/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2007 Johannes Berg * Copyright 2008-2011 Luis R. Rodriguez * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2019 Intel Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: Wireless regulatory infrastructure * * The usual implementation is for a driver to read a device EEPROM to * determine which regulatory domain it should be operating under, then * looking up the allowable channels in a driver-local table and finally * registering those channels in the wiphy structure. * * Another set of compliance enforcement is for drivers to use their * own compliance limits which can be stored on the EEPROM. The host * driver or firmware may ensure these are used. * * In addition to all this we provide an extra layer of regulatory * conformance. For drivers which do not have any regulatory * information CRDA provides the complete regulatory solution. * For others it provides a community effort on further restrictions * to enhance compliance. * * Note: When number of rules --> infinity we will not be able to * index on alpha2 any more, instead we'll probably have to * rely on some SHA1 checksum of the regdomain for example. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "reg.h" #include "rdev-ops.h" #include "nl80211.h" /* * Grace period we give before making sure all current interfaces reside on * channels allowed by the current regulatory domain. */ #define REG_ENFORCE_GRACE_MS 60000 /** * enum reg_request_treatment - regulatory request treatment * * @REG_REQ_OK: continue processing the regulatory request * @REG_REQ_IGNORE: ignore the regulatory request * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should * be intersected with the current one. * @REG_REQ_ALREADY_SET: the regulatory request will not change the current * regulatory settings, and no further processing is required. */ enum reg_request_treatment { REG_REQ_OK, REG_REQ_IGNORE, REG_REQ_INTERSECT, REG_REQ_ALREADY_SET, }; static struct regulatory_request core_request_world = { .initiator = NL80211_REGDOM_SET_BY_CORE, .alpha2[0] = '0', .alpha2[1] = '0', .intersect = false, .processed = true, .country_ie_env = ENVIRON_ANY, }; /* * Receipt of information from last regulatory request, * protected by RTNL (and can be accessed with RCU protection) */ static struct regulatory_request __rcu *last_request = (void __force __rcu *)&core_request_world; /* To trigger userspace events and load firmware */ static struct platform_device *reg_pdev; /* * Central wireless core regulatory domains, we only need two, * the current one and a world regulatory domain in case we have no * information to give us an alpha2. * (protected by RTNL, can be read under RCU) */ const struct ieee80211_regdomain __rcu *cfg80211_regdomain; /* * Number of devices that registered to the core * that support cellular base station regulatory hints * (protected by RTNL) */ static int reg_num_devs_support_basehint; /* * State variable indicating if the platform on which the devices * are attached is operating in an indoor environment. The state variable * is relevant for all registered devices. */ static bool reg_is_indoor; static spinlock_t reg_indoor_lock; /* Used to track the userspace process controlling the indoor setting */ static u32 reg_is_indoor_portid; static void restore_regulatory_settings(bool reset_user, bool cached); static void print_regdomain(const struct ieee80211_regdomain *rd); static const struct ieee80211_regdomain *get_cfg80211_regdom(void) { return rcu_dereference_rtnl(cfg80211_regdomain); } const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) { return rcu_dereference_rtnl(wiphy->regd); } static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: return "unset"; case NL80211_DFS_FCC: return "FCC"; case NL80211_DFS_ETSI: return "ETSI"; case NL80211_DFS_JP: return "JP"; } return "Unknown"; } enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) { const struct ieee80211_regdomain *regd = NULL; const struct ieee80211_regdomain *wiphy_regd = NULL; regd = get_cfg80211_regdom(); if (!wiphy) goto out; wiphy_regd = get_wiphy_regdom(wiphy); if (!wiphy_regd) goto out; if (wiphy_regd->dfs_region == regd->dfs_region) goto out; pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n", dev_name(&wiphy->dev), reg_dfs_region_str(wiphy_regd->dfs_region), reg_dfs_region_str(regd->dfs_region)); out: return regd->dfs_region; } static void rcu_free_regdom(const struct ieee80211_regdomain *r) { if (!r) return; kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); } static struct regulatory_request *get_last_request(void) { return rcu_dereference_rtnl(last_request); } /* Used to queue up regulatory hints */ static LIST_HEAD(reg_requests_list); static spinlock_t reg_requests_lock; /* Used to queue up beacon hints for review */ static LIST_HEAD(reg_pending_beacons); static spinlock_t reg_pending_beacons_lock; /* Used to keep track of processed beacon hints */ static LIST_HEAD(reg_beacon_list); struct reg_beacon { struct list_head list; struct ieee80211_channel chan; }; static void reg_check_chans_work(struct work_struct *work); static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work); static void reg_todo(struct work_struct *work); static DECLARE_WORK(reg_work, reg_todo); /* We keep a static world regulatory domain in case of the absence of CRDA */ static const struct ieee80211_regdomain world_regdom = { .n_reg_rules = 8, .alpha2 = "00", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), /* IEEE 802.11b/g, channels 12..13. */ REG_RULE(2467-10, 2472+10, 20, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), /* IEEE 802.11 channel 14 - Only JP enables * this and for 802.11b only */ REG_RULE(2484-10, 2484+10, 20, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_NO_OFDM), /* IEEE 802.11a, channel 36..48 */ REG_RULE(5180-10, 5240+10, 80, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW), /* IEEE 802.11a, channel 52..64 - DFS required */ REG_RULE(5260-10, 5320+10, 80, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW | NL80211_RRF_DFS), /* IEEE 802.11a, channel 100..144 - DFS required */ REG_RULE(5500-10, 5720+10, 160, 6, 20, NL80211_RRF_NO_IR | NL80211_RRF_DFS), /* IEEE 802.11a, channel 149..165 */ REG_RULE(5745-10, 5825+10, 80, 6, 20, NL80211_RRF_NO_IR), /* IEEE 802.11ad (60GHz), channels 1..3 */ REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), } }; /* protected by RTNL */ static const struct ieee80211_regdomain *cfg80211_world_regdom = &world_regdom; static char *ieee80211_regdom = "00"; static char user_alpha2[2]; static const struct ieee80211_regdomain *cfg80211_user_regdom; module_param(ieee80211_regdom, charp, 0444); MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); static void reg_free_request(struct regulatory_request *request) { if (request == &core_request_world) return; if (request != get_last_request()) kfree(request); } static void reg_free_last_request(void) { struct regulatory_request *lr = get_last_request(); if (lr != &core_request_world && lr) kfree_rcu(lr, rcu_head); } static void reg_update_last_request(struct regulatory_request *request) { struct regulatory_request *lr; lr = get_last_request(); if (lr == request) return; reg_free_last_request(); rcu_assign_pointer(last_request, request); } static void reset_regdomains(bool full_reset, const struct ieee80211_regdomain *new_regdom) { const struct ieee80211_regdomain *r; ASSERT_RTNL(); r = get_cfg80211_regdom(); /* avoid freeing static information or freeing something twice */ if (r == cfg80211_world_regdom) r = NULL; if (cfg80211_world_regdom == &world_regdom) cfg80211_world_regdom = NULL; if (r == &world_regdom) r = NULL; rcu_free_regdom(r); rcu_free_regdom(cfg80211_world_regdom); cfg80211_world_regdom = &world_regdom; rcu_assign_pointer(cfg80211_regdomain, new_regdom); if (!full_reset) return; reg_update_last_request(&core_request_world); } /* * Dynamic world regulatory domain requested by the wireless * core upon initialization */ static void update_world_regdomain(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr; lr = get_last_request(); WARN_ON(!lr); reset_regdomains(false, rd); cfg80211_world_regdom = rd; } bool is_world_regdom(const char *alpha2) { if (!alpha2) return false; return alpha2[0] == '0' && alpha2[1] == '0'; } static bool is_alpha2_set(const char *alpha2) { if (!alpha2) return false; return alpha2[0] && alpha2[1]; } static bool is_unknown_alpha2(const char *alpha2) { if (!alpha2) return false; /* * Special case where regulatory domain was built by driver * but a specific alpha2 cannot be determined */ return alpha2[0] == '9' && alpha2[1] == '9'; } static bool is_intersected_alpha2(const char *alpha2) { if (!alpha2) return false; /* * Special case where regulatory domain is the * result of an intersection between two regulatory domain * structures */ return alpha2[0] == '9' && alpha2[1] == '8'; } static bool is_an_alpha2(const char *alpha2) { if (!alpha2) return false; return isalpha(alpha2[0]) && isalpha(alpha2[1]); } static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) { if (!alpha2_x || !alpha2_y) return false; return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; } static bool regdom_changes(const char *alpha2) { const struct ieee80211_regdomain *r = get_cfg80211_regdom(); if (!r) return true; return !alpha2_equal(r->alpha2, alpha2); } /* * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER * has ever been issued. */ static bool is_user_regdom_saved(void) { if (user_alpha2[0] == '9' && user_alpha2[1] == '7') return false; /* This would indicate a mistake on the design */ if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), "Unexpected user alpha2: %c%c\n", user_alpha2[0], user_alpha2[1])) return false; return true; } static const struct ieee80211_regdomain * reg_copy_regd(const struct ieee80211_regdomain *src_regd) { struct ieee80211_regdomain *regd; unsigned int i; regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules), GFP_KERNEL); if (!regd) return ERR_PTR(-ENOMEM); memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); for (i = 0; i < src_regd->n_reg_rules; i++) memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], sizeof(struct ieee80211_reg_rule)); return regd; } static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd) { ASSERT_RTNL(); if (!IS_ERR(cfg80211_user_regdom)) kfree(cfg80211_user_regdom); cfg80211_user_regdom = reg_copy_regd(rd); } struct reg_regdb_apply_request { struct list_head list; const struct ieee80211_regdomain *regdom; }; static LIST_HEAD(reg_regdb_apply_list); static DEFINE_MUTEX(reg_regdb_apply_mutex); static void reg_regdb_apply(struct work_struct *work) { struct reg_regdb_apply_request *request; rtnl_lock(); mutex_lock(®_regdb_apply_mutex); while (!list_empty(®_regdb_apply_list)) { request = list_first_entry(®_regdb_apply_list, struct reg_regdb_apply_request, list); list_del(&request->list); set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB); kfree(request); } mutex_unlock(®_regdb_apply_mutex); rtnl_unlock(); } static DECLARE_WORK(reg_regdb_work, reg_regdb_apply); static int reg_schedule_apply(const struct ieee80211_regdomain *regdom) { struct reg_regdb_apply_request *request; request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL); if (!request) { kfree(regdom); return -ENOMEM; } request->regdom = regdom; mutex_lock(®_regdb_apply_mutex); list_add_tail(&request->list, ®_regdb_apply_list); mutex_unlock(®_regdb_apply_mutex); schedule_work(®_regdb_work); return 0; } #ifdef CONFIG_CFG80211_CRDA_SUPPORT /* Max number of consecutive attempts to communicate with CRDA */ #define REG_MAX_CRDA_TIMEOUTS 10 static u32 reg_crda_timeouts; static void crda_timeout_work(struct work_struct *work); static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work); static void crda_timeout_work(struct work_struct *work) { pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); rtnl_lock(); reg_crda_timeouts++; restore_regulatory_settings(true, false); rtnl_unlock(); } static void cancel_crda_timeout(void) { cancel_delayed_work(&crda_timeout); } static void cancel_crda_timeout_sync(void) { cancel_delayed_work_sync(&crda_timeout); } static void reset_crda_timeouts(void) { reg_crda_timeouts = 0; } /* * This lets us keep regulatory code which is updated on a regulatory * basis in userspace. */ static int call_crda(const char *alpha2) { char country[12]; char *env[] = { country, NULL }; int ret; snprintf(country, sizeof(country), "COUNTRY=%c%c", alpha2[0], alpha2[1]); if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) { pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n"); return -EINVAL; } if (!is_world_regdom((char *) alpha2)) pr_debug("Calling CRDA for country: %c%c\n", alpha2[0], alpha2[1]); else pr_debug("Calling CRDA to update world regulatory domain\n"); ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); if (ret) return ret; queue_delayed_work(system_power_efficient_wq, &crda_timeout, msecs_to_jiffies(3142)); return 0; } #else static inline void cancel_crda_timeout(void) {} static inline void cancel_crda_timeout_sync(void) {} static inline void reset_crda_timeouts(void) {} static inline int call_crda(const char *alpha2) { return -ENODATA; } #endif /* CONFIG_CFG80211_CRDA_SUPPORT */ /* code to directly load a firmware database through request_firmware */ static const struct fwdb_header *regdb; struct fwdb_country { u8 alpha2[2]; __be16 coll_ptr; /* this struct cannot be extended */ } __packed __aligned(4); struct fwdb_collection { u8 len; u8 n_rules; u8 dfs_region; /* no optional data yet */ /* aligned to 2, then followed by __be16 array of rule pointers */ } __packed __aligned(4); enum fwdb_flags { FWDB_FLAG_NO_OFDM = BIT(0), FWDB_FLAG_NO_OUTDOOR = BIT(1), FWDB_FLAG_DFS = BIT(2), FWDB_FLAG_NO_IR = BIT(3), FWDB_FLAG_AUTO_BW = BIT(4), }; struct fwdb_wmm_ac { u8 ecw; u8 aifsn; __be16 cot; } __packed; struct fwdb_wmm_rule { struct fwdb_wmm_ac client[IEEE80211_NUM_ACS]; struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS]; } __packed; struct fwdb_rule { u8 len; u8 flags; __be16 max_eirp; __be32 start, end, max_bw; /* start of optional data */ __be16 cac_timeout; __be16 wmm_ptr; } __packed __aligned(4); #define FWDB_MAGIC 0x52474442 #define FWDB_VERSION 20 struct fwdb_header { __be32 magic; __be32 version; struct fwdb_country country[]; } __packed __aligned(4); static int ecw2cw(int ecw) { return (1 << ecw) - 1; } static bool valid_wmm(struct fwdb_wmm_rule *rule) { struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule; int i; for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) { u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4); u16 cw_max = ecw2cw(ac[i].ecw & 0x0f); u8 aifsn = ac[i].aifsn; if (cw_min >= cw_max) return false; if (aifsn < 1) return false; } return true; } static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr) { struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2)); if ((u8 *)rule + sizeof(rule->len) > data + size) return false; /* mandatory fields */ if (rule->len < offsetofend(struct fwdb_rule, max_bw)) return false; if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) { u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; struct fwdb_wmm_rule *wmm; if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size) return false; wmm = (void *)(data + wmm_ptr); if (!valid_wmm(wmm)) return false; } return true; } static bool valid_country(const u8 *data, unsigned int size, const struct fwdb_country *country) { unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; struct fwdb_collection *coll = (void *)(data + ptr); __be16 *rules_ptr; unsigned int i; /* make sure we can read len/n_rules */ if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size) return false; /* make sure base struct and all rules fit */ if ((u8 *)coll + ALIGN(coll->len, 2) + (coll->n_rules * 2) > data + size) return false; /* mandatory fields must exist */ if (coll->len < offsetofend(struct fwdb_collection, dfs_region)) return false; rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); for (i = 0; i < coll->n_rules; i++) { u16 rule_ptr = be16_to_cpu(rules_ptr[i]); if (!valid_rule(data, size, rule_ptr)) return false; } return true; } #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB static struct key *builtin_regdb_keys; static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen) { const u8 *end = p + buflen; size_t plen; key_ref_t key; while (p < end) { /* Each cert begins with an ASN.1 SEQUENCE tag and must be more * than 256 bytes in size. */ if (end - p < 4) goto dodgy_cert; if (p[0] != 0x30 && p[1] != 0x82) goto dodgy_cert; plen = (p[2] << 8) | p[3]; plen += 4; if (plen > end - p) goto dodgy_cert; key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1), "asymmetric", NULL, p, plen, &internal_key_acl, KEY_ALLOC_NOT_IN_QUOTA | KEY_ALLOC_BUILT_IN | KEY_ALLOC_BYPASS_RESTRICTION); if (IS_ERR(key)) { pr_err("Problem loading in-kernel X.509 certificate (%ld)\n", PTR_ERR(key)); } else { pr_notice("Loaded X.509 cert '%s'\n", key_ref_to_ptr(key)->description); key_ref_put(key); } p += plen; } return; dodgy_cert: pr_err("Problem parsing in-kernel X.509 certificate list\n"); } static int __init load_builtin_regdb_keys(void) { builtin_regdb_keys = keyring_alloc(".builtin_regdb_keys", KUIDT_INIT(0), KGIDT_INIT(0), current_cred(), &internal_keyring_acl, KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); if (IS_ERR(builtin_regdb_keys)) return PTR_ERR(builtin_regdb_keys); pr_notice("Loading compiled-in X.509 certificates for regulatory database\n"); #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len); #endif #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0') load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len); #endif return 0; } static bool regdb_has_valid_signature(const u8 *data, unsigned int size) { const struct firmware *sig; bool result; if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev)) return false; result = verify_pkcs7_signature(data, size, sig->data, sig->size, builtin_regdb_keys, VERIFYING_UNSPECIFIED_SIGNATURE, NULL, NULL) == 0; release_firmware(sig); return result; } static void free_regdb_keyring(void) { key_put(builtin_regdb_keys); } #else static int load_builtin_regdb_keys(void) { return 0; } static bool regdb_has_valid_signature(const u8 *data, unsigned int size) { return true; } static void free_regdb_keyring(void) { } #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */ static bool valid_regdb(const u8 *data, unsigned int size) { const struct fwdb_header *hdr = (void *)data; const struct fwdb_country *country; if (size < sizeof(*hdr)) return false; if (hdr->magic != cpu_to_be32(FWDB_MAGIC)) return false; if (hdr->version != cpu_to_be32(FWDB_VERSION)) return false; if (!regdb_has_valid_signature(data, size)) return false; country = &hdr->country[0]; while ((u8 *)(country + 1) <= data + size) { if (!country->coll_ptr) break; if (!valid_country(data, size, country)) return false; country++; } return true; } static void set_wmm_rule(const struct fwdb_header *db, const struct fwdb_country *country, const struct fwdb_rule *rule, struct ieee80211_reg_rule *rrule) { struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule; struct fwdb_wmm_rule *wmm; unsigned int i, wmm_ptr; wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2; wmm = (void *)((u8 *)db + wmm_ptr); if (!valid_wmm(wmm)) { pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n", be32_to_cpu(rule->start), be32_to_cpu(rule->end), country->alpha2[0], country->alpha2[1]); return; } for (i = 0; i < IEEE80211_NUM_ACS; i++) { wmm_rule->client[i].cw_min = ecw2cw((wmm->client[i].ecw & 0xf0) >> 4); wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f); wmm_rule->client[i].aifsn = wmm->client[i].aifsn; wmm_rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot); wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4); wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f); wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn; wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot); } rrule->has_wmm = true; } static int __regdb_query_wmm(const struct fwdb_header *db, const