/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Mellanox Technologies"); MODULE_DESCRIPTION("Transport Layer Security Support"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_ALIAS_TCP_ULP("tls"); enum { TLSV4, TLSV6, TLS_NUM_PROTS, }; static struct proto *saved_tcpv6_prot; static DEFINE_MUTEX(tcpv6_prot_mutex); static struct proto *saved_tcpv4_prot; static DEFINE_MUTEX(tcpv4_prot_mutex); static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; static struct proto_ops tls_sw_proto_ops; static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], struct proto *base); void update_sk_prot(struct sock *sk, struct tls_context *ctx) { int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]; } int wait_on_pending_writer(struct sock *sk, long *timeo) { int rc = 0; DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); while (1) { if (!*timeo) { rc = -EAGAIN; break; } if (signal_pending(current)) { rc = sock_intr_errno(*timeo); break; } if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) break; } remove_wait_queue(sk_sleep(sk), &wait); return rc; } int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags) { int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; int ret = 0; struct page *p; size_t size; int offset = first_offset; size = sg->length - offset; offset += sg->offset; ctx->in_tcp_sendpages = true; while (1) { if (sg_is_last(sg)) sendpage_flags = flags; /* is sending application-limited? */ tcp_rate_check_app_limited(sk); p = sg_page(sg); retry: ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); if (ret != size) { if (ret > 0) { offset += ret; size -= ret; goto retry; } offset -= sg->offset; ctx->partially_sent_offset = offset; ctx->partially_sent_record = (void *)sg; ctx->in_tcp_sendpages = false; return ret; } put_page(p); sk_mem_uncharge(sk, sg->length); sg = sg_next(sg); if (!sg) break; offset = sg->offset; size = sg->length; } ctx->in_tcp_sendpages = false; return 0; } static int tls_handle_open_record(struct sock *sk, int flags) { struct tls_context *ctx = tls_get_ctx(sk); if (tls_is_pending_open_record(ctx)) return ctx->push_pending_record(sk, flags); return 0; } int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type) { struct cmsghdr *cmsg; int rc = -EINVAL; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_TLS) continue; switch (cmsg->cmsg_type) { case TLS_SET_RECORD_TYPE: if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) return -EINVAL; if (msg->msg_flags & MSG_MORE) return -EINVAL; rc = tls_handle_open_record(sk, msg->msg_flags); if (rc) return rc; *record_type = *(unsigned char *)CMSG_DATA(cmsg); rc = 0; break; default: return -EINVAL; } } return rc; } int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, int flags) { struct scatterlist *sg; u16 offset; sg = ctx->partially_sent_record; offset = ctx->partially_sent_offset; ctx->partially_sent_record = NULL; return tls_push_sg(sk, ctx, sg, offset, flags); } void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) { struct scatterlist *sg; for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { put_page(sg_page(sg)); sk_mem_uncharge(sk, sg->length); } ctx->partially_sent_record = NULL; } static void tls_write_space(struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); /* If in_tcp_sendpages call lower protocol write space handler * to ensure we wake up any waiting operations there. For example * if do_tcp_sendpages where to call sk_wait_event. */ if (ctx->in_tcp_sendpages) { ctx->sk_write_space(sk); return; } #ifdef CONFIG_TLS_DEVICE if (ctx->tx_conf == TLS_HW) tls_device_write_space(sk, ctx); else #endif tls_sw_write_space(sk, ctx); ctx->sk_write_space(sk); } /** * tls_ctx_free() - free TLS ULP context * @sk: socket to with @ctx is attached * @ctx: TLS context structure * * Free TLS context. If @sk is %NULL caller guarantees that the socket * to which @ctx was attached has no outstanding references. */ void tls_ctx_free(struct sock *sk, struct tls_context *ctx) { if (!ctx) return; memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); mutex_destroy(&ctx->tx_lock); if (sk) kfree_rcu(ctx, rcu); else kfree(ctx); } static void tls_sk_proto_cleanup(struct sock *sk, struct tls_context *ctx, long timeo) { if (unlikely(sk->sk_write_pending) && !wait_on_pending_writer(sk, &timeo)) tls_handle_open_record(sk, 0); /* We need these for tls_sw_fallback handling of other packets */ if (ctx->tx_conf == TLS_SW) { kfree(ctx->tx.rec_seq); kfree(ctx->tx.iv); tls_sw_release_resources_tx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); } else if (ctx->tx_conf == TLS_HW) { tls_device_free_resources_tx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); } if (ctx->rx_conf == TLS_SW) { tls_sw_release_resources_rx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); } else if (ctx->rx_conf == TLS_HW) { tls_device_offload_cleanup_rx(sk); TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); } } static void tls_sk_proto_close(struct sock *sk, long timeout) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx = tls_get_ctx(sk); long timeo = sock_sndtimeo(sk, 0); bool free_ctx; if (ctx->tx_conf == TLS_SW) tls_sw_cancel_work_tx(ctx); lock_sock(sk); free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) tls_sk_proto_cleanup(sk, ctx, timeo); write_lock_bh(&sk->sk_callback_lock); if (free_ctx) rcu_assign_pointer(icsk->icsk_ulp_data, NULL); sk->sk_prot = ctx->sk_proto; if (sk->sk_write_space == tls_write_space) sk->sk_write_space = ctx->sk_write_space; write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); if (ctx->tx_conf == TLS_SW) tls_sw_free_ctx_tx(ctx); if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) tls_sw_strparser_done(ctx); if (ctx->rx_conf == TLS_SW) tls_sw_free_ctx_rx(ctx); ctx->sk_proto->close(sk, timeout); if (free_ctx) tls_ctx_free(sk, ctx); } static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, int __user *optlen) { int rc = 0; struct tls_context *ctx = tls_get_ctx(sk); struct tls_crypto_info *crypto_info; int len; if (get_user(len, optlen)) return -EFAULT; if (!optval || (len < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } if (!ctx) { rc = -EBUSY; goto out; } /* get user crypto info */ crypto_info = &ctx->crypto_send.info; if (!TLS_CRYPTO_INFO_READY(crypto_info)) { rc = -EBUSY; goto out; } if (len == sizeof(*crypto_info)) { if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) rc = -EFAULT; goto out; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: { struct tls12_crypto_info_aes_gcm_128 * crypto_info_aes_gcm_128 = container_of(crypto_info, struct tls12_crypto_info_aes_gcm_128, info); if (len != sizeof(*crypto_info_aes_gcm_128)) { rc = -EINVAL; goto out; } lock_sock(sk); memcpy(crypto_info_aes_gcm_128->iv, ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, TLS_CIPHER_AES_GCM_128_IV_SIZE); memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq, TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); release_sock(sk); if (copy_to_user(optval, crypto_info_aes_gcm_128, sizeof(*crypto_info_aes_gcm_128))) rc = -EFAULT; break; } case TLS_CIPHER_AES_GCM_256: { struct tls12_crypto_info_aes_gcm_256 * crypto_info_aes_gcm_256 = container_of(crypto_info, struct tls12_crypto_info_aes_gcm_256, info); if (len != sizeof(*crypto_info_aes_gcm_256)) { rc = -EINVAL; goto out; } lock_sock(sk); memcpy(crypto_info_aes_gcm_256->iv, ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, TLS_CIPHER_AES_GCM_256_IV_SIZE); memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq, TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); release_sock(sk); if (copy_to_user(optval, crypto_info_aes_gcm_256, sizeof(*crypto_info_aes_gcm_256))) rc = -EFAULT; break; } default: rc = -EINVAL; } out: return rc; } static int do_tls_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) { int rc = 0; switch (optname) { case TLS_TX: rc = do_tls_getsockopt_tx(sk, optval, optlen); break; default: rc = -ENOPROTOOPT; break; } return rc; } static int tls_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->getsockopt(sk, level, optname, optval, optlen); return do_tls_getsockopt(sk, optname, optval, optlen); } static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval, unsigned int optlen, int tx) { struct tls_crypto_info *crypto_info; struct tls_crypto_info *alt_crypto_info; struct tls_context *ctx = tls_get_ctx(sk); size_t optsize; int rc = 0; int conf; if (!optval || (optlen < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } if (tx) { crypto_info = &ctx->crypto_send.info; alt_crypto_info = &ctx->crypto_recv.info; } else { crypto_info = &ctx->crypto_recv.info; alt_crypto_info = &ctx->crypto_send.info; } /* Currently we don't support set crypto info more than one time */ if (TLS_CRYPTO_INFO_READY(crypto_info)) { rc = -EBUSY; goto out; } rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } /* check version */ if (crypto_info->version != TLS_1_2_VERSION && crypto_info->version != TLS_1_3_VERSION) { rc = -EINVAL; goto err_crypto_info; } /* Ensure that TLS version and ciphers are same in both directions */ if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { if (alt_crypto_info->version != crypto_info->version || alt_crypto_info->cipher_type != crypto_info->cipher_type) { rc = -EINVAL; goto err_crypto_info; } } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); break; case TLS_CIPHER_AES_GCM_256: { optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); break; } case TLS_CIPHER_AES_CCM_128: optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); break; default: rc = -EINVAL; goto err_crypto_info; } if (optlen != optsize) { rc = -EINVAL; goto err_crypto_info; } rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), optlen - sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } if (tx) { rc = tls_set_device_offload(sk, ctx); conf = TLS_HW; if (!rc) { TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); } else { rc = tls_set_sw_offload(sk, ctx, 1); if (rc) goto err_crypto_info; TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); conf = TLS_SW; } } else { rc = tls_set_device_offload_rx(sk, ctx); conf = TLS_HW; if (!rc) { TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); } else { rc = tls_set_sw_offload(sk, ctx, 0); if (rc) goto err_crypto_info; TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); conf = TLS_SW; } tls_sw_strparser_arm(sk, ctx); } if (tx) ctx->tx_conf = conf; else ctx->rx_conf = conf; update_sk_prot(sk, ctx); if (tx) { ctx->sk_write_space = sk->sk_write_space; sk->sk_write_space = tls_write_space; } else { sk->sk_socket->ops = &tls_sw_proto_ops; } goto out; err_crypto_info: memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); out: return rc; } static int do_tls_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) { int rc = 0; switch (optname) { case TLS_TX: case TLS_RX: lock_sock(sk); rc = do_tls_setsockopt_conf(sk, optval, optlen, optname == TLS_TX); release_sock(sk); break; default: rc = -ENOPROTOOPT; break; } return rc; } static int tls_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->sk_proto->setsockopt(sk, level, optname, optval, optlen); return do_tls_setsockopt(sk, optname, optval, optlen); } struct tls_context *tls_ctx_create(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx; ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); if (!ctx) return NULL; mutex_init(&ctx->tx_lock); rcu_assign_pointer(icsk->icsk_ulp_data, ctx); ctx->sk_proto = sk->sk_prot; return ctx; } static void tls_build_proto(struct sock *sk) { int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ if (ip_ver == TLSV6 && unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { mutex_lock(&tcpv6_prot_mutex); if (likely(sk->sk_prot != saved_tcpv6_prot)) { build_protos(tls_prots[TLSV6], sk->sk_prot); smp_store_release(&saved_tcpv6_prot, sk->sk_prot); } mutex_unlock(&tcpv6_prot_mutex); } if (ip_ver == TLSV4 && unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) { mutex_lock(&tcpv4_prot_mutex); if (likely(sk->sk_prot != saved_tcpv4_prot)) { build_protos(tls_prots[TLSV4], sk->sk_prot); smp_store_release(&saved_tcpv4_prot, sk->sk_prot); } mutex_unlock(&tcpv4_prot_mutex); } } static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], struct proto *base) { prot[TLS_BASE][TLS_BASE] = *base; prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read; prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read; prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; #ifdef CONFIG_TLS_DEVICE prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; #endif #ifdef CONFIG_TLS_TOE prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; #endif } static int tls_init(struct sock *sk) { struct tls_context *ctx; int rc = 0; tls_build_proto(sk); #ifdef CONFIG_TLS_TOE if (tls_toe_bypass(sk)) return 0; #endif /* The TLS ulp is currently supported only for TCP sockets * in ESTABLISHED state. * Supporting sockets in LISTEN state will require us * to modify the accept implementation to clone rather then * share the ulp context. */ if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; /* allocate tls context */ write_lock_bh(&sk->sk_callback_lock); ctx = tls_ctx_create(sk); if (!ctx) { rc = -ENOMEM; goto out; } ctx->tx_conf = TLS_BASE; ctx->rx_conf = TLS_BASE; update_sk_prot(sk, ctx); out: write_unlock_bh(&sk->sk_callback_lock); return rc; } static void tls_update(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)) { struct tls_context *ctx; ctx = tls_get_ctx(sk); if (likely(ctx)) { ctx->sk_write_space = write_space; ctx->sk_proto = p; } else { sk->sk_prot = p; sk->sk_write_space = write_space; } } static int tls_get_info(const struct sock *sk, struct sk_buff *skb) { u16 version, cipher_type; struct tls_context *ctx; struct nlattr *start; int err; start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); if (!start) return -EMSGSIZE; rcu_read_lock(); ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); if (!ctx) { err = 0; goto nla_failure; } version = ctx->prot_info.version; if (version) { err = nla_put_u16(skb, TLS_INFO_VERSION, version); if (err) goto nla_failure; } cipher_type = ctx->prot_info.cipher_type; if (cipher_type) { err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); if (err) goto nla_failure; } err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); if (err) goto nla_failure; err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); if (err) goto nla_failure; rcu_read_unlock(); nla_nest_end(skb, start); return 0; nla_failure: rcu_read_unlock(); nla_nest_cancel(skb, start); return err; } static size_t tls_get_info_size(const struct sock *sk) { size_t size = 0; size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ 0; return size; } static int __net_init tls_init_net(struct net *net) { int err; net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); if (!net->mib.tls_statistics) return -ENOMEM; err = tls_proc_init(net); if (err) goto err_free_stats; return 0; err_free_stats: free_percpu(net->mib.tls_statistics); return err; } static void __net_exit tls_exit_net(struct net *net) { tls_proc_fini(net); free_percpu(net->mib.tls_statistics); } static struct pernet_operations tls_proc_ops = { .init = tls_init_net, .exit = tls_exit_net, }; static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { .name = "tls", .owner = THIS_MODULE, .init = tls_init, .update = tls_update, .get_info = tls_get_info, .get_info_size = tls_get_info_size, }; static int __init tls_register(void) { int err; err = register_pernet_subsys(&tls_proc_ops); if (err) return err; tls_sw_proto_ops = inet_stream_ops; tls_sw_proto_ops.splice_read = tls_sw_splice_read; tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked, tls_device_init(); tcp_register_ulp(&tcp_tls_ulp_ops); return 0; } static void __exit tls_unregister(void) { tcp_unregister_ulp(&tcp_tls_ulp_ops); tls_device_cleanup(); unregister_pernet_subsys(&tls_proc_ops); } module_init(tls_register); module_exit(tls_unregister);