/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * Copyright (c) 2016-2017, Lance Chao . All rights reserved. * Copyright (c) 2016, Fridolin Pokorny . All rights reserved. * Copyright (c) 2016, Nikos Mavrogiannopoulos . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE static int __skb_nsg(struct sk_buff *skb, int offset, int len, unsigned int recursion_level) { int start = skb_headlen(skb); int i, chunk = start - offset; struct sk_buff *frag_iter; int elt = 0; if (unlikely(recursion_level >= 24)) return -EMSGSIZE; if (chunk > 0) { if (chunk > len) chunk = len; elt++; len -= chunk; if (len == 0) return elt; offset += chunk; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); chunk = end - offset; if (chunk > 0) { if (chunk > len) chunk = len; elt++; len -= chunk; if (len == 0) return elt; offset += chunk; } start = end; } if (unlikely(skb_has_frag_list(skb))) { skb_walk_frags(skb, frag_iter) { int end, ret; WARN_ON(start > offset + len); end = start + frag_iter->len; chunk = end - offset; if (chunk > 0) { if (chunk > len) chunk = len; ret = __skb_nsg(frag_iter, offset - start, chunk, recursion_level + 1); if (unlikely(ret < 0)) return ret; elt += ret; len -= chunk; if (len == 0) return elt; offset += chunk; } start = end; } } BUG_ON(len); return elt; } /* Return the number of scatterlist elements required to completely map the * skb, or -EMSGSIZE if the recursion depth is exceeded. */ static int skb_nsg(struct sk_buff *skb, int offset, int len) { return __skb_nsg(skb, offset, len, 0); } static void tls_decrypt_done(struct crypto_async_request *req, int err) { struct aead_request *aead_req = (struct aead_request *)req; struct scatterlist *sgout = aead_req->dst; struct tls_sw_context_rx *ctx; struct tls_context *tls_ctx; struct scatterlist *sg; struct sk_buff *skb; unsigned int pages; int pending; skb = (struct sk_buff *)req->data; tls_ctx = tls_get_ctx(skb->sk); ctx = tls_sw_ctx_rx(tls_ctx); pending = atomic_dec_return(&ctx->decrypt_pending); /* Propagate if there was an err */ if (err) { ctx->async_wait.err = err; tls_err_abort(skb->sk, err); } /* After using skb->sk to propagate sk through crypto async callback * we need to NULL it again. */ skb->sk = NULL; /* Release the skb, pages and memory allocated for crypto req */ kfree_skb(skb); /* Skip the first S/G entry as it points to AAD */ for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { if (!sg) break; put_page(sg_page(sg)); } kfree(aead_req); if (!pending && READ_ONCE(ctx->async_notify)) complete(&ctx->async_wait.completion); } static int tls_do_decryption(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgin, struct scatterlist *sgout, char *iv_recv, size_t data_len, struct aead_request *aead_req, bool async) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); int ret; aead_request_set_tfm(aead_req, ctx->aead_recv); aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); aead_request_set_crypt(aead_req, sgin, sgout, data_len + tls_ctx->rx.tag_size, (u8 *)iv_recv); if (async) { /* Using skb->sk to push sk through to crypto async callback * handler. This allows propagating errors up to the socket * if needed. It _must_ be cleared in the async handler * before kfree_skb is called. We _know_ skb->sk is NULL * because it is a clone from strparser. */ skb->sk = sk; aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, tls_decrypt_done, skb); atomic_inc(&ctx->decrypt_pending); } else { aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &ctx->async_wait); } ret = crypto_aead_decrypt(aead_req); if (ret == -EINPROGRESS) { if (async) return ret; ret = crypto_wait_req(ret, &ctx->async_wait); } if (async) atomic_dec(&ctx->decrypt_pending); return ret; } static void trim_sg(struct sock *sk, struct scatterlist *sg, int *sg_num_elem, unsigned int *sg_size, int target_size) { int i = *sg_num_elem - 1; int trim = *sg_size - target_size; if (trim <= 0) { WARN_ON(trim < 0); return; } *sg_size = target_size; while (trim >= sg[i].length) { trim -= sg[i].length; sk_mem_uncharge(sk, sg[i].length); put_page(sg_page(&sg[i])); i--; if (i < 0) goto out; } sg[i].length -= trim; sk_mem_uncharge(sk, trim); out: *sg_num_elem = i + 1; } static void trim_both_sgl(struct sock *sk, int target_size) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; trim_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size, target_size); if (target_size > 0) target_size += tls_ctx->tx.overhead_size; trim_sg(sk, &rec->sg_encrypted_data[1], &rec->sg_encrypted_num_elem, &rec->sg_encrypted_size, target_size); } static int alloc_encrypted_sg(struct sock *sk, int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; int