struct fwdb_country *country, int freq, struct ieee80211_reg_rule *rrule) { unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; struct fwdb_collection *coll = (void *)((u8 *)db + ptr); int i; for (i = 0; i < coll->n_rules; i++) { __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr)) continue; if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) && freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) { set_wmm_rule(db, country, rule, rrule); return 0; } } return -ENODATA; } int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule) { const struct fwdb_header *hdr = regdb; const struct fwdb_country *country; if (!regdb) return -ENODATA; if (IS_ERR(regdb)) return PTR_ERR(regdb); country = &hdr->country[0]; while (country->coll_ptr) { if (alpha2_equal(alpha2, country->alpha2)) return __regdb_query_wmm(regdb, country, freq, rule); country++; } return -ENODATA; } EXPORT_SYMBOL(reg_query_regdb_wmm); static int regdb_query_country(const struct fwdb_header *db, const struct fwdb_country *country) { unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2; struct fwdb_collection *coll = (void *)((u8 *)db + ptr); struct ieee80211_regdomain *regdom; unsigned int i; regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules), GFP_KERNEL); if (!regdom) return -ENOMEM; regdom->n_reg_rules = coll->n_rules; regdom->alpha2[0] = country->alpha2[0]; regdom->alpha2[1] = country->alpha2[1]; regdom->dfs_region = coll->dfs_region; for (i = 0; i < regdom->n_reg_rules; i++) { __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2)); unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2; struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr); struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i]; rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start); rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end); rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw); rrule->power_rule.max_antenna_gain = 0; rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp); rrule->flags = 0; if (rule->flags & FWDB_FLAG_NO_OFDM) rrule->flags |= NL80211_RRF_NO_OFDM; if (rule->flags & FWDB_FLAG_NO_OUTDOOR) rrule->flags |= NL80211_RRF_NO_OUTDOOR; if (rule->flags & FWDB_FLAG_DFS) rrule->flags |= NL80211_RRF_DFS; if (rule->flags & FWDB_FLAG_NO_IR) rrule->flags |= NL80211_RRF_NO_IR; if (rule->flags & FWDB_FLAG_AUTO_BW) rrule->flags |= NL80211_RRF_AUTO_BW; rrule->dfs_cac_ms = 0; /* handle optional data */ if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout)) rrule->dfs_cac_ms = 1000 * be16_to_cpu(rule->cac_timeout); if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) set_wmm_rule(db, country, rule, rrule); } return reg_schedule_apply(regdom); } static int query_regdb(const char *alpha2) { const struct fwdb_header *hdr = regdb; const struct fwdb_country *country; ASSERT_RTNL(); if (IS_ERR(regdb)) return PTR_ERR(regdb); country = &hdr->country[0]; while (country->coll_ptr) { if (alpha2_equal(alpha2, country->alpha2)) return regdb_query_country(regdb, country); country++; } return -ENODATA; } static void regdb_fw_cb(const struct firmware *fw, void *context) { int set_error = 0; bool restore = true; void *db; if (!fw) { pr_info("failed to load regulatory.db\n"); set_error = -ENODATA; } else if (!valid_regdb(fw->data, fw->size)) { pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n"); set_error = -EINVAL; } rtnl_lock(); if (regdb && !IS_ERR(regdb)) { /* negative case - a bug * positive case - can happen due to race in case of multiple cb's in * queue, due to usage of asynchronous callback * * Either case, just restore and free new db. */ } else if (set_error) { regdb = ERR_PTR(set_error); } else if (fw) { db = kmemdup(fw->data, fw->size, GFP_KERNEL); if (db) { regdb = db; restore = context && query_regdb(context); } else { restore = true; } } if (restore) restore_regulatory_settings(true, false); rtnl_unlock(); kfree(context); release_firmware(fw); } static int query_regdb_file(const char *alpha2) { ASSERT_RTNL(); if (regdb) return query_regdb(alpha2); alpha2 = kmemdup(alpha2, 2, GFP_KERNEL); if (!alpha2) return -ENOMEM; return request_firmware_nowait(THIS_MODULE, true, "regulatory.db", ®_pdev->dev, GFP_KERNEL, (void *)alpha2, regdb_fw_cb); } int reg_reload_regdb(void) { const struct firmware *fw; void *db; int err; err = request_firmware(&fw, "regulatory.db", ®_pdev->dev); if (err) return err; if (!valid_regdb(fw->data, fw->size)) { err = -ENODATA; goto out; } db = kmemdup(fw->data, fw->size, GFP_KERNEL); if (!db) { err = -ENOMEM; goto out; } rtnl_lock(); if (!IS_ERR_OR_NULL(regdb)) kfree(regdb); regdb = db; rtnl_unlock(); out: release_firmware(fw); return err; } static bool reg_query_database(struct regulatory_request *request) { if (query_regdb_file(request->alpha2) == 0) return true; if (call_crda(request->alpha2) == 0) return true; return false; } bool reg_is_valid_request(const char *alpha2) { struct regulatory_request *lr = get_last_request(); if (!lr || lr->processed) return false; return alpha2_equal(lr->alpha2, alpha2); } static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) { struct regulatory_request *lr = get_last_request(); /* * Follow the driver's regulatory domain, if present, unless a country * IE has been processed or a user wants to help complaince further */ if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && lr->initiator != NL80211_REGDOM_SET_BY_USER && wiphy->regd) return get_wiphy_regdom(wiphy); return get_cfg80211_regdom(); } static unsigned int reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd, const struct ieee80211_reg_rule *rule) { const struct ieee80211_freq_range *freq_range = &rule->freq_range; const struct ieee80211_freq_range *freq_range_tmp; const struct ieee80211_reg_rule *tmp; u32 start_freq, end_freq, idx, no; for (idx = 0; idx < rd->n_reg_rules; idx++) if (rule == &rd->reg_rules[idx]) break; if (idx == rd->n_reg_rules) return 0; /* get start_freq */ no = idx; while (no) { tmp = &rd->reg_rules[--no]; freq_range_tmp = &tmp->freq_range; if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) break; freq_range = freq_range_tmp; } start_freq = freq_range->start_freq_khz; /* get end_freq */ freq_range = &rule->freq_range; no = idx; while (no < rd->n_reg_rules - 1) { tmp = &rd->reg_rules[++no]; freq_range_tmp = &tmp->freq_range; if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) break; freq_range = freq_range_tmp; } end_freq = freq_range->end_freq_khz; return end_freq - start_freq; } unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, const struct ieee80211_reg_rule *rule) { unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule); if (rule->flags & NL80211_RRF_NO_160MHZ) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80)); if (rule->flags & NL80211_RRF_NO_80MHZ) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40)); /* * HT40+/HT40- limits are handled per-channel. Only limit BW if both * are not allowed. */ if (rule->flags & NL80211_RRF_NO_HT40MINUS && rule->flags & NL80211_RRF_NO_HT40PLUS) bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20)); return bw; } /* Sanity check on a regulatory rule */ static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) { const struct ieee80211_freq_range *freq_range = &rule->freq_range; u32 freq_diff; if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) return false; if (freq_range->start_freq_khz > freq_range->end_freq_khz) return false; freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->end_freq_khz <= freq_range->start_freq_khz || freq_range->max_bandwidth_khz > freq_diff) return false; return true; } static bool is_valid_rd(const struct ieee80211_regdomain *rd) { const struct ieee80211_reg_rule *reg_rule = NULL; unsigned int i; if (!rd->n_reg_rules) return false; if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) return false; for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; if (!is_valid_reg_rule(reg_rule)) return false; } return true; } /** * freq_in_rule_band - tells us if a frequency is in a frequency band * @freq_range: frequency rule we want to query * @freq_khz: frequency we are inquiring about * * This lets us know if a specific frequency rule is or is not relevant to * a specific frequency's band. Bands are device specific and artificial * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), * however it is safe for now to assume that a frequency rule should not be * part of a frequency's band if the start freq or end freq are off by more * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the * 60 GHz band. * This resolution can be lowered and should be considered as we add * regulatory rule support for other "bands". **/ static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, u32 freq_khz) { #define ONE_GHZ_IN_KHZ 1000000 /* * From 802.11ad: directional multi-gigabit (DMG): * Pertaining to operation in a frequency band containing a channel * with the Channel starting frequency above 45 GHz. */ u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; if (abs(freq_khz - freq_range->start_freq_khz) <= limit) return true; if (abs(freq_khz - freq_range->end_freq_khz) <= limit) return true; return false; #undef ONE_GHZ_IN_KHZ } /* * Later on we can perhaps use the more restrictive DFS * region but we don't have information for that yet so * for now simply disallow conflicts. */ static enum nl80211_dfs_regions reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, const enum nl80211_dfs_regions dfs_region2) { if (dfs_region1 != dfs_region2) return NL80211_DFS_UNSET; return dfs_region1; } static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1, const struct ieee80211_wmm_ac *wmm_ac2, struct ieee80211_wmm_ac *intersect) { intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min); intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max); intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot); intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn); } /* * Helper for regdom_intersect(), this does the real * mathematical intersection fun */ static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, const