/* * Copyright (c) 2015 Oracle. All rights reserved. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. */ /* Lightweight memory registration using Fast Memory Regions (FMR). * Referred to sometimes as MTHCAFMR mode. * * FMR uses synchronous memory registration and deregistration. * FMR registration is known to be fast, but FMR deregistration * can take tens of usecs to complete. */ /* Normal operation * * A Memory Region is prepared for RDMA READ or WRITE using the * ib_map_phys_fmr verb (fmr_op_map). When the RDMA operation is * finished, the Memory Region is unmapped using the ib_unmap_fmr * verb (fmr_op_unmap). */ /* Transport recovery * * After a transport reconnect, fmr_op_map re-uses the MR already * allocated for the RPC, but generates a fresh rkey then maps the * MR again. This process is synchronous. */ #include "xprt_rdma.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_TRANS #endif /* Maximum scatter/gather per FMR */ #define RPCRDMA_MAX_FMR_SGES (64) static struct workqueue_struct *fmr_recovery_wq; #define FMR_RECOVERY_WQ_FLAGS (WQ_UNBOUND) int fmr_alloc_recovery_wq(void) { fmr_recovery_wq = alloc_workqueue("fmr_recovery", WQ_UNBOUND, 0); return !fmr_recovery_wq ? -ENOMEM : 0; } void fmr_destroy_recovery_wq(void) { struct workqueue_struct *wq; if (!fmr_recovery_wq) return; wq = fmr_recovery_wq; fmr_recovery_wq = NULL; destroy_workqueue(wq); } static int __fmr_unmap(struct rpcrdma_mw *mw) { LIST_HEAD(l); list_add(&mw->fmr.fmr->list, &l); return ib_unmap_fmr(&l); } /* Deferred reset of a single FMR. Generate a fresh rkey by * replacing the MR. There's no recovery if this fails. */ static void __fmr_recovery_worker(struct work_struct *work) { struct rpcrdma_mw *mw = container_of(work, struct rpcrdma_mw, mw_work); struct rpcrdma_xprt *r_xprt = mw->mw_xprt; __fmr_unmap(mw); rpcrdma_put_mw(r_xprt, mw); return; } /* A broken MR was discovered in a context that can't sleep. * Defer recovery to the recovery worker. */ static void __fmr_queue_recovery(struct rpcrdma_mw *mw) { INIT_WORK(&mw->mw_work, __fmr_recovery_worker); queue_work(fmr_recovery_wq, &mw->mw_work); } static int fmr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep, struct rpcrdma_create_data_internal *cdata) { rpcrdma_set_max_header_sizes(ia, cdata, max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS / RPCRDMA_MAX_FMR_SGES)); return 0; } /* FMR mode conveys up to 64 pages of payload per chunk segment. */ static size_t fmr_op_maxpages(struct rpcrdma_xprt *r_xprt) { return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS, RPCRDMA_MAX_HDR_SEGS * RPCRDMA_MAX_FMR_SGES); } static int fmr_op_init(struct rpcrdma_xprt *r_xprt) { struct rpcrdma_buffer *buf = &r_xprt->rx_buf; int mr_access_flags = IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ; struct ib_fmr_attr fmr_attr = { .max_pages = RPCRDMA_MAX_FMR_SGES, .max_maps = 1, .page_shift = PAGE_SHIFT }; struct ib_pd *pd = r_xprt->rx_ia.ri_pd; struct rpcrdma_mw *r; int i, rc; spin_lock_init(&buf->rb_mwlock); INIT_LIST_HEAD(&buf->rb_mws); INIT_LIST_HEAD(&buf->rb_all); i = max_t(int, RPCRDMA_MAX_DATA_SEGS / RPCRDMA_MAX_FMR_SGES, 1); i += 2; /* head + tail */ i *= buf->rb_max_requests; /* one set for each RPC slot */ dprintk("RPC: %s: initalizing %d FMRs\n", __func__, i); rc = -ENOMEM; while (i--) { r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) goto out; r->fmr.physaddrs = kmalloc(RPCRDMA_MAX_FMR_SGES * sizeof(u64), GFP_KERNEL); if (!r->fmr.physaddrs) goto out_free; r->fmr.fmr = ib_alloc_fmr(pd, mr_access_flags, &fmr_attr); if (IS_ERR(r->fmr.fmr)) goto out_fmr_err; r->mw_xprt = r_xprt; list_add(&r->mw_list, &buf->rb_mws); list_add(&r->mw_all, &buf->rb_all); } return 0; out_fmr_err: rc = PTR_ERR(r->fmr.fmr); dprintk("RPC: %s: ib_alloc_fmr status %i\n", __func__, rc); kfree(r->fmr.physaddrs); out_free: kfree(r); out: return rc; } /* Use the ib_map_phys_fmr() verb to register a memory region * for remote access via RDMA READ or RDMA WRITE. */ static int fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, int nsegs, bool writing) { struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct