/* Copyright (c) 2018, Mellanox Technologies All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk) { struct scatterlist *src = walk->sg; int diff = walk->offset - src->offset; sg_set_page(sg, sg_page(src), src->length - diff, walk->offset); scatterwalk_crypto_chain(sg, sg_next(src), 2); } static int tls_enc_record(struct aead_request *aead_req, struct crypto_aead *aead, char *aad, char *iv, __be64 rcd_sn, struct scatter_walk *in, struct scatter_walk *out, int *in_len) { unsigned char buf[TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE]; struct scatterlist sg_in[3]; struct scatterlist sg_out[3]; u16 len; int rc; len = min_t(int, *in_len, ARRAY_SIZE(buf)); scatterwalk_copychunks(buf, in, len, 0); scatterwalk_copychunks(buf, out, len, 1); *in_len -= len; if (!*in_len) return 0; scatterwalk_pagedone(in, 0, 1); scatterwalk_pagedone(out, 1, 1); len = buf[4] | (buf[3] << 8); len -= TLS_CIPHER_AES_GCM_128_IV_SIZE; tls_make_aad(aad, len - TLS_CIPHER_AES_GCM_128_TAG_SIZE, (char *)&rcd_sn, sizeof(rcd_sn), buf[0], TLS_1_2_VERSION); memcpy(iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, buf + TLS_HEADER_SIZE, TLS_CIPHER_AES_GCM_128_IV_SIZE); sg_init_table(sg_in, ARRAY_SIZE(sg_in)); sg_init_table(sg_out, ARRAY_SIZE(sg_out)); sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE); sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE); chain_to_walk(sg_in + 1, in); chain_to_walk(sg_out + 1, out); *in_len -= len; if (*in_len < 0) { *in_len += TLS_CIPHER_AES_GCM_128_TAG_SIZE; /* the input buffer doesn't contain the entire record. * trim len accordingly. The resulting authentication tag * will contain garbage, but we don't care, so we won't * include any of it in the output skb * Note that we assume the output buffer length * is larger then input buffer length + tag size */ if (*in_len < 0) len += *in_len; *in_len = 0; } if (*in_len) { scatterwalk_copychunks(NULL, in, len, 2); scatterwalk_pagedone(in, 0, 1); scatterwalk_copychunks(NULL, out, len, 2); scatterwalk_pagedone(out, 1, 1); } len -= TLS_CIPHER_AES_GCM_128_TAG_SIZE; aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv); rc = crypto_aead_encrypt(aead_req); return rc; } static void tls_init_aead_request(struct aead_request *aead_req, struct crypto_aead *aead) { aead_request_set_tfm(aead_req, aead); aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); } static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead, gfp_t flags) { unsigned int req_size = sizeof(struct aead_request) + crypto_aead_reqsize(aead); struct aead_request *aead_req; aead_req = kzalloc(req_size, flags); if (aead_req) tls_init_aead_request(aead_req, aead); return aead_req; } static int tls_enc_records(struct aead_request *aead_req, struct crypto_aead *aead, struct scatterlist *sg_in, struct scatterlist *sg_out, char *aad, char *iv, u64 rcd_sn, int len) { struct scatter_walk out, in; int rc; scatterwalk_start(&in, sg_in); scatterwalk_start(&out, sg_out); do { rc = tls_enc_record(aead_req, aead, aad, iv, cpu_to_be64(rcd_sn), &in, &out, &len); rcd_sn++; } while (rc == 0 && len); scatterwalk_done(&in, 0, 0); scatterwalk_done(&out, 1, 0); return rc; } /* Can't use icsk->icsk_af_ops->send_check here because the ip addresses * might have been changed by NAT. */ static void update_chksum(struct sk_buff *skb, int headln) { struct tcphdr *th = tcp_hdr(skb); int datalen = skb->len - headln; const struct ipv6hdr *ipv6h; const struct iphdr *iph; /* We only changed the payload so if we are using partial we don't * need to update anything. */ if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) return; skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); if (skb->sk->sk_family == AF_INET6) { ipv6h = ipv6_hdr(skb); th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, datalen, IPPROTO_TCP, 0); } else { iph = ip_hdr(skb); th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen, IPPROTO_TCP, 0); } } static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln) { struct sock *sk = skb->sk; int delta; skb_copy_header(nskb, skb); skb_put(nskb, skb->len); memcpy(nskb->data, skb->data, headln); nskb->destructor = skb->destructor; nskb->sk = sk; skb->destructor = NULL; skb->sk = NULL; update_chksum(nskb, headln); /* sock_efree means skb must gone through skb_orphan_partial() */ if (nskb->destructor == sock_efree) return; delta = nskb->truesize - skb->truesize; if (likely(delta < 0)) WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); else if (delta) refcount_add(delta, &sk->sk_wmem_alloc); } /* This function may be called after the user socket is already * closed so make sure we don't use anything freed during * tls_sk_proto_close here */ static int fill_sg_in(struct scatterlist *sg_in, struct sk_buff *skb, struct tls_offload_context_tx *ctx, u64 *rcd_sn, s32 *sync_size, int *resync_sgs) { int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb); int payload_len = skb->len - tcp_payload_offset; u32 tcp_seq = ntohl(tcp_hdr(skb)->seq); struct tls_record_info *record; unsigned long flags; int remaining; int i; spin_lock_irqsave(&ctx->lock, flags); record = tls_get_record(ctx, tcp_seq, rcd_sn); if (!record) { spin_unlock_irqrestore(&ctx->lock, flags); return -EINVAL; } *sync_size = tcp_seq - tls_record_start_seq(record); if (*sync_size < 0) { int is_start_marker = tls_record_is_start_marker(record); spin_unlock_irqrestore(&ctx->lock, flags); /* This should only occur if the relevant record was * already acked. In that case it should be ok * to drop the packet and avoid retransmission. * * There is a corner case where the packet contains * both an acked and a non-acked record. * We currently don't handle that case and rely * on TCP to retranmit a packet that doesn't contain * already acked payload. */ if (!is_start_marker) *sync_size = 0; return -EINVAL; } remaining = *sync_size; for (i = 0; remaining > 0; i++) { skb_frag_t *frag = &record->frags[i]; __skb_frag_ref(frag); sg_set_page(sg_in + i, skb_frag_page(frag), skb_frag_size(frag), skb_frag_off(frag)); remaining -= skb_frag_size(frag); if (remaining < 0) sg_in[i].length += remaining; } *resync_sgs = i; spin_unlock_irqrestore(&ctx->lock, flags); if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0) return -EINVAL; return 0; } static void fill_sg_out(struct scatterlist sg_out[3], void *buf, struct tls_context *tls_ctx, struct sk_buff *nskb, int tcp_payload_offset, int payload_len, int sync_size, void *dummy_buf) { sg_set_buf(&sg_out[0], dummy_buf, sync_size); sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len); /* Add room for authentication tag produced by crypto */ dummy_buf += sync_size; sg_set_buf(&sg_out[2], dummy_buf, TLS_CIPHER_AES_GCM_128_TAG_SIZE); } static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx, struct scatterlist sg_out[3], struct scatterlist *sg_in, struct sk_buff *skb, s32 sync_size, u64 rcd_sn) { int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); int payload_len = skb->len - tcp_payload_offset; void *buf, *iv, *aad, *dummy_buf; struct aead_request *aead_req; struct sk_buff *nskb = NULL; int buf_len; aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC); if (!aead_req) return NULL; buf_len = TLS_CIPHER_AES_GCM_128_SALT_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE + TLS_AAD_SPACE_SIZE + sync_size + TLS_CIPHER_AES_GCM_128_TAG_SIZE; buf = kmalloc(buf_len, GFP_ATOMIC); if (!buf) goto free_req; iv = buf; memcpy(iv, tls_ctx->crypto_send.aes_gcm_128.salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); aad = buf + TLS_CIPHER_AES_GCM_128_SALT_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE; dummy_buf = aad + TLS_AAD_SPACE_SIZE; nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC); if (!nskb) goto free_buf; skb_reserve(nskb, skb_headroom(skb)); fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset, payload_len, sync_size, dummy_buf); if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv, rcd_sn, sync_size + payload_len) < 0) goto free_nskb; complete_skb(nskb, skb, tcp_payload_offset); /* validate_xmit_skb_list assumes that if the skb wasn't segmented * nskb->prev will point to the skb itself */ nskb->prev = nskb; free_buf: kfree(buf); free_req: kfree(aead_req); return nskb; free_nskb: kfree_skb(nskb); nskb = NULL; goto free_buf; } static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb) { int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb); struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); int payload_len = skb->len - tcp_payload_offset; struct scatterlist *sg_in, sg_out[3]; struct sk_buff *nskb = NULL; int sg_in_max_elements; int resync_sgs = 0; s32 sync_size = 0; u64 rcd_sn; /* worst case is: * MAX_SKB_FRAGS in tls_record_info * MAX_SKB_FRAGS + 1 in SKB head and frags. */ sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1; if (!payload_len) return skb; sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC); if (!sg_in) goto free_orig; sg_init_table(sg_in, sg_in_max_elements); sg_init_table(sg_out, ARRAY_SIZE(sg_out)); if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) { /* bypass packets before kernel TLS socket option was set */ if (sync_size < 0 && payload_len <= -sync_size) nskb = skb_get(skb); goto put_sg; } nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn); put_sg: while (resync_sgs) put_page(sg_page(&sg_in[--resync_sgs])); kfree(sg_in); free_orig: if (nskb) consume_skb(skb); else kfree_skb(skb); return nskb; } struct sk_buff *tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, struct sk_buff *skb) { if (dev == tls_get_ctx(sk)->netdev) return skb; return tls_sw_fallback(sk, skb); } EXPORT_SYMBOL_GPL(tls_validate_xmit_skb); struct sk_buff *tls_encrypt_skb(struct sk_buff *skb) { return tls_sw_fallback(skb->sk, skb); } EXPORT_SYMBOL_GPL(tls_encrypt_skb); int tls_sw_fallback_init(struct sock *sk, struct tls_offload_context_tx *offload_ctx, struct tls_crypto_info *crypto_info) { const u8 *key; int rc; offload_ctx->aead_send = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(offload_ctx->aead_send)) { rc = PTR_ERR(offload_ctx->aead_send); pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc); offload_ctx->aead_send = NULL; goto err_out; } key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key; rc = crypto_aead_setkey(offload_ctx->aead_send, key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); if (rc) goto free_aead; rc = crypto_aead_setauthsize(offload_ctx->aead_send, TLS_CIPHER_AES_GCM_128_TAG_SIZE); if (rc) goto free_aead; return 0; free_aead: crypto_free_aead(offload_ctx->aead_send); err_out: return rc; }