struct ieee80211_regdomain *rd2, const struct ieee80211_reg_rule *rule1, const struct ieee80211_reg_rule *rule2, struct ieee80211_reg_rule *intersected_rule) { const struct ieee80211_freq_range *freq_range1, *freq_range2; struct ieee80211_freq_range *freq_range; const struct ieee80211_power_rule *power_rule1, *power_rule2; struct ieee80211_power_rule *power_rule; const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2; struct ieee80211_wmm_rule *wmm_rule; u32 freq_diff, max_bandwidth1, max_bandwidth2; freq_range1 = &rule1->freq_range; freq_range2 = &rule2->freq_range; freq_range = &intersected_rule->freq_range; power_rule1 = &rule1->power_rule; power_rule2 = &rule2->power_rule; power_rule = &intersected_rule->power_rule; wmm_rule1 = &rule1->wmm_rule; wmm_rule2 = &rule2->wmm_rule; wmm_rule = &intersected_rule->wmm_rule; freq_range->start_freq_khz = max(freq_range1->start_freq_khz, freq_range2->start_freq_khz); freq_range->end_freq_khz = min(freq_range1->end_freq_khz, freq_range2->end_freq_khz); max_bandwidth1 = freq_range1->max_bandwidth_khz; max_bandwidth2 = freq_range2->max_bandwidth_khz; if (rule1->flags & NL80211_RRF_AUTO_BW) max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); if (rule2->flags & NL80211_RRF_AUTO_BW) max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); intersected_rule->flags = rule1->flags | rule2->flags; /* * In case NL80211_RRF_AUTO_BW requested for both rules * set AUTO_BW in intersected rule also. Next we will * calculate BW correctly in handle_channel function. * In other case remove AUTO_BW flag while we calculate * maximum bandwidth correctly and auto calculation is * not required. */ if ((rule1->flags & NL80211_RRF_AUTO_BW) && (rule2->flags & NL80211_RRF_AUTO_BW)) intersected_rule->flags |= NL80211_RRF_AUTO_BW; else intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; if (freq_range->max_bandwidth_khz > freq_diff) freq_range->max_bandwidth_khz = freq_diff; power_rule->max_eirp = min(power_rule1->max_eirp, power_rule2->max_eirp); power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, power_rule2->max_antenna_gain); intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, rule2->dfs_cac_ms); if (rule1->has_wmm && rule2->has_wmm) { u8 ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { reg_wmm_rules_intersect(&wmm_rule1->client[ac], &wmm_rule2->client[ac], &wmm_rule->client[ac]); reg_wmm_rules_intersect(&wmm_rule1->ap[ac], &wmm_rule2->ap[ac], &wmm_rule->ap[ac]); } intersected_rule->has_wmm = true; } else if (rule1->has_wmm) { *wmm_rule = *wmm_rule1; intersected_rule->has_wmm = true; } else if (rule2->has_wmm) { *wmm_rule = *wmm_rule2; intersected_rule->has_wmm = true; } else { intersected_rule->has_wmm = false; } if (!is_valid_reg_rule(intersected_rule)) return -EINVAL; return 0; } /* check whether old rule contains new rule */ static bool rule_contains(struct ieee80211_reg_rule *r1, struct ieee80211_reg_rule *r2) { /* for simplicity, currently consider only same flags */ if (r1->flags != r2->flags) return false; /* verify r1 is more restrictive */ if ((r1->power_rule.max_antenna_gain > r2->power_rule.max_antenna_gain) || r1->power_rule.max_eirp > r2->power_rule.max_eirp) return false; /* make sure r2's range is contained within r1 */ if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz || r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz) return false; /* and finally verify that r1.max_bw >= r2.max_bw */ if (r1->freq_range.max_bandwidth_khz < r2->freq_range.max_bandwidth_khz) return false; return true; } /* add or extend current rules. do nothing if rule is already contained */ static void add_rule(struct ieee80211_reg_rule *rule, struct ieee80211_reg_rule *reg_rules, u32 *n_rules) { struct ieee80211_reg_rule *tmp_rule; int i; for (i = 0; i < *n_rules; i++) { tmp_rule = ®_rules[i]; /* rule is already contained - do nothing */ if (rule_contains(tmp_rule, rule)) return; /* extend rule if possible */ if (rule_contains(rule, tmp_rule)) { memcpy(tmp_rule, rule, sizeof(*rule)); return; } } memcpy(®_rules[*n_rules], rule, sizeof(*rule)); (*n_rules)++; } /** * regdom_intersect - do the intersection between two regulatory domains * @rd1: first regulatory domain * @rd2: second regulatory domain * * Use this function to get the intersection between two regulatory domains. * Once completed we will mark the alpha2 for the rd as intersected, "98", * as no one single alpha2 can represent this regulatory domain. * * Returns a pointer to the regulatory domain structure which will hold the * resulting intersection of rules between rd1 and rd2. We will * kzalloc() this structure for you. */ static struct ieee80211_regdomain * regdom_intersect(const struct ieee80211_regdomain *rd1, const struct ieee80211_regdomain *rd2) { int r; unsigned int x, y; unsigned int num_rules = 0; const struct ieee80211_reg_rule *rule1, *rule2; struct ieee80211_reg_rule intersected_rule; struct ieee80211_regdomain *rd; if (!rd1 || !rd2) return NULL; /* * First we get a count of the rules we'll need, then we actually * build them. This is to so we can malloc() and free() a * regdomain once. The reason we use reg_rules_intersect() here * is it will return -EINVAL if the rule computed makes no sense. * All rules that do check out OK are valid. */ for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; if (!reg_rules_intersect(rd1, rd2, rule1, rule2, &intersected_rule)) num_rules++; } } if (!num_rules) return NULL; rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL); if (!rd) return NULL; for (x = 0; x < rd1->n_reg_rules; x++) { rule1 = &rd1->reg_rules[x]; for (y = 0; y < rd2->n_reg_rules; y++) { rule2 = &rd2->reg_rules[y]; r = reg_rules_intersect(rd1, rd2, rule1, rule2, &intersected_rule); /* * No need to memset here the intersected rule here as * we're not using the stack anymore */ if (r) continue; add_rule(&intersected_rule, rd->reg_rules, &rd->n_reg_rules); } } rd->alpha2[0] = '9'; rd->alpha2[1] = '8'; rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, rd2->dfs_region); return rd; } /* * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may * want to just have the channel structure use these */ static u32 map_regdom_flags(u32 rd_flags) { u32 channel_flags = 0; if (rd_flags & NL80211_RRF_NO_IR_ALL) channel_flags |= IEEE80211_CHAN_NO_IR; if (rd_flags & NL80211_RRF_DFS) channel_flags |= IEEE80211_CHAN_RADAR; if (rd_flags & NL80211_RRF_NO_OFDM) channel_flags |= IEEE80211_CHAN_NO_OFDM; if (rd_flags & NL80211_RRF_NO_OUTDOOR) channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; if (rd_flags & NL80211_RRF_IR_CONCURRENT) channel_flags |= IEEE80211_CHAN_IR_CONCURRENT; if (rd_flags & NL80211_RRF_NO_HT40MINUS) channel_flags |= IEEE80211_CHAN_NO_HT40MINUS; if (rd_flags & NL80211_RRF_NO_HT40PLUS) channel_flags |= IEEE80211_CHAN_NO_HT40PLUS; if (rd_flags & NL80211_RRF_NO_80MHZ) channel_flags |= IEEE80211_CHAN_NO_80MHZ; if (rd_flags & NL80211_RRF_NO_160MHZ) channel_flags |= IEEE80211_CHAN_NO_160MHZ; return channel_flags; } static const struct ieee80211_reg_rule * freq_reg_info_regd(u32 center_freq, const struct ieee80211_regdomain *regd, u32 bw) { int i; bool band_rule_found = false; bool bw_fits = false; if (!regd) return ERR_PTR(-EINVAL); for (i = 0; i < regd->n_reg_rules; i++) { const struct ieee80211_reg_rule *rr; const struct ieee80211_freq_range *fr = NULL; rr = ®d->reg_rules[i]; fr = &rr->freq_range; /* * We only need to know if one frequency rule was * was in center_freq's band, that's enough, so lets * not overwrite it once found */ if (!band_rule_found) band_rule_found = freq_in_rule_band(fr, center_freq); bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw); if (band_rule_found && bw_fits) return rr; } if (!band_rule_found) return ERR_PTR(-ERANGE); return ERR_PTR(-EINVAL); } static const struct ieee80211_reg_rule * __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw) { const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy); const struct ieee80211_reg_rule *reg_rule = NULL; u32 bw; for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) { reg_rule = freq_reg_info_regd(center_freq, regd, bw); if (!IS_ERR(reg_rule)) return reg_rule; } return reg_rule; } const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, u32 center_freq) { return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20)); } EXPORT_SYMBOL(freq_reg_info); const char *reg_initiator_name(enum nl80211_reg_initiator initiator) { switch (initiator) { case NL80211_REGDOM_SET_BY_CORE: return "core"; case NL80211_REGDOM_SET_BY_USER: return "user"; case NL80211_REGDOM_SET_BY_DRIVER: return "driver"; case NL80211_REGDOM_SET_BY_COUNTRY_IE: return "country element"; default: WARN_ON(1); return "bug"; } } EXPORT_SYMBOL(reg_initiator_name); static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd, const struct ieee80211_reg_rule *reg_rule, const struct ieee80211_channel *chan) { const struct ieee80211_freq_range *freq_range = NULL; u32 max_bandwidth_khz, bw_flags = 0; freq_range = ®_rule->freq_range; max_bandwidth_khz = freq_range->max_bandwidth_khz; /* Check if auto calculation requested */ if (reg_rule->flags & NL80211_RRF_AUTO_BW) max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); /* If we get a reg_rule we can assume that at least 5Mhz fit */ if (!cfg80211_does_bw_fit_range(freq_range, MHZ_TO_KHZ(chan->center_freq), MHZ_TO_KHZ(10))) bw_flags |= IEEE80211_CHAN_NO_10MHZ; if (!cfg80211_does_bw_fit_range(freq_range, MHZ_TO_KHZ(chan->center_freq), MHZ_TO_KHZ(20))) bw_flags |= IEEE80211_CHAN_NO_20MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(10)) bw_flags |= IEEE80211_CHAN_NO_10MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(20)) bw_flags |= IEEE80211_CHAN_NO_20MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(40)) bw_flags |= IEEE80211_CHAN_NO_HT40; if (max_bandwidth_khz < MHZ_TO_KHZ(80)) bw_flags |= IEEE80211_CHAN_NO_80MHZ; if (max_bandwidth_khz < MHZ_TO_KHZ(160)) bw_flags |= IEEE80211_CHAN_NO_160MHZ; return bw_flags; } /* * Note that right now we assume the desired channel bandwidth * is always 20 MHz for each individual channel (HT40 uses 20 MHz * per channel, the primary and the extension channel). */ static void handle_channel(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_channel *chan) { u32 flags, bw_flags = 0; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_power_rule *power_rule = NULL; struct wiphy *request_wiphy = NULL; struct regulatory_request *lr = get_last_request(); const struct ieee80211_regdomain *regd; request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); flags = chan->orig_flags; reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); if (IS_ERR(reg_rule)) { /* * We will disable all channels that do not match our * received regulatory rule unless the hint is coming * from a Country IE and the Country IE had no information * about a band. The IEEE 802.11 spec allows for an AP * to send only a subset of the regulatory rules allowed, * so an AP in the US that only supports 2.4 GHz may only send * a country IE with information for the 2.4 GHz band * while 5 GHz is still supported. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && PTR_ERR(reg_rule) == -ERANGE) return; if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && request_wiphy && request_wiphy == wiphy && request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { pr_debug("Disabling freq %d MHz for good\n", chan->center_freq); chan->orig_flags |= IEEE80211_CHAN_DISABLED; chan->flags = chan->orig_flags; } else { pr_debug("Disabling freq %d MHz\n", chan->center_freq); chan->flags |= IEEE80211_CHAN_DISABLED; } return; } regd = reg_get_regdomain(wiphy); power_rule = ®_rule->power_rule; bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && request_wiphy && request_wiphy == wiphy && request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { /* * This guarantees the driver's requested regulatory domain * will always be used as a base for further regulatory * settings */ chan->flags = chan->orig_flags = map_regdom_flags(reg_rule->flags) | bw_flags; chan->max_antenna_gain = chan->orig_mag = (int) MBI_TO_DBI(power_rule->max_antenna_gain); chan->max_reg_power = chan->max_power = chan->orig_mpwr = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->flags & IEEE80211_CHAN_RADAR) { chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; if (reg_rule->dfs_cac_ms) chan->dfs_cac_ms = reg_rule->dfs_cac_ms; } return; } chan->dfs_state = NL80211_DFS_USABLE; chan->dfs_state_entered = jiffies; chan->beacon_found = false; chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); chan->max_antenna_gain = min_t(int, chan->orig_mag, MBI_TO_DBI(power_rule->max_antenna_gain)); chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->flags & IEEE80211_CHAN_RADAR) { if (reg_rule->dfs_cac_ms) chan->dfs_cac_ms = reg_rule->dfs_cac_ms; else chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; } if (chan->orig_mpwr) { /* * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER * will always follow the passed country IE power settings. */ if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) chan->max_power = chan->max_reg_power; else chan->max_power = min(chan->orig_mpwr, chan->max_reg_power); } else chan->max_power = chan->max_reg_power; } static void handle_band(struct wiphy *wiphy, enum nl80211_reg_initiator initiator, struct ieee80211_supported_band *sband) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) handle_channel(wiphy, initiator, &sband->channels[i]); } static bool reg_request_cell_base(struct regulatory_request *request) { if (request->initiator != NL80211_REGDOM_SET_BY_USER) return false; return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; } bool reg_last_request_cell_base(void) { return reg_request_cell_base(get_last_request()); } #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS /* Core specific check */ static enum reg_request_treatment reg_ignore_cell_hint(struct regulatory_request *pending_request) { struct regulatory_request *lr = get_last_request(); if (!reg_num_devs_support_basehint) return REG_REQ_IGNORE; if (reg_request_cell_base(lr) && !regdom_changes(pending_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_OK; } /* Device specific check */ static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) { return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); } #else static enum reg_request_treatment reg_ignore_cell_hint(struct regulatory_request *pending_request) { return REG_REQ_IGNORE; } static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) { return true; } #endif static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) { if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) return true; return false; } static bool ignore_reg_update(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { struct regulatory_request *lr = get_last_request(); if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) return true; if (!lr) { pr_debug("Ignoring regulatory request set by %s since last_request is not set\n", reg_initiator_name(initiator)); return true; } if (initiator == NL80211_REGDOM_SET_BY_CORE && wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n", reg_initiator_name(initiator)); return true; } /* * wiphy->regd will be set once the device has its own * desired regulatory domain set */ if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && !is_world_regdom(lr->alpha2)) { pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n", reg_initiator_name(initiator)); return true; } if (reg_request_cell_base(lr)) return reg_dev_ignore_cell_hint(wiphy); return false; } static bool reg_is_world_roaming(struct wiphy *wiphy) { const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); struct regulatory_request *lr = get_last_request(); if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) return true; if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) return true; return false; } static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, struct reg_beacon *reg_beacon) { struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; bool channel_changed = false; struct ieee80211_channel chan_before; sband = wiphy->bands[reg_beacon->chan.band]; chan = &sband->channels[chan_idx]; if (likely(chan->center_freq != reg_beacon->chan.center_freq)) return; if (chan->beacon_found) return; chan->beacon_found = true; if (!reg_is_world_roaming(wiphy)) return; if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) return; chan_before = *chan; if (chan->flags & IEEE80211_CHAN_NO_IR) { chan->flags &= ~IEEE80211_CHAN_NO_IR; channel_changed = true; } if (channel_changed) nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); } /* * Called when a scan on a wiphy finds a beacon on * new channel */ static void wiphy_update_new_beacon(struct wiphy *wiphy, struct reg_beacon *reg_beacon) { unsigned int i; struct ieee80211_supported_band *sband; if (!wiphy->bands[reg_beacon->chan.band]) return; sband = wiphy->bands[reg_beacon->chan.band]; for (i = 0; i < sband->n_channels; i++) handle_reg_beacon(wiphy, i, reg_beacon); } /* * Called upon reg changes or a new wiphy is added */ static void wiphy_update_beacon_reg(struct wiphy *wiphy) { unsigned int i; struct ieee80211_supported_band *sband; struct reg_beacon *reg_beacon; list_for_each_entry(reg_beacon, ®_beacon_list, list) { if (!wiphy->bands[reg_beacon->chan.band]) continue; sband = wiphy->bands[reg_beacon->chan.band]; for (i = 0; i < sband->n_channels; i++) handle_reg_beacon(wiphy, i, reg_beacon); } } /* Reap the advantages of previously found beacons */ static void reg_process_beacons(struct wiphy *wiphy) { /* * Means we are just firing up cfg80211, so no beacons would * have been processed yet. */ if (!last_request) return; wiphy_update_beacon_reg(wiphy); } static bool is_ht40_allowed(struct ieee80211_channel *chan) { if (!chan) return false; if (chan->flags & IEEE80211_CHAN_DISABLED) return false; /* This would happen when regulatory rules disallow HT40 completely */ if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) return false; return true; } static void reg_process_ht_flags_channel(struct wiphy *wiphy, struct ieee80211_channel *channel) { struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; const struct ieee80211_regdomain *regd; unsigned int i; u32 flags; if (!is_ht40_allowed(channel)) { channel->flags |= IEEE80211_CHAN_NO_HT40; return; } /* * We need to ensure the extension channels exist to * be able to use HT40- or HT40+, this finds them (or not) */ for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *c = &sband->channels[i]; if (c->center_freq == (channel->center_freq - 20)) channel_before = c; if (c->center_freq == (channel->center_freq + 20)) channel_after = c; } flags = 0; regd = get_wiphy_regdom(wiphy); if (regd) { const struct ieee80211_reg_rule *reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq), regd, MHZ_TO_KHZ(20)); if (!IS_ERR(reg_rule)) flags = reg_rule->flags; } /* * Please note that this assumes target bandwidth is 20 MHz, * if that ever changes we also need to change the below logic * to include that as well. */ if (!is_ht40_allowed(channel_before) || flags & NL80211_RRF_NO_HT40MINUS) channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; else channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; if (!is_ht40_allowed(channel_after) || flags & NL80211_RRF_NO_HT40PLUS) channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; else channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; } static void reg_process_ht_flags_band(struct wiphy *wiphy, struct ieee80211_supported_band *sband) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) reg_process_ht_flags_channel(wiphy, &sband->channels[i]); } static void reg_process_ht_flags(struct wiphy *wiphy) { enum nl80211_band band; if (!wiphy) return; for (band = 0; band < NUM_NL80211_BANDS; band++) reg_process_ht_flags_band(wiphy, wiphy->bands[band]); } static void reg_call_notifier(struct wiphy *wiphy, struct regulatory_request *request) { if (wiphy->reg_notifier) wiphy->reg_notifier(wiphy, request); } static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev) { struct