rc = 0; rc = sk_alloc_sg(sk, len, &rec->sg_encrypted_data[1], 0, &rec->sg_encrypted_num_elem, &rec->sg_encrypted_size, 0); if (rc == -ENOSPC) rec->sg_encrypted_num_elem = ARRAY_SIZE(rec->sg_encrypted_data) - 1; return rc; } static int move_to_plaintext_sg(struct sock *sk, int required_size) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct scatterlist *plain_sg = &rec->sg_plaintext_data[1]; struct scatterlist *enc_sg = &rec->sg_encrypted_data[1]; int enc_sg_idx = 0; int skip, len; if (rec->sg_plaintext_num_elem == MAX_SKB_FRAGS) return -ENOSPC; /* We add page references worth len bytes from enc_sg at the * end of plain_sg. It is guaranteed that sg_encrypted_data * has enough required room (ensured by caller). */ len = required_size - rec->sg_plaintext_size; /* Skip initial bytes in sg_encrypted_data to be able * to use same offset of both plain and encrypted data. */ skip = tls_ctx->tx.prepend_size + rec->sg_plaintext_size; while (enc_sg_idx < rec->sg_encrypted_num_elem) { if (enc_sg[enc_sg_idx].length > skip) break; skip -= enc_sg[enc_sg_idx].length; enc_sg_idx++; } /* unmark the end of plain_sg*/ sg_unmark_end(plain_sg + rec->sg_plaintext_num_elem - 1); while (len) { struct page *page = sg_page(&enc_sg[enc_sg_idx]); int bytes = enc_sg[enc_sg_idx].length - skip; int offset = enc_sg[enc_sg_idx].offset + skip; if (bytes > len) bytes = len; else enc_sg_idx++; /* Skipping is required only one time */ skip = 0; /* Increment page reference */ get_page(page); sg_set_page(&plain_sg[rec->sg_plaintext_num_elem], page, bytes, offset); sk_mem_charge(sk, bytes); len -= bytes; rec->sg_plaintext_size += bytes; rec->sg_plaintext_num_elem++; if (rec->sg_plaintext_num_elem == MAX_SKB_FRAGS) return -ENOSPC; } return 0; } static void free_sg(struct sock *sk, struct scatterlist *sg, int *sg_num_elem, unsigned int *sg_size) { int i, n = *sg_num_elem; for (i = 0; i < n; ++i) { sk_mem_uncharge(sk, sg[i].length); put_page(sg_page(&sg[i])); } *sg_num_elem = 0; *sg_size = 0; } static void tls_free_open_rec(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; /* Return if there is no open record */ if (!rec) return; free_sg(sk, &rec->sg_encrypted_data[1], &rec->sg_encrypted_num_elem, &rec->sg_encrypted_size); free_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size); kfree(rec); } int tls_tx_records(struct sock *sk, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec, *tmp; int tx_flags, rc = 0; if (tls_is_partially_sent_record(tls_ctx)) { rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (flags == -1) tx_flags = rec->tx_flags; else tx_flags = flags; rc = tls_push_partial_record(sk, tls_ctx, tx_flags); if (rc) goto tx_err; /* Full record has been transmitted. * Remove the head of tx_list */ list_del(&rec->list); free_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size); kfree(rec); } /* Tx all ready records */ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { if (READ_ONCE(rec->tx_ready)) { if (flags == -1) tx_flags = rec->tx_flags; else tx_flags = flags; rc = tls_push_sg(sk, tls_ctx, &rec->sg_encrypted_data[1], 0, tx_flags); if (rc) goto tx_err; list_del(&rec->list); free_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size); kfree(rec); } else { break; } } tx_err: if (rc < 0 && rc != -EAGAIN) tls_err_abort(sk, EBADMSG); return rc; } static void tls_encrypt_done(struct crypto_async_request *req, int err) { struct aead_request *aead_req = (struct aead_request *)req; struct sock *sk = req->data; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec; bool ready = false; int pending; rec = container_of(aead_req, struct tls_rec, aead_req); rec->sg_encrypted_data[1].offset -= tls_ctx->tx.prepend_size; rec->sg_encrypted_data[1].length += tls_ctx->tx.prepend_size; /* Check if error is previously set on socket */ if (err || sk->sk_err) { rec = NULL; /* If err is already set on socket, return the same code */ if (sk->sk_err) { ctx->async_wait.err = sk->sk_err; } else { ctx->async_wait.err = err; tls_err_abort(sk, err); } } if (rec) { struct tls_rec *first_rec; /* Mark the record as ready for transmission */ smp_store_mb(rec->tx_ready, true); /* If received record is at head of tx_list, schedule tx */ first_rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (rec == first_rec) ready = true; } pending = atomic_dec_return(&ctx->encrypt_pending); if (!pending && READ_ONCE(ctx->async_notify)) complete(&ctx->async_wait.completion); if (!ready) return; /* Schedule the transmission */ if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) schedule_delayed_work(&ctx->tx_work.work, 2); } static int