc = dev_queue->qdisc_sleeping; const struct Qdisc_ops *ops = qdisc->ops; if (ops->change_tx_queue_len) return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); return 0; } int dev_qdisc_change_tx_queue_len(struct net_device *dev) { bool up = dev->flags & IFF_UP; unsigned int i; int ret = 0; if (up) dev_deactivate(dev); for (i = 0; i < dev->num_tx_queues; i++) { ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); /* TODO: revert changes on a partial failure */ if (ret) break; } if (up) dev_activate(dev); return ret; } static void dev_init_scheduler_queue(struct net_device *dev, struct netdev_queue *dev_queue, void *_qdisc) { struct Qdisc *qdisc = _qdisc; rcu_assign_pointer(dev_queue->qdisc, qdisc); dev_queue->qdisc_sleeping = qdisc; __skb_queue_head_init(&qdisc->gso_skb); __skb_queue_head_init(&qdisc->skb_bad_txq); } void dev_init_scheduler(struct net_device *dev) { dev->qdisc = &noop_qdisc; netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); if (dev_ingress_queue(dev)) dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); timer_setup(&dev->watchdog_timer, dev_watchdog, 0); } static void shutdown_scheduler_queue(struct net_device *dev, struct netdev_queue *dev_queue, void *_qdisc_default) { struct Qdisc *qdisc = dev_queue->qdisc_sleeping; struct Qdisc *qdisc_default = _qdisc_default; if (qdisc) { rcu_assign_pointer(dev_queue->qdisc, qdisc_default); dev_queue->qdisc_sleeping = qdisc_default; qdisc_destroy(qdisc); } } void dev_shutdown(struct net_device *dev) { netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); if (dev_ingress_queue(dev)) shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); qdisc_destroy(dev->qdisc); dev->qdisc = &noop_qdisc; WARN_ON(timer_pending(&dev->watchdog_timer)); } void psched_ratecfg_precompute(struct psched_ratecfg *r, const struct tc_ratespec *conf, u64 rate64) { memset(r, 0, sizeof(*r)); r->overhead = conf->overhead; r->rate_bytes_ps = max_t(u64, conf->rate, rate64); r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); r->mult = 1; /* * The deal here is to replace a divide by a reciprocal one * in fast path (a reciprocal divide is a multiply and a shift) * * Normal formula would be : * time_in_ns = (NSEC_PER_SEC * len) / rate_bps * * We compute mult/shift to use instead : * time_in_ns = (len * mult) >> shift; * * We try to get the highest possible mult value for accuracy, * but have to make sure no overflows will ever happen. */ if (r->rate_bytes_ps > 0) { u64 factor = NSEC_PER_SEC; for (;;) { r->mult = div64_u64(factor, r->rate_bytes_ps); if (r->mult & (1U << 31) || factor & (1ULL << 63)) break; factor <<= 1; r->shift++; } } } EXPORT_SYMBOL(psched_ratecfg_precompute); static void mini_qdisc_rcu_func(struct rcu_head *head) { } void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, struct tcf_proto *tp_head) { struct mini_Qdisc *miniq_old = rtnl_dereference(*miniqp->p_miniq); struct mini_Qdisc *miniq; if (!tp_head) { RCU_INIT_POINTER(*miniqp->p_miniq, NULL); /* Wait for flying RCU callback before it is freed. */ rcu_barrier_bh(); return; } miniq = !miniq_old || miniq_old == &miniqp->miniq2 ? &miniqp->miniq1 : &miniqp->miniq2; /* We need to make sure that readers won't see the miniq * we are about to modify. So wait until previous call_rcu_bh callback * is done. */ rcu_barrier_bh(); miniq->filter_list = tp_head; rcu_assign_pointer(*miniqp->p_miniq, miniq); if (miniq_old) /* This is counterpart of the rcu barriers above. We need to * block potential new user of miniq_old until all readers * are not seeing it. */ call_rcu_bh(&miniq_old->rcu, mini_qdisc_rcu_func); } EXPORT_SYMBOL(mini_qdisc_pair_swap); void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, struct mini_Qdisc __rcu **p_miniq) { miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; miniqp->p_miniq = p_miniq; } EXPORT_SYMBOL(mini_qdisc_pair_init);