cfg80211_chan_def chandef; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); enum nl80211_iftype iftype; wdev_lock(wdev); iftype = wdev->iftype; /* make sure the interface is active */ if (!wdev->netdev || !netif_running(wdev->netdev)) goto wdev_inactive_unlock; switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: if (!wdev->beacon_interval) goto wdev_inactive_unlock; chandef = wdev->chandef; break; case NL80211_IFTYPE_ADHOC: if (!wdev->ssid_len) goto wdev_inactive_unlock; chandef = wdev->chandef; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: if (!wdev->current_bss || !wdev->current_bss->pub.channel) goto wdev_inactive_unlock; if (!rdev->ops->get_channel || rdev_get_channel(rdev, wdev, &chandef)) cfg80211_chandef_create(&chandef, wdev->current_bss->pub.channel, NL80211_CHAN_NO_HT); break; case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: /* no enforcement required */ break; default: /* others not implemented for now */ WARN_ON(1); break; } wdev_unlock(wdev); switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_ADHOC: return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype); case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: return cfg80211_chandef_usable(wiphy, &chandef, IEEE80211_CHAN_DISABLED); default: break; } return true; wdev_inactive_unlock: wdev_unlock(wdev); return true; } static void reg_leave_invalid_chans(struct wiphy *wiphy) { struct wireless_dev *wdev; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); ASSERT_RTNL(); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) if (!reg_wdev_chan_valid(wiphy, wdev)) cfg80211_leave(rdev, wdev); } static void reg_check_chans_work(struct work_struct *work) { struct cfg80211_registered_device *rdev; pr_debug("Verifying active interfaces after reg change\n"); rtnl_lock(); list_for_each_entry(rdev, &cfg80211_rdev_list, list) if (!(rdev->wiphy.regulatory_flags & REGULATORY_IGNORE_STALE_KICKOFF)) reg_leave_invalid_chans(&rdev->wiphy); rtnl_unlock(); } static void reg_check_channels(void) { /* * Give usermode a chance to do something nicer (move to another * channel, orderly disconnection), before forcing a disconnection. */ mod_delayed_work(system_power_efficient_wq, ®_check_chans, msecs_to_jiffies(REG_ENFORCE_GRACE_MS)); } static void wiphy_update_regulatory(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { enum nl80211_band band; struct regulatory_request *lr = get_last_request(); if (ignore_reg_update(wiphy, initiator)) { /* * Regulatory updates set by CORE are ignored for custom * regulatory cards. Let us notify the changes to the driver, * as some drivers used this to restore its orig_* reg domain. */ if (initiator == NL80211_REGDOM_SET_BY_CORE && wiphy->regulatory_flags & REGULATORY_CUSTOM_REG && !(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)) reg_call_notifier(wiphy, lr); return; } lr->dfs_region = get_cfg80211_regdom()->dfs_region; for (band = 0; band < NUM_NL80211_BANDS; band++) handle_band(wiphy, initiator, wiphy->bands[band]); reg_process_beacons(wiphy); reg_process_ht_flags(wiphy); reg_call_notifier(wiphy, lr); } static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; ASSERT_RTNL(); list_for_each_entry(rdev, &cfg80211_rdev_list, list) { wiphy = &rdev->wiphy; wiphy_update_regulatory(wiphy, initiator); } reg_check_channels(); } static void handle_channel_custom(struct wiphy *wiphy, struct ieee80211_channel *chan, const struct ieee80211_regdomain *regd) { u32 bw_flags = 0; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_power_rule *power_rule = NULL; u32 bw; for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) { reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq), regd, bw); if (!IS_ERR(reg_rule)) break; } if (IS_ERR(reg_rule)) { pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n", chan->center_freq); if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { chan->flags |= IEEE80211_CHAN_DISABLED; } else { chan->orig_flags |= IEEE80211_CHAN_DISABLED; chan->flags = chan->orig_flags; } return; } power_rule = ®_rule->power_rule; bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan); chan->dfs_state_entered = jiffies; chan->dfs_state = NL80211_DFS_USABLE; chan->beacon_found = false; if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) chan->flags = chan->orig_flags | bw_flags | map_regdom_flags(reg_rule->flags); else chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); chan->max_reg_power = chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); if (chan->flags & IEEE80211_CHAN_RADAR) { if (reg_rule->dfs_cac_ms) chan->dfs_cac_ms = reg_rule->dfs_cac_ms; else chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; } chan->max_power = chan->max_reg_power; } static void handle_band_custom(struct wiphy *wiphy, struct ieee80211_supported_band *sband, const struct ieee80211_regdomain *regd) { unsigned int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) handle_channel_custom(wiphy, &sband->channels[i], regd); } /* Used by drivers prior to wiphy registration */ void wiphy_apply_custom_regulatory(struct wiphy *wiphy, const struct ieee80211_regdomain *regd) { enum nl80211_band band; unsigned int bands_set = 0; WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), "wiphy should have REGULATORY_CUSTOM_REG\n"); wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; for (band = 0; band < NUM_NL80211_BANDS; band++) { if (!wiphy->bands[band]) continue; handle_band_custom(wiphy, wiphy->bands[band], regd); bands_set++; } /* * no point in calling this if it won't have any effect * on your device's supported bands. */ WARN_ON(!bands_set); } EXPORT_SYMBOL(wiphy_apply_custom_regulatory); static void reg_set_request_processed(void) { bool need_more_processing = false; struct regulatory_request *lr = get_last_request(); lr->processed = true; spin_lock(®_requests_lock); if (!list_empty(®_requests_list)) need_more_processing = true; spin_unlock(®_requests_lock); cancel_crda_timeout(); if (need_more_processing) schedule_work(®_work); } /** * reg_process_hint_core - process core regulatory requests * @pending_request: a pending core regulatory request * * The wireless subsystem can use this function to process * a regulatory request issued by the regulatory core. */ static enum reg_request_treatment reg_process_hint_core(struct regulatory_request *core_request) { if (reg_query_database(core_request)) { core_request->intersect = false; core_request->processed = false; reg_update_last_request(core_request); return REG_REQ_OK; } return REG_REQ_IGNORE; } static enum reg_request_treatment __reg_process_hint_user(struct regulatory_request *user_request) { struct regulatory_request *lr = get_last_request(); if (reg_request_cell_base(user_request)) return reg_ignore_cell_hint(user_request); if (reg_request_cell_base(lr)) return REG_REQ_IGNORE; if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) return REG_REQ_INTERSECT; /* * If the user knows better the user should set the regdom * to their country before the IE is picked up */ if (lr->initiator == NL80211_REGDOM_SET_BY_USER && lr->intersect) return REG_REQ_IGNORE; /* * Process user requests only after previous user/driver/core * requests have been processed */ if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || lr->initiator == NL80211_REGDOM_SET_BY_USER) && regdom_changes(lr->alpha2)) return REG_REQ_IGNORE; if (!regdom_changes(user_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_OK; } /** * reg_process_hint_user - process user regulatory requests * @user_request: a pending user regulatory request * * The wireless subsystem can use this function to process * a regulatory request initiated by userspace. */ static enum reg_request_treatment reg_process_hint_user(struct regulatory_request *user_request) { enum reg_request_treatment treatment; treatment = __reg_process_hint_user(user_request); if (treatment == REG_REQ_IGNORE || treatment == REG_REQ_ALREADY_SET) return REG_REQ_IGNORE; user_request->intersect = treatment == REG_REQ_INTERSECT; user_request->processed = false; if (reg_query_database(user_request)) { reg_update_last_request(user_request); user_alpha2[0] = user_request->alpha2[0]; user_alpha2[1] = user_request->alpha2[1]; return REG_REQ_OK; } return REG_REQ_IGNORE; } static enum reg_request_treatment __reg_process_hint_driver(struct regulatory_request *driver_request) { struct regulatory_request *lr = get_last_request(); if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { if (regdom_changes(driver_request->alpha2)) return REG_REQ_OK; return REG_REQ_ALREADY_SET; } /* * This would happen if you unplug and plug your card * back in or if you add a new device for which the previously * loaded card also agrees on the regulatory domain. */ if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && !regdom_changes(driver_request->alpha2)) return REG_REQ_ALREADY_SET; return REG_REQ_INTERSECT; } /** * reg_process_hint_driver - process driver regulatory requests * @driver_request: a pending driver regulatory request * * The wireless subsystem can use this function to process * a regulatory request issued by an 802.11 driver. * * Returns one of the different reg request treatment values. */ static enum reg_request_treatment reg_process_hint_driver(struct wiphy *wiphy, struct regulatory_request *driver_request) { const struct ieee80211_regdomain *regd, *tmp; enum reg_request_treatment treatment; treatment = __reg_process_hint_driver(driver_request); switch (treatment) { case REG_REQ_OK: break; case REG_REQ_IGNORE: return REG_REQ_IGNORE; case REG_REQ_INTERSECT: case REG_REQ_ALREADY_SET: regd = reg_copy_regd(get_cfg80211_regdom()); if (IS_ERR(regd)) return REG_REQ_IGNORE; tmp = get_wiphy_regdom(wiphy); rcu_assign_pointer(wiphy->regd, regd); rcu_free_regdom(tmp); } driver_request->intersect = treatment == REG_REQ_INTERSECT; driver_request->processed = false; /* * Since CRDA will not be called in this case as we already * have applied the requested regulatory domain before we just * inform userspace we have processed the request */ if (treatment == REG_REQ_ALREADY_SET) { nl80211_send_reg_change_event(driver_request); reg_update_last_request(driver_request); reg_set_request_processed(); return REG_REQ_ALREADY_SET; } if (reg_query_database(driver_request)) { reg_update_last_request(driver_request); return REG_REQ_OK; } return REG_REQ_IGNORE; } static enum reg_request_treatment __reg_process_hint_country_ie(struct wiphy *wiphy, struct regulatory_request *country_ie_request) { struct wiphy *last_wiphy = NULL; struct regulatory_request *lr = get_last_request(); if (reg_request_cell_base(lr)) { /* Trust a Cell base station over the AP's country IE */ if (regdom_changes(country_ie_request->alpha2)) return REG_REQ_IGNORE; return REG_REQ_ALREADY_SET; } else { if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) return REG_REQ_IGNORE; } if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) return -EINVAL; if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) return REG_REQ_OK; last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (last_wiphy != wiphy) { /* * Two cards with two APs claiming different * Country IE alpha2s. We could * intersect them, but that seems unlikely * to be correct. Reject second one for now. */ if (regdom_changes(country_ie_request->alpha2)) return REG_REQ_IGNORE; return REG_REQ_ALREADY_SET; } if (regdom_changes(country_ie_request->alpha2)) return REG_REQ_OK; return REG_REQ_ALREADY_SET; } /** * reg_process_hint_country_ie - process regulatory requests from country IEs * @country_ie_request: a regulatory request from a country IE * * The wireless subsystem can use this function to process * a regulatory request issued by a country Information Element. * * Returns one of the different reg request treatment values. */ static enum reg_request_treatment reg_process_hint_country_ie(struct wiphy *wiphy, struct regulatory_request *country_ie_request) { enum reg_request_treatment treatment; treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); switch (treatment) { case REG_REQ_OK: break; case REG_REQ_IGNORE: return REG_REQ_IGNORE; case REG_REQ_ALREADY_SET: reg_free_request(country_ie_request); return REG_REQ_ALREADY_SET; case REG_REQ_INTERSECT: /* * This doesn't happen yet, not sure we * ever want to support it for this case. */ WARN_ONCE(1, "Unexpected intersection for country elements"); return REG_REQ_IGNORE; } country_ie_request->intersect = false; country_ie_request->processed = false; if (reg_query_database(country_ie_request)) { reg_update_last_request(country_ie_request); return REG_REQ_OK; } return REG_REQ_IGNORE; } bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2) { const struct ieee80211_regdomain *wiphy1_regd = NULL; const struct ieee80211_regdomain *wiphy2_regd = NULL; const struct ieee80211_regdomain *cfg80211_regd = NULL; bool dfs_domain_same; rcu_read_lock(); cfg80211_regd = rcu_dereference(cfg80211_regdomain); wiphy1_regd = rcu_dereference(wiphy1->regd); if (!wiphy1_regd) wiphy1_regd = cfg80211_regd; wiphy2_regd = rcu_dereference(wiphy2->regd); if (!wiphy2_regd) wiphy2_regd = cfg80211_regd; dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region; rcu_read_unlock(); return dfs_domain_same; } static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan, struct ieee80211_channel *src_chan) { if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) || !(src_chan->flags & IEEE80211_CHAN_RADAR)) return; if (dst_chan->flags & IEEE80211_CHAN_DISABLED || src_chan->flags & IEEE80211_CHAN_DISABLED) return; if (src_chan->center_freq == dst_chan->center_freq && dst_chan->dfs_state == NL80211_DFS_USABLE) { dst_chan->dfs_state = src_chan->dfs_state; dst_chan->dfs_state_entered = src_chan->dfs_state_entered; } } static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy, struct wiphy *src_wiphy) { struct ieee80211_supported_band *src_sband, *dst_sband; struct ieee80211_channel *src_chan, *dst_chan; int i, j, band; if (!reg_dfs_domain_same(dst_wiphy, src_wiphy)) return; for (band = 0; band < NUM_NL80211_BANDS; band++) { dst_sband = dst_wiphy->bands[band]; src_sband = src_wiphy->bands[band]; if (!dst_sband || !src_sband) continue; for (i = 0; i < dst_sband->n_channels; i++) { dst_chan = &dst_sband->channels[i]; for (j = 0; j < src_sband->n_channels; j++) { src_chan = &src_sband->channels[j]; reg_copy_dfs_chan_state(dst_chan, src_chan); } } } } static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); list_for_each_entry(rdev, &cfg80211_rdev_list, list) { if (wiphy == &rdev->wiphy) continue; wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy); } } /* This processes *all* regulatory hints */ static void reg_process_hint(struct regulatory_request *reg_request) { struct wiphy *wiphy = NULL; enum reg_request_treatment treatment; enum nl80211_reg_initiator initiator = reg_request->initiator; if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); switch (initiator) { case NL80211_REGDOM_SET_BY_CORE: treatment = reg_process_hint_core(reg_request); break; case NL80211_REGDOM_SET_BY_USER: treatment = reg_process_hint_user(reg_request); break; case NL80211_REGDOM_SET_BY_DRIVER: if (!wiphy) goto out_free; treatment = reg_process_hint_driver(wiphy, reg_request); break; case NL80211_REGDOM_SET_BY_COUNTRY_IE: if (!wiphy) goto out_free; treatment = reg_process_hint_country_ie(wiphy, reg_request); break; default: WARN(1, "invalid initiator %d\n", initiator); goto out_free; } if (treatment == REG_REQ_IGNORE) goto out_free; WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET, "unexpected treatment value %d\n", treatment); /* This is required so that the orig_* parameters are saved. * NOTE: treatment must be set for any case that reaches here! */ if (treatment == REG_REQ_ALREADY_SET && wiphy && wiphy->regulatory_flags & REGULATORY_STRICT_REG) { wiphy_update_regulatory(wiphy, initiator); wiphy_all_share_dfs_chan_state(wiphy); reg_check_channels(); } return; out_free: reg_free_request(reg_request); } static void notify_self_managed_wiphys(struct regulatory_request *request) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { wiphy = &rdev->wiphy; if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED && request->initiator == NL80211_REGDOM_SET_BY_USER) reg_call_notifier(wiphy, request); } } /* * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* * Regulatory hints come on a first come first serve basis and we * must process each one atomically. */ static void reg_process_pending_hints(void) { struct regulatory_request *reg_request, *lr; lr = get_last_request(); /* When last_request->processed becomes true this will be rescheduled */ if (lr && !lr->processed) { reg_process_hint(lr); return; } spin_lock(®_requests_lock); if (list_empty(®_requests_list)) { spin_unlock(®_requests_lock); return; } reg_request = list_first_entry(®_requests_list, struct regulatory_request, list); list_del_init(®_request->list); spin_unlock(®_requests_lock); notify_self_managed_wiphys(reg_request); reg_process_hint(reg_request); lr = get_last_request(); spin_lock(®_requests_lock); if (!list_empty(®_requests_list) && lr && lr->processed) schedule_work(®_work); spin_unlock(®_requests_lock); } /* Processes beacon hints -- this has nothing to do with country IEs */ static void reg_process_pending_beacon_hints(void) { struct cfg80211_registered_device *rdev; struct reg_beacon *pending_beacon, *tmp; /* This goes through the _pending_ beacon list */ spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(pending_beacon, tmp, ®_pending_beacons, list) { list_del_init(&pending_beacon->list); /* Applies the beacon hint to current wiphys */ list_for_each_entry(rdev, &cfg80211_rdev_list, list) wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); /* Remembers the beacon hint for new wiphys or reg changes */ list_add_tail(&pending_beacon->list, ®_beacon_list); } spin_unlock_bh(®_pending_beacons_lock); } static void reg_process_self_managed_hints(void) { struct cfg80211_registered_device *rdev; struct wiphy *wiphy; const struct ieee80211_regdomain *tmp; const struct ieee80211_regdomain *regd; enum nl80211_band band; struct regulatory_request request = {}; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { wiphy = &rdev->wiphy; spin_lock(®_requests_lock); regd = rdev->requested_regd; rdev->requested_regd = NULL; spin_unlock(®_requests_lock); if (regd == NULL) continue; tmp = get_wiphy_regdom(wiphy); rcu_assign_pointer(wiphy->regd, regd); rcu_free_regdom(tmp); for (band = 0; band < NUM_NL80211_BANDS; band++) handle_band_custom(wiphy, wiphy->bands[band], regd); reg_process_ht_flags(wiphy); request.wiphy_idx = get_wiphy_idx(wiphy); request.alpha2[0] = regd->alpha2[0]; request.alpha2[1] = regd->alpha2[1]; request.initiator = NL80211_REGDOM_SET_BY_DRIVER; nl80211_send_wiphy_reg_change_event(&request); } reg_check_channels(); } static void reg_todo(struct work_struct *work) { rtnl_lock(); reg_process_pending_hints(); reg_process_pending_beacon_hints(); reg_process_self_managed_hints(); rtnl_unlock(); } static void queue_regulatory_request(struct regulatory_request *request) { request->alpha2[0] = toupper(request->alpha2[0]); request->alpha2[1] = toupper(request->alpha2[1]); spin_lock(®_requests_lock); list_add_tail(&request->list, ®_requests_list); spin_unlock(®_requests_lock); schedule_work(®_work); } /* * Core regulatory hint -- happens during cfg80211_init() * and when we restore regulatory settings. */ static int regulatory_hint_core(const char *alpha2) { struct regulatory_request *request; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_CORE; request->wiphy_idx = WIPHY_IDX_INVALID; queue_regulatory_request(request); return 0; } /* User hints */ int regulatory_hint_user(const char *alpha2, enum nl80211_user_reg_hint_type user_reg_hint_type) { struct regulatory_request *request; if (WARN_ON(!alpha2)) return -EINVAL; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->wiphy_idx = WIPHY_IDX_INVALID; request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_USER; request->user_reg_hint_type = user_reg_hint_type; /* Allow calling CRDA again */ reset_crda_timeouts(); queue_regulatory_request(request); return 0; } int