tls_do_encryption(struct sock *sk, struct tls_context *tls_ctx, struct tls_sw_context_tx *ctx, struct aead_request *aead_req, size_t data_len) { struct tls_rec *rec = ctx->open_rec; struct scatterlist *plain_sg = rec->sg_plaintext_data; struct scatterlist *enc_sg = rec->sg_encrypted_data; int rc; /* Skip the first index as it contains AAD data */ rec->sg_encrypted_data[1].offset += tls_ctx->tx.prepend_size; rec->sg_encrypted_data[1].length -= tls_ctx->tx.prepend_size; /* If it is inplace crypto, then pass same SG list as both src, dst */ if (rec->inplace_crypto) plain_sg = enc_sg; aead_request_set_tfm(aead_req, ctx->aead_send); aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); aead_request_set_crypt(aead_req, plain_sg, enc_sg, data_len, tls_ctx->tx.iv); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, tls_encrypt_done, sk); /* Add the record in tx_list */ list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); atomic_inc(&ctx->encrypt_pending); rc = crypto_aead_encrypt(aead_req); if (!rc || rc != -EINPROGRESS) { atomic_dec(&ctx->encrypt_pending); rec->sg_encrypted_data[1].offset -= tls_ctx->tx.prepend_size; rec->sg_encrypted_data[1].length += tls_ctx->tx.prepend_size; } if (!rc) { WRITE_ONCE(rec->tx_ready, true); } else if (rc != -EINPROGRESS) { list_del(&rec->list); return rc; } /* Unhook the record from context if encryption is not failure */ ctx->open_rec = NULL; tls_advance_record_sn(sk, &tls_ctx->tx); return rc; } static int tls_push_record(struct sock *sk, int flags, unsigned char record_type) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct aead_request *req; int rc; if (!rec) return 0; rec->tx_flags = flags; req = &rec->aead_req; sg_mark_end(rec->sg_plaintext_data + rec->sg_plaintext_num_elem); sg_mark_end(rec->sg_encrypted_data + rec->sg_encrypted_num_elem); tls_make_aad(rec->aad_space, rec->sg_plaintext_size, tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, record_type); tls_fill_prepend(tls_ctx, page_address(sg_page(&rec->sg_encrypted_data[1])) + rec->sg_encrypted_data[1].offset, rec->sg_plaintext_size, record_type); tls_ctx->pending_open_record_frags = 0; rc = tls_do_encryption(sk, tls_ctx, ctx, req, rec->sg_plaintext_size); if (rc == -EINPROGRESS) return -EINPROGRESS; if (rc < 0) { tls_err_abort(sk, EBADMSG); return rc; } return tls_tx_records(sk, flags); } static int tls_sw_push_pending_record(struct sock *sk, int flags) { return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); } static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, int length, int *pages_used, unsigned int *size_used, struct scatterlist *to, int to_max_pages, bool charge) { struct page *pages[MAX_SKB_FRAGS]; size_t offset; ssize_t copied, use; int i = 0; unsigned int size = *size_used; int num_elem = *pages_used; int rc = 0; int maxpages; while (length > 0) { i = 0; maxpages = to_max_pages - num_elem; if (maxpages == 0) { rc = -EFAULT; goto out; } copied = iov_iter_get_pages(from, pages, length, maxpages, &offset); if (copied <= 0) { rc = -EFAULT; goto out; } iov_iter_advance(from, copied); length -= copied; size += copied; while (copied) { use = min_t(int, copied, PAGE_SIZE - offset); sg_set_page(&to[num_elem], pages[i], use, offset); sg_unmark_end(&to[num_elem]); if (charge) sk_mem_charge(sk, use); offset = 0; copied -= use; ++i; ++num_elem; } } /* Mark the end in the last sg entry if newly added */ if (num_elem > *pages_used) sg_mark_end(&to[num_elem - 1]); out: if (rc) iov_iter_revert(from, size - *size_used); *size_used = size; *pages_used = num_elem; return rc; } static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, int bytes) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct scatterlist *sg = &rec->sg_plaintext_data[1]; int copy, i, rc = 0; for (i = tls_ctx->pending_open_record_frags; i < rec->sg_plaintext_num_elem; ++i) { copy = sg[i].length; if (copy_from_iter( page_address(sg_page(&sg[i])) + sg[i].offset, copy, from) != copy) { rc = -EFAULT; goto out; } bytes -= copy; ++tls_ctx->pending_open_record_frags; if (!bytes) break; } out: return rc; } static struct tls_rec *get_rec(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec; int mem_size; /* Return if we already have an open record */ if (ctx->open_rec) return ctx->open_rec; mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); rec = kzalloc(mem_size, sk->sk_allocation); if (!rec) return NULL; sg_init_table(&rec->sg_plaintext_data[0], ARRAY_SIZE(rec->sg_plaintext_data)); sg_init_table(&rec->sg_encrypted_data[0], ARRAY_SIZE(rec->sg_encrypted_data)); sg_set_buf(&rec->sg_plaintext_data[0], rec->aad_space, sizeof(rec->aad_space)); sg_set_buf(&rec->sg_encrypted_data[0], rec->aad_space, sizeof(rec->aad_space)); ctx->open_rec = rec; rec->inplace_crypto = 1; return rec; } int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send); bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; unsigned char record_type = TLS_RECORD_TYPE_DATA; bool is_kvec = msg->msg_iter.type & ITER_KVEC; bool eor = !