ib_device *device = ia->ri_device; enum dma_data_direction direction = rpcrdma_data_dir(writing); struct rpcrdma_mr_seg *seg1 = seg; int len, pageoff, i, rc; struct rpcrdma_mw *mw; mw = seg1->rl_mw; seg1->rl_mw = NULL; if (!mw) { mw = rpcrdma_get_mw(r_xprt); if (!mw) return -ENOMEM; } else { /* this is a retransmit; generate a fresh rkey */ rc = __fmr_unmap(mw); if (rc) return rc; } pageoff = offset_in_page(seg1->mr_offset); seg1->mr_offset -= pageoff; /* start of page */ seg1->mr_len += pageoff; len = -pageoff; if (nsegs > RPCRDMA_MAX_FMR_SGES) nsegs = RPCRDMA_MAX_FMR_SGES; for (i = 0; i < nsegs;) { rpcrdma_map_one(device, seg, direction); mw->fmr.physaddrs[i] = seg->mr_dma; len += seg->mr_len; ++seg; ++i; /* Check for holes */ if ((i < nsegs && offset_in_page(seg->mr_offset)) || offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) break; } rc = ib_map_phys_fmr(mw->fmr.fmr, mw->fmr.physaddrs, i, seg1->mr_dma); if (rc) goto out_maperr; seg1->rl_mw = mw; seg1->mr_rkey = mw->fmr.fmr->rkey; seg1->mr_base = seg1->mr_dma + pageoff; seg1->mr_nsegs = i; seg1->mr_len = len; return i; out_maperr: dprintk("RPC: %s: ib_map_phys_fmr %u@0x%llx+%i (%d) status %i\n", __func__, len, (unsigned long long)seg1->mr_dma, pageoff, i, rc); while (i--) rpcrdma_unmap_one(device, --seg); return rc; } static void __fmr_dma_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg) { struct ib_device *device = r_xprt->rx_ia.ri_device; int nsegs = seg->mr_nsegs; while (nsegs--) rpcrdma_unmap_one(device, seg++); } /* Invalidate all memory regions that were registered for "req". * * Sleeps until it is safe for the host CPU to access the * previously mapped memory regions. */ static void fmr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) { struct rpcrdma_mr_seg *seg; unsigned int i, nchunks; struct rpcrdma_mw *mw; LIST_HEAD(unmap_list); int rc; dprintk("RPC: %s: req %p\n", __func__, req); /* ORDER: Invalidate all of the req's MRs first * * ib_unmap_fmr() is slow, so use a single call instead * of one call per mapped MR. */ for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { seg = &req->rl_segments[i]; mw = seg->rl_mw; list_add(&mw->fmr.fmr->list, &unmap_list); i += seg->mr_nsegs; } rc = ib_unmap_fmr(&unmap_list); if (rc) pr_warn("%s: ib_unmap_fmr failed (%i)\n", __func__, rc); /* ORDER: Now DMA unmap all of the req's MRs, and return * them to the free MW list. */ for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { seg = &req->rl_segments[i]; __fmr_dma_unmap(r_xprt, seg); rpcrdma_put_mw(r_xprt, seg->rl_mw); i += seg->mr_nsegs; seg->mr_nsegs = 0; seg->rl_mw = NULL; } req->rl_nchunks = 0; } /* Use a slow, safe mechanism to invalidate all memory regions * that were registered for "req". * * In the asynchronous case, DMA unmapping occurs first here * because the rpcrdma_mr_seg is released immediately after this * call. It's contents won't be available in __fmr_dma_unmap later. * FIXME. */ static void fmr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, bool sync) { struct rpcrdma_mr_seg *seg; struct rpcrdma_mw *mw; unsigned int i; for (i = 0; req->rl_nchunks; req->rl_nchunks--) { seg = &req->rl_segments[i]; mw = seg->rl_mw; if (sync) { /* ORDER */ __fmr_unmap(mw); __fmr_dma_unmap(r_xprt, seg); rpcrdma_put_mw(r_xprt, mw); } else { __fmr_dma_unmap(r_xprt, seg); __fmr_queue_recovery(mw); } i += seg->mr_nsegs; seg->mr_nsegs = 0; seg->rl_mw = NULL; } } static void fmr_op_destroy(struct rpcrdma_buffer *buf) { struct rpcrdma_mw *r; int rc; while (!list_empty(&buf->rb_all)) { r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all); list_del(&r->mw_all); kfree(r->fmr.physaddrs); rc = ib_dealloc_fmr(r->fmr.fmr); if (rc) dprintk("RPC: %s: ib_dealloc_fmr failed %i\n", __func__, rc); kfree(r); } } const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops = { .ro_map = fmr_op_map, .ro_unmap_sync = fmr_op_unmap_sync, .ro_unmap_safe = fmr_op_unmap_safe, .ro_open = fmr_op_open, .ro_maxpages = fmr_op_maxpages, .ro_init = fmr_op_init, .ro_destroy = fmr_op_destroy, .ro_displayname = "fmr", };