/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include MODULE_AUTHOR("Mellanox Technologies"); MODULE_DESCRIPTION("Transport Layer Security Support"); MODULE_LICENSE("Dual BSD/GPL"); enum { TLS_BASE_TX, TLS_SW_TX, TLS_NUM_CONFIG, }; static struct proto tls_prots[TLS_NUM_CONFIG]; static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx) { sk->sk_prot = &tls_prots[ctx->tx_conf]; } int wait_on_pending_writer(struct sock *sk, long *timeo) { int rc = 0; DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); while (1) { if (!*timeo) { rc = -EAGAIN; break; } if (signal_pending(current)) { rc = sock_intr_errno(*timeo); break; } if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait)) break; } remove_wait_queue(sk_sleep(sk), &wait); return rc; } int tls_push_sg(struct sock *sk, struct tls_context *ctx, struct scatterlist *sg, u16 first_offset, int flags) { int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; int ret = 0; struct page *p; size_t size; int offset = first_offset; size = sg->length - offset; offset += sg->offset; while (1) { if (sg_is_last(sg)) sendpage_flags = flags; /* is sending application-limited? */ tcp_rate_check_app_limited(sk); p = sg_page(sg); retry: ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); if (ret != size) { if (ret > 0) { offset += ret; size -= ret; goto retry; } offset -= sg->offset; ctx->partially_sent_offset = offset; ctx->partially_sent_record = (void *)sg; return ret; } put_page(p); sk_mem_uncharge(sk, sg->length); sg = sg_next(sg); if (!sg) break; offset = sg->offset; size = sg->length; } clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags); return 0; } static int tls_handle_open_record(struct sock *sk, int flags) { struct tls_context *ctx = tls_get_ctx(sk); if (tls_is_pending_open_record(ctx)) return ctx->push_pending_record(sk, flags); return 0; } int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, unsigned char *record_type) { struct cmsghdr *cmsg; int rc = -EINVAL; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_TLS) continue; switch (cmsg->cmsg_type) { case TLS_SET_RECORD_TYPE: if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) return -EINVAL; if (msg->msg_flags & MSG_MORE) return -EINVAL; rc = tls_handle_open_record(sk, msg->msg_flags); if (rc) return rc; *record_type = *(unsigned char *)CMSG_DATA(cmsg); rc = 0; break; default: return -EINVAL; } } return rc; } int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx, int flags, long *timeo) { struct scatterlist *sg; u16 offset; if (!tls_is_partially_sent_record(ctx)) return ctx->push_pending_record(sk, flags); sg = ctx->partially_sent_record; offset = ctx->partially_sent_offset; ctx->partially_sent_record = NULL; return tls_push_sg(sk, ctx, sg, offset, flags); } static void tls_write_space(struct sock *sk) { struct tls_context *ctx = tls_get_ctx(sk); if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) { gfp_t sk_allocation = sk->sk_allocation; int rc; long timeo = 0; sk->sk_allocation = GFP_ATOMIC; rc = tls_push_pending_closed_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL, &timeo); sk->sk_allocation = sk_allocation; if (rc < 0) return; } ctx->sk_write_space(sk); } static void tls_sk_proto_close(struct sock *sk, long timeout) { struct tls_context *ctx = tls_get_ctx(sk); long timeo = sock_sndtimeo(sk, 0); void (*sk_proto_close)(struct sock *sk, long timeout); lock_sock(sk); sk_proto_close = ctx->sk_proto_close; if (ctx->tx_conf == TLS_BASE_TX) { kfree(ctx); goto skip_tx_cleanup; } if (!tls_complete_pending_work(sk, ctx, 0, &timeo)) tls_handle_open_record(sk, 0); if (ctx->partially_sent_record) { struct scatterlist *sg = ctx->partially_sent_record; while (1) { put_page(sg_page(sg)); sk_mem_uncharge(sk, sg->length); if (sg_is_last(sg)) break; sg++; } } kfree(ctx->rec_seq); kfree(ctx->iv); if (ctx->tx_conf == TLS_SW_TX) tls_sw_free_tx_resources(sk); skip_tx_cleanup: release_sock(sk); sk_proto_close(sk, timeout); } static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval, int __user *optlen) { int rc = 0; struct tls_context *ctx = tls_get_ctx(sk); struct tls_crypto_info *crypto_info; int len; if (get_user(len, optlen)) return -EFAULT; if (!optval || (len < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } if (!ctx) { rc = -EBUSY; goto out; } /* get user crypto info */ crypto_info = &ctx->crypto_send; if (!TLS_CRYPTO_INFO_READY(crypto_info)) { rc = -EBUSY; goto out; } if (len == sizeof(*crypto_info)) { if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) rc = -EFAULT; goto out; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: { struct tls12_crypto_info_aes_gcm_128 * crypto_info_aes_gcm_128 = container_of(crypto_info, struct tls12_crypto_info_aes_gcm_128, info); if (len != sizeof(*crypto_info_aes_gcm_128)) { rc = -EINVAL; goto out; } lock_sock(sk); memcpy(crypto_info_aes_gcm_128->iv, ctx->iv, TLS_CIPHER_AES_GCM_128_IV_SIZE); release_sock(sk); if (copy_to_user(optval, crypto_info_aes_gcm_128, sizeof(*crypto_info_aes_gcm_128))) rc = -EFAULT; break; } default: rc = -EINVAL; } out: return rc; } static int do_tls_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) { int rc = 0; switch (optname) { case TLS_TX: rc = do_tls_getsockopt_tx(sk, optval, optlen); break; default: rc = -ENOPROTOOPT; break; } return rc; } static int tls_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->getsockopt(sk, level, optname, optval, optlen); return do_tls_getsockopt(sk, optname, optval, optlen); } static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval, unsigned int optlen) { struct tls_crypto_info *crypto_info; struct tls_context *ctx = tls_get_ctx(sk); int rc = 0; int tx_conf; if (!optval || (optlen < sizeof(*crypto_info))) { rc = -EINVAL; goto out; } crypto_info = &ctx->crypto_send; /* Currently we don't support set crypto info more than one time */ if (TLS_CRYPTO_INFO_READY(crypto_info)) goto out; rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto out; } /* check version */ if (crypto_info->version != TLS_1_2_VERSION) { rc = -ENOTSUPP; goto err_crypto_info; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: { if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) { rc = -EINVAL; goto out; } rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info), optlen - sizeof(*crypto_info)); if (rc) { rc = -EFAULT; goto err_crypto_info; } break; } default: rc = -EINVAL; goto out; } /* currently SW is default, we will have ethtool in future */ rc = tls_set_sw_offload(sk, ctx); tx_conf = TLS_SW_TX; if (rc) goto err_crypto_info; ctx->tx_conf = tx_conf; update_sk_prot(sk, ctx); ctx->sk_write_space = sk->sk_write_space; sk->sk_write_space = tls_write_space; goto out; err_crypto_info: memset(crypto_info, 0, sizeof(*crypto_info)); out: return rc; } static int do_tls_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) { int rc = 0; switch (optname) { case TLS_TX: lock_sock(sk); rc = do_tls_setsockopt_tx(sk, optval, optlen); release_sock(sk); break; default: rc = -ENOPROTOOPT; break; } return rc; } static int tls_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { struct tls_context *ctx = tls_get_ctx(sk); if (level != SOL_TLS) return ctx->setsockopt(sk, level, optname, optval, optlen); return do_tls_setsockopt(sk, optname, optval, optlen); } static int tls_init(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tls_context *ctx; int rc = 0; /* allocate tls context */ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { rc = -ENOMEM; goto out; } icsk->icsk_ulp_data = ctx; ctx->setsockopt = sk->sk_prot->setsockopt; ctx->getsockopt = sk->sk_prot->getsockopt; ctx->sk_proto_close = sk->sk_prot->close; ctx->tx_conf = TLS_BASE_TX; update_sk_prot(sk, ctx); out: return rc; } static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { .name = "tls", .owner = THIS_MODULE, .init = tls_init, }; static void build_protos(struct proto *prot, struct proto *base) { prot[TLS_BASE_TX] = *base; prot[TLS_BASE_TX].setsockopt = tls_setsockopt; prot[TLS_BASE_TX].getsockopt = tls_getsockopt; prot[TLS_BASE_TX].close = tls_sk_proto_close; prot[TLS_SW_TX] = prot[TLS_BASE_TX]; prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg; prot[TLS_SW_TX].sendpage = tls_sw_sendpage; } static int __init tls_register(void) { build_protos(tls_prots, &tcp_prot); tcp_register_ulp(&tcp_tls_ulp_ops); return 0; } static void __exit tls_unregister(void) { tcp_unregister_ulp(&tcp_tls_ulp_ops); } module_init(tls_register); module_exit(tls_unregister);