(msg->msg_flags & MSG_MORE); size_t try_to_copy, copied = 0; struct tls_rec *rec; int required_size; int num_async = 0; bool full_record; int record_room; int num_zc = 0; int orig_size; int ret = 0; if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) return -ENOTSUPP; lock_sock(sk); /* Wait till there is any pending write on socket */ if (unlikely(sk->sk_write_pending)) { ret = wait_on_pending_writer(sk, &timeo); if (unlikely(ret)) goto send_end; } if (unlikely(msg->msg_controllen)) { ret = tls_proccess_cmsg(sk, msg, &record_type); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret != -EAGAIN) goto send_end; } } while (msg_data_left(msg)) { if (sk->sk_err) { ret = -sk->sk_err; goto send_end; } rec = get_rec(sk); if (!rec) { ret = -ENOMEM; goto send_end; } orig_size = rec->sg_plaintext_size; full_record = false; try_to_copy = msg_data_left(msg); record_room = TLS_MAX_PAYLOAD_SIZE - rec->sg_plaintext_size; if (try_to_copy >= record_room) { try_to_copy = record_room; full_record = true; } required_size = rec->sg_plaintext_size + try_to_copy + tls_ctx->tx.overhead_size; if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; alloc_encrypted: ret = alloc_encrypted_sg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto wait_for_memory; /* Adjust try_to_copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ try_to_copy -= required_size - rec->sg_encrypted_size; full_record = true; } if (!is_kvec && (full_record || eor) && !async_capable) { ret = zerocopy_from_iter(sk, &msg->msg_iter, try_to_copy, &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size, &rec->sg_plaintext_data[1], ARRAY_SIZE(rec->sg_plaintext_data) - 1, true); if (ret) goto fallback_to_reg_send; rec->inplace_crypto = 0; num_zc++; copied += try_to_copy; ret = tls_push_record(sk, msg->msg_flags, record_type); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret != -EAGAIN) goto send_end; } continue; fallback_to_reg_send: trim_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size, orig_size); } required_size = rec->sg_plaintext_size + try_to_copy; ret = move_to_plaintext_sg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto send_end; /* Adjust try_to_copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ try_to_copy -= required_size - rec->sg_plaintext_size; full_record = true; trim_sg(sk, &rec->sg_encrypted_data[1], &rec->sg_encrypted_num_elem, &rec->sg_encrypted_size, rec->sg_plaintext_size + tls_ctx->tx.overhead_size); } ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); if (ret) goto trim_sgl; copied += try_to_copy; if (full_record || eor) { ret = tls_push_record(sk, msg->msg_flags, record_type); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret != -EAGAIN) goto send_end; } } continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: ret = sk_stream_wait_memory(sk, &timeo); if (ret) { trim_sgl: trim_both_sgl(sk, orig_size); goto send_end; } if (rec->sg_encrypted_size < required_size) goto alloc_encrypted; } if (!num_async) { goto send_end; } else if (num_zc) { /* Wait for pending encryptions to get completed */ smp_store_mb(ctx->async_notify, true); if (atomic_read(&ctx->encrypt_pending)) crypto_wait_req(-EINPROGRESS, &ctx->async_wait); else reinit_completion(&ctx->async_wait.completion); WRITE_ONCE(ctx->async_notify, false); if (ctx->async_wait.err) { ret = ctx->async_wait.err; copied = 0; } } /* Transmit if any encryptions have completed */ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { cancel_delayed_work(&ctx->tx_work.work); tls_tx_records(sk, msg->msg_flags); } send_end: ret = sk_stream_error(sk, msg->msg_flags, ret); release_sock(sk); return copied ? copied : ret; } int tls_sw_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); unsigned char record_type = TLS_RECORD_TYPE_DATA; size_t orig_size = size; struct scatterlist *sg; struct tls_rec *rec; int num_async = 0; bool full_record; int record_room; int ret = 0; bool eor; if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) return -ENOTSUPP; /* No MSG_EOR from splice, only look at MSG_MORE */ eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); lock_sock(sk); sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* Wait till there is any pending write on socket */ if (unlikely(sk->sk_write_pending)) { ret = wait_on_pending_writer(sk, &timeo); if (unlikely(ret)) goto sendpage_end; } /* Call the sk_stream functions to manage the sndbuf mem. */ while (size > 0) { size_t copy, required_size; if (sk->sk_err) { ret = -sk->sk_err; goto sendpage_end; } rec = get_rec(sk); if (!rec) { ret = -ENOMEM; goto sendpage_end; } full_record = false; record_room = TLS_MAX_PAYLOAD_SIZE - rec->sg_plaintext_size; copy = size; if (copy >= record_room) { copy = record_room; full_record = true; } required_size = rec->sg_plaintext_size + copy + tls_ctx->tx.overhead_size; if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; alloc_payload: ret = alloc_encrypted_sg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto wait_for_memory; /* Adjust copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ copy -= required_size - rec->sg_plaintext_size; full_record = true; } get_page(page); sg = &rec->sg_plaintext_data[1] + rec->sg_plaintext_num_elem; sg_set_page(sg, page, copy, offset); sg_unmark_end(sg); rec->sg_plaintext_num_elem++; sk_mem_charge(sk, copy); offset += copy; size -= copy; rec->sg_plaintext_size += copy; tls_ctx->pending_open_record_frags = rec->sg_plaintext_num_elem; if (full_record || eor || rec->sg_plaintext_num_elem == ARRAY_SIZE(rec->sg_plaintext_data) - 1) { rec->inplace_crypto = 0; ret = tls_push_record(sk, flags, record_type); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret != -EAGAIN) goto sendpage_end; } } continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: ret = sk_stream_wait_memory(sk, &timeo); if (ret) { trim_both_sgl(sk, rec->sg_plaintext_size); goto sendpage_end; } goto alloc_payload; } if (num_async) { /* Transmit if any encryptions have completed */ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { cancel_delayed_work(&ctx->tx_work.work); tls_tx_records(sk, flags); } } sendpage_end: if (orig_size > size) ret = orig_size - size; else ret = sk_stream_error(sk, flags, ret); release_sock(sk); return ret; } static struct sk_buff *tls_wait_data(struct sock *sk, int flags, long timeo, int *err) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct sk_buff *skb; DEFINE_WAIT_FUNC(wait, woken_wake_function); while (!(skb = ctx->recv_pkt)) { if (sk->sk_err) { *err = sock_error(sk); return NULL; } if (sk->sk_shutdown & RCV_SHUTDOWN) return NULL; if (sock_flag(sk, SOCK_DONE)) return NULL; if ((flags & MSG_DONTWAIT) || !timeo) { *err = -EAGAIN; return NULL; } add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); /* Handle signals */ if (signal_pending(current)) { *err = sock_intr_errno(timeo); return NULL; } } return skb; } /* This function decrypts the input skb into either out_iov or in out_sg * or in skb buffers itself. The input parameter 'zc' indicates if * zero-copy mode needs to be tried or not. With zero-copy mode, either * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are * NULL, then the decryption happens inside skb buffers itself, i.e. * zero-copy gets disabled and 'zc' is updated. */ static int decrypt_internal(struct sock *sk, struct sk_buff *skb, struct iov_iter *out_iov, struct scatterlist *out_sg, int *chunk, bool *zc) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = strp_msg(skb); int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; struct aead_request *aead_req; struct sk_buff *unused; u8 *aad, *iv, *mem = NULL; struct scatterlist *sgin = NULL; struct scatterlist *sgout = NULL; const int data_len = rxm->full_len - tls_ctx->rx.overhead_size; if (*zc && (out_iov || out_sg)) { if (out_iov) n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; else n_sgout = sg_nents(out_sg); n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size, rxm->full_len - tls_ctx->rx.prepend_size); } else { n_sgout = 0; *zc = false; n_sgin = skb_cow_data(skb, 0, &unused); } if (n_sgin < 1) return -EBADMSG; /* Increment to accommodate AAD */ n_sgin = n_sgin + 1; nsg = n_sgin + n_sgout; aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); mem_size = aead_size + (nsg * sizeof(struct scatterlist)); mem_size = mem_size + TLS_AAD_SPACE_SIZE; mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); /* Allocate a single block of memory which contains * aead_req || sgin[] || sgout[] || aad || iv. * This order achieves correct alignment for aead_req, sgin, sgout. */ mem = kmalloc(mem_size, sk->sk_allocation); if (!mem) return -ENOMEM; /* Segment the allocated memory */ aead_req = (struct aead_request *)mem; sgin = (struct scatterlist *)(mem + aead_size); sgout = sgin + n_sgin; aad = (u8 *)(sgout + n_sgout); iv = aad + TLS_AAD_SPACE_SIZE; /* Prepare IV */ err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, tls_ctx->rx.iv_size); if (err < 0) { kfree(mem); return err; } memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); /* Prepare AAD */ tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size, tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size, ctx->control); /* Prepare sgin */ sg_init_table(sgin, n_sgin); sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE); err = skb_to_sgvec(skb, &sgin[1], rxm->offset + tls_ctx->rx.prepend_size, rxm->full_len - tls_ctx->rx.prepend_size); if (err < 0) { kfree(mem); return err; } if (n_sgout) { if (out_iov) { sg_init_table(sgout, n_sgout); sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE); *chunk = 0; err = zerocopy_from_iter(sk, out_iov, data_len, &pages, chunk, &sgout[1], (n_sgout - 1), false); if (err < 0) goto fallback_to_reg_recv; } else if (out_sg) { memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); } else { goto fallback_to_reg_recv; } } else { fallback_to_reg_recv: sgout = sgin; pages = 0; *chunk = 0; *zc = false; } /* Prepare and submit AEAD request */ err = tls_do_decryption(sk, skb, sgin, sgout, iv, data_len, aead_req, *zc); if (err == -EINPROGRESS) return err; /* Release the pages in case iov was mapped to pages */ for (; pages > 0; pages--) put_page(sg_page(&sgout[pages])); kfree(mem); return err; } static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, struct iov_iter *dest, int *chunk, bool *zc) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = strp_msg(skb); int err = 0; #ifdef CONFIG_TLS_DEVICE err = tls_device_decrypted(sk, skb); if (err < 0) return err; #endif if (!ctx->decrypted) { err = decrypt_internal(sk, skb, dest, NULL, chunk, zc); if (err < 0) { if (err == -EINPROGRESS) tls_advance_record_sn(sk, &tls_ctx->rx); return err; } } else { *zc = false; } rxm->offset += tls_ctx->rx.prepend_size; rxm->full_len -= tls_ctx->rx.overhead_size; tls_advance_record_sn(sk, &tls_ctx->rx); ctx->decrypted = true; ctx->saved_data_ready(sk); return err; } int decrypt_skb(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgout) { bool zc = true; int chunk; return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc); } static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, unsigned int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); if (skb) { struct strp_msg *rxm = strp_msg(skb); if (len < rxm->full_len) { rxm->offset += len; rxm->full_len -= len; return false; } kfree_skb(skb); } /* Finished with message */ ctx->recv_pkt = NULL; __strp_unpause(&ctx->strp); return true; } int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); unsigned char control; struct strp_msg *rxm; struct sk_buff *skb; ssize_t copied = 0; bool cmsg = false; int target, err = 0; long timeo; bool is_kvec = msg->msg_iter.type & ITER_KVEC; int num_async = 0; flags |= nonblock; if (unlikely(flags & MSG_ERRQUEUE)) return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); lock_sock(sk); target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); do { bool zc = false; bool async = false; int chunk = 0; skb = tls_wait_data(sk, flags, timeo, &err); if (!skb) goto recv_end; rxm = strp_msg(skb); if (!cmsg) { int cerr; cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, sizeof(ctx->control), &ctx->control); cmsg = true; control = ctx->control; if (ctx->control != TLS_RECORD_TYPE_DATA) { if (cerr || msg->msg_flags & MSG_CTRUNC) { err = -EIO; goto recv_end; } } } else if (control != ctx->control) { goto recv_end; } if (!ctx->decrypted) { int to_copy = rxm->full_len - tls_ctx->rx.overhead_size; if (!is_kvec && to_copy <= len && likely(!(flags & MSG_PEEK))) zc = true; err = decrypt_skb_update(sk, skb, &msg->msg_iter, &chunk, &zc); if (err < 0 && err != -EINPROGRESS) { tls_err_abort(sk, EBADMSG); goto recv_end; } if (err == -EINPROGRESS) { async = true; num_async++; goto pick_next_record; } ctx->decrypted = true; } if (!zc) { chunk = min_t(unsigned int, rxm->full_len, len); err = skb_copy_datagram_msg(skb, rxm->offset, msg, chunk); if (err < 0) goto recv_end; } pick_next_record: copied += chunk; len -= chunk; if (likely(!(flags & MSG_PEEK))) { u8 control = ctx->control; /* For async, drop current skb reference */ if (async) skb = NULL; if (tls_sw_advance_skb(sk, skb, chunk)) { /* Return full control message to * userspace before trying to parse * another message type */ msg->msg_flags |= MSG_EOR; if (control != TLS_RECORD_TYPE_DATA) goto recv_end; } else { break; } } else { /* MSG_PEEK right now cannot look beyond current skb * from strparser, meaning we cannot advance skb here * and thus unpause strparser since we'd loose original * one. */ break; } /* If we have a new message from strparser, continue now. */ if (copied >= target && !ctx->recv_pkt) break; } while (len); recv_end: if (num_async) { /* Wait for all previously submitted records to be decrypted */ smp_store_mb(ctx->async_notify, true); if (atomic_read(&ctx->decrypt_pending)) { err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); if (err) { /* one of async decrypt failed */ tls_err_abort(sk, err); copied = 0; } } else { reinit_completion(&ctx->async_wait.completion); } WRITE_ONCE(ctx->async_notify, false); } release_sock(sk); return copied ? : err; } ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct tls_context *tls_ctx = tls_get_ctx(sock->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = NULL; struct sock *sk = sock->sk; struct sk_buff *skb; ssize_t copied = 0; int err = 0; long timeo; int chunk; bool zc = false; lock_sock(sk); timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); skb = tls_wait_data(sk, flags, timeo, &err); if (!skb) goto splice_read_end; /* splice does not support reading control messages */ if (ctx->control != TLS_RECORD_TYPE_DATA) { err = -ENOTSUPP; goto splice_read_end; } if (!ctx->decrypted) { err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc); if (err < 0) { tls_err_abort(sk, EBADMSG); goto splice_read_end; } ctx->decrypted = true; } rxm = strp_msg(skb); chunk = min_t(unsigned int, rxm->full_len, len); copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); if (copied < 0) goto splice_read_end; if (likely(!(flags & MSG_PEEK))) tls_sw_advance_skb(sk, skb, copied); splice_read_end: release_sock(sk); return copied ? : err; } unsigned int tls_sw_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait) { unsigned int ret; struct sock *sk = sock->sk; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); /* Grab POLLOUT and POLLHUP from the underlying socket */ ret = ctx->sk_poll(file, sock, wait); /* Clear POLLIN bits, and set based on recv_pkt */ ret &= ~(POLLIN | POLLRDNORM); if (ctx->recv_pkt) ret |= POLLIN | POLLRDNORM; return ret; } static int tls_read_size(struct strparser *strp, struct sk_buff *skb) { struct tls_context *tls_ctx = tls_get_ctx(strp->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; struct strp_msg *rxm = strp_msg(skb); size_t cipher_overhead; size_t data_len = 0; int ret; /* Verify that we have a full TLS header, or wait for more data */ if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) return 0; /* Sanity-check size of on-stack buffer. */ if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) { ret = -EINVAL; goto read_failure; } /* Linearize header to local buffer */ ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); if (ret < 0) goto read_failure; ctx->control = header[0]; data_len = ((header[4] & 0xFF) | (header[3] << 8)); cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { ret = -EMSGSIZE; goto read_failure; } if (data_len < cipher_overhead) { ret = -EBADMSG; goto read_failure; } if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) || header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) { ret = -EINVAL; goto read_failure; } #ifdef CONFIG_TLS_DEVICE handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, *(u64*)tls_ctx->rx.rec_seq); #endif return data_len + TLS_HEADER_SIZE; read_failure: tls_err_abort(strp->sk, ret); return ret; } static void tls_queue(struct strparser *strp, struct sk_buff *skb) { struct tls_context *tls_ctx = tls_get_ctx(strp->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); ctx->decrypted = false; ctx->recv_pkt = skb; strp_pause(strp); ctx->saved_data_ready(strp->sk); } static void tls_data_ready(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); strp_data_ready(&ctx->strp); } void tls_sw_free_resources_tx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec, *tmp; /* Wait for any pending async encryptions to complete */ smp_store_mb(ctx->async_notify, true); if (atomic_read(&ctx->encrypt_pending)) crypto_wait_req(-EINPROGRESS, &ctx->async_wait); cancel_delayed_work_sync(&ctx->tx_work.work); /* Tx whatever records we can transmit and abandon the rest */ tls_tx_records(sk, -1); /* Free up un-sent records in tx_list. First, free * the partially sent record if any at head of tx_list. */ if (tls_ctx->partially_sent_record) { struct scatterlist *sg = tls_ctx->partially_sent_record; while (1) { put_page(sg_page(sg)); sk_mem_uncharge(sk, sg->length); if (sg_is_last(sg)) break; sg++; } tls_ctx->partially_sent_record = NULL; rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); free_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size); list_del(&rec->list); kfree(rec); } list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { free_sg(sk, &rec->sg_encrypted_data[1], &rec->sg_encrypted_num_elem, &rec->sg_encrypted_size); free_sg(sk, &rec->sg_plaintext_data[1], &rec->sg_plaintext_num_elem, &rec->sg_plaintext_size); list_del(&rec->list); kfree(rec); } crypto_free_aead(ctx->aead_send); tls_free_open_rec(sk); kfree(ctx); } void tls_sw_release_resources_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); if (ctx->aead_recv) { kfree_skb(ctx->recv_pkt); ctx->recv_pkt = NULL; crypto_free_aead(ctx->aead_recv); strp_stop(&ctx->strp); write_lock_bh(&sk->sk_callback_lock); sk->sk_data_ready = ctx->saved_data_ready; write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); strp_done(&ctx->strp); lock_sock(sk); } } void tls_sw_free_resources_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); tls_sw_release_resources_rx(sk); kfree(ctx); } /* The work handler to transmitt the encrypted records in tx_list */ static void tx_work_handler(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct tx_work *tx_work = container_of(delayed_work, struct tx_work, work); struct sock *sk = tx_work->sk; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) return; lock_sock(sk); tls_tx_records(sk, -1); release_sock(sk); } int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) { struct tls_crypto_info *crypto_info; struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; struct tls_sw_context_tx *sw_ctx_tx = NULL; struct tls_sw_context_rx *sw_ctx_rx = NULL; struct cipher_context *cctx; struct crypto_aead **aead; struct strp_callbacks cb; u16 nonce_size, tag_size, iv_size, rec_seq_size; char *iv, *rec_seq; int rc = 0; if (!ctx) { rc = -EINVAL; goto out; } if (tx) { if (!ctx->priv_ctx_tx) { sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); if (!sw_ctx_tx) { rc = -ENOMEM; goto out; } ctx->priv_ctx_tx = sw_ctx_tx; } else { sw_ctx_tx = (struct tls_sw_context_tx *)ctx->priv_ctx_tx; } } else { if (!ctx->priv_ctx_rx) { sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); if (!sw_ctx_rx) { rc = -ENOMEM; goto out; } ctx->priv_ctx_rx = sw_ctx_rx; } else { sw_ctx_rx = (struct tls_sw_context_rx *)ctx->priv_ctx_rx; } } if (tx) { crypto_init_wait(&sw_ctx_tx->async_wait); crypto_info = &ctx->crypto_send.info; cctx = &ctx->tx; aead = &sw_ctx_tx->aead_send; INIT_LIST_HEAD(&sw_ctx_tx->tx_list); INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); sw_ctx_tx->tx_work.sk = sk; } else { crypto_init_wait(&sw_ctx_rx->async_wait); crypto_info = &ctx->crypto_recv.info; cctx = &ctx->rx; aead = &sw_ctx_rx->aead_recv; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: { nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; rec_seq = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; gcm_128_info = (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; break; } default: rc = -EINVAL; goto free_priv; } /* Sanity-check the IV size for stack allocations. */ if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { rc = -EINVAL; goto free_priv; } cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; cctx->tag_size = tag_size; cctx->overhead_size = cctx->prepend_size + cctx->tag_size; cctx->iv_size = iv_size; cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, GFP_KERNEL); if (!cctx->iv) { rc = -ENOMEM; goto free_priv; } memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); cctx->rec_seq_size = rec_seq_size; cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); if (!cctx->rec_seq) { rc = -ENOMEM; goto free_iv; } if (!*aead) { *aead = crypto_alloc_aead("gcm(aes)", 0, 0); if (IS_ERR(*aead)) { rc = PTR_ERR(*aead); *aead = NULL; goto free_rec_seq; } } ctx->push_pending_record = tls_sw_push_pending_record; rc = crypto_aead_setkey(*aead, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); if (rc) goto free_aead; rc = crypto_aead_setauthsize(*aead, cctx->tag_size); if (rc) goto free_aead; if (sw_ctx_rx) { /* Set up strparser */ memset(&cb, 0, sizeof(cb)); cb.rcv_msg = tls_queue; cb.parse_msg = tls_read_size; strp_init(&sw_ctx_rx->strp, sk, &cb); write_lock_bh(&sk->sk_callback_lock); sw_ctx_rx->saved_data_ready = sk->sk_data_ready; sk->sk_data_ready = tls_data_ready; write_unlock_bh(&sk->sk_callback_lock); sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll; strp_check_rcv(&sw_ctx_rx->strp); } goto out; free_aead: crypto_free_aead(*aead); *aead = NULL; free_rec_seq: kfree(cctx->rec_seq); cctx->rec_seq = NULL; free_iv: kfree(cctx->iv); cctx->iv = NULL; free_priv: if (tx) { kfree(ctx->priv_ctx_tx); ctx->priv_ctx_tx = NULL; } else { kfree(ctx->priv_ctx_rx); ctx->priv_ctx_rx = NULL; } out: return rc; }