regulatory_hint_indoor(bool is_indoor, u32 portid) { spin_lock(®_indoor_lock); /* It is possible that more than one user space process is trying to * configure the indoor setting. To handle such cases, clear the indoor * setting in case that some process does not think that the device * is operating in an indoor environment. In addition, if a user space * process indicates that it is controlling the indoor setting, save its * portid, i.e., make it the owner. */ reg_is_indoor = is_indoor; if (reg_is_indoor) { if (!reg_is_indoor_portid) reg_is_indoor_portid = portid; } else { reg_is_indoor_portid = 0; } spin_unlock(®_indoor_lock); if (!is_indoor) reg_check_channels(); return 0; } void regulatory_netlink_notify(u32 portid) { spin_lock(®_indoor_lock); if (reg_is_indoor_portid != portid) { spin_unlock(®_indoor_lock); return; } reg_is_indoor = false; reg_is_indoor_portid = 0; spin_unlock(®_indoor_lock); reg_check_channels(); } /* Driver hints */ int regulatory_hint(struct wiphy *wiphy, const char *alpha2) { struct regulatory_request *request; if (WARN_ON(!alpha2 || !wiphy)) return -EINVAL; wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); if (!request) return -ENOMEM; request->wiphy_idx = get_wiphy_idx(wiphy); request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_DRIVER; /* Allow calling CRDA again */ reset_crda_timeouts(); queue_regulatory_request(request); return 0; } EXPORT_SYMBOL(regulatory_hint); void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band, const u8 *country_ie, u8 country_ie_len) { char alpha2[2]; enum environment_cap env = ENVIRON_ANY; struct regulatory_request *request = NULL, *lr; /* IE len must be evenly divisible by 2 */ if (country_ie_len & 0x01) return; if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) return; request = kzalloc(sizeof(*request), GFP_KERNEL); if (!request) return; alpha2[0] = country_ie[0]; alpha2[1] = country_ie[1]; if (country_ie[2] == 'I') env = ENVIRON_INDOOR; else if (country_ie[2] == 'O') env = ENVIRON_OUTDOOR; rcu_read_lock(); lr = get_last_request(); if (unlikely(!lr)) goto out; /* * We will run this only upon a successful connection on cfg80211. * We leave conflict resolution to the workqueue, where can hold * the RTNL. */ if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && lr->wiphy_idx != WIPHY_IDX_INVALID) goto out; request->wiphy_idx = get_wiphy_idx(wiphy); request->alpha2[0] = alpha2[0]; request->alpha2[1] = alpha2[1]; request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; request->country_ie_env = env; /* Allow calling CRDA again */ reset_crda_timeouts(); queue_regulatory_request(request); request = NULL; out: kfree(request); rcu_read_unlock(); } static void restore_alpha2(char *alpha2, bool reset_user) { /* indicates there is no alpha2 to consider for restoration */ alpha2[0] = '9'; alpha2[1] = '7'; /* The user setting has precedence over the module parameter */ if (is_user_regdom_saved()) { /* Unless we're asked to ignore it and reset it */ if (reset_user) { pr_debug("Restoring regulatory settings including user preference\n"); user_alpha2[0] = '9'; user_alpha2[1] = '7'; /* * If we're ignoring user settings, we still need to * check the module parameter to ensure we put things * back as they were for a full restore. */ if (!is_world_regdom(ieee80211_regdom)) { pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", ieee80211_regdom[0], ieee80211_regdom[1]); alpha2[0] = ieee80211_regdom[0]; alpha2[1] = ieee80211_regdom[1]; } } else { pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n", user_alpha2[0], user_alpha2[1]); alpha2[0] = user_alpha2[0]; alpha2[1] = user_alpha2[1]; } } else if (!is_world_regdom(ieee80211_regdom)) { pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n", ieee80211_regdom[0], ieee80211_regdom[1]); alpha2[0] = ieee80211_regdom[0]; alpha2[1] = ieee80211_regdom[1]; } else pr_debug("Restoring regulatory settings\n"); } static void restore_custom_reg_settings(struct wiphy *wiphy) { struct ieee80211_supported_band *sband; enum nl80211_band band; struct ieee80211_channel *chan; int i; for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { chan = &sband->channels[i]; chan->flags = chan->orig_flags; chan->max_antenna_gain = chan->orig_mag; chan->max_power = chan->orig_mpwr; chan->beacon_found = false; } } } /* * Restoring regulatory settings involves ingoring any * possibly stale country IE information and user regulatory * settings if so desired, this includes any beacon hints * learned as we could have traveled outside to another country * after disconnection. To restore regulatory settings we do * exactly what we did at bootup: * * - send a core regulatory hint * - send a user regulatory hint if applicable * * Device drivers that send a regulatory hint for a specific country * keep their own regulatory domain on wiphy->regd so that does does * not need to be remembered. */ static void restore_regulatory_settings(bool reset_user, bool cached) { char alpha2[2]; char world_alpha2[2]; struct reg_beacon *reg_beacon, *btmp; LIST_HEAD(tmp_reg_req_list); struct cfg80211_registered_device *rdev; ASSERT_RTNL(); /* * Clear the indoor setting in case that it is not controlled by user * space, as otherwise there is no guarantee that the device is still * operating in an indoor environment. */ spin_lock(®_indoor_lock); if (reg_is_indoor && !reg_is_indoor_portid) { reg_is_indoor = false; reg_check_channels(); } spin_unlock(®_indoor_lock); reset_regdomains(true, &world_regdom); restore_alpha2(alpha2, reset_user); /* * If there's any pending requests we simply * stash them to a temporary pending queue and * add then after we've restored regulatory * settings. */ spin_lock(®_requests_lock); list_splice_tail_init(®_requests_list, &tmp_reg_req_list); spin_unlock(®_requests_lock); /* Clear beacon hints */ spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } spin_unlock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } /* First restore to the basic regulatory settings */ world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) continue; if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) restore_custom_reg_settings(&rdev->wiphy); } if (cached && (!is_an_alpha2(alpha2) || !IS_ERR_OR_NULL(cfg80211_user_regdom))) { reset_regdomains(false, cfg80211_world_regdom); update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE); print_regdomain(get_cfg80211_regdom()); nl80211_send_reg_change_event(&core_request_world); reg_set_request_processed(); if (is_an_alpha2(alpha2) && !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) { struct regulatory_request *ureq; spin_lock(®_requests_lock); ureq = list_last_entry(®_requests_list, struct regulatory_request, list); list_del(&ureq->list); spin_unlock(®_requests_lock); notify_self_managed_wiphys(ureq); reg_update_last_request(ureq); set_regdom(reg_copy_regd(cfg80211_user_regdom), REGD_SOURCE_CACHED); } } else { regulatory_hint_core(world_alpha2); /* * This restores the ieee80211_regdom module parameter * preference or the last user requested regulatory * settings, user regulatory settings takes precedence. */ if (is_an_alpha2(alpha2)) regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER); } spin_lock(®_requests_lock); list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); spin_unlock(®_requests_lock); pr_debug("Kicking the queue\n"); schedule_work(®_work); } static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { wdev_lock(wdev); if (!(wdev->wiphy->regulatory_flags & flag)) { wdev_unlock(wdev); return false; } wdev_unlock(wdev); } } return true; } void regulatory_hint_disconnect(void) { /* Restore of regulatory settings is not required when wiphy(s) * ignore IE from connected access point but clearance of beacon hints * is required when wiphy(s) supports beacon hints. */ if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) { struct reg_beacon *reg_beacon, *btmp; if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS)) return; spin_lock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } spin_unlock_bh(®_pending_beacons_lock); list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } return; } pr_debug("All devices are disconnected, going to restore regulatory settings\n"); restore_regulatory_settings(false, true); } static bool freq_is_chan_12_13_14(u32 freq) { if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) || freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) || freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ)) return true; return false; } static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) { struct reg_beacon *pending_beacon; list_for_each_entry(pending_beacon, ®_pending_beacons, list) if (beacon_chan->center_freq == pending_beacon->chan.center_freq) return true; return false; } int regulatory_hint_found_beacon(struct wiphy *wiphy, struct ieee80211_channel *beacon_chan, gfp_t gfp) { struct reg_beacon *reg_beacon; bool processing; if (beacon_chan->beacon_found || beacon_chan->flags & IEEE80211_CHAN_RADAR || (beacon_chan->band == NL80211_BAND_2GHZ && !freq_is_chan_12_13_14(beacon_chan->center_freq))) return 0; spin_lock_bh(®_pending_beacons_lock); processing = pending_reg_beacon(beacon_chan); spin_unlock_bh(®_pending_beacons_lock); if (processing) return 0; reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); if (!reg_beacon) return -ENOMEM; pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", beacon_chan->center_freq, ieee80211_frequency_to_channel(beacon_chan->center_freq), wiphy_name(wiphy)); memcpy(®_beacon->chan, beacon_chan, sizeof(struct ieee80211_channel)); /* * Since we can be called from BH or and non-BH context * we must use spin_lock_bh() */ spin_lock_bh(®_pending_beacons_lock); list_add_tail(®_beacon->list, ®_pending_beacons); spin_unlock_bh(®_pending_beacons_lock); schedule_work(®_work); return 0; } static void print_rd_rules(const struct ieee80211_regdomain *rd) { unsigned int i; const struct ieee80211_reg_rule *reg_rule = NULL; const struct ieee80211_freq_range *freq_range = NULL; const struct ieee80211_power_rule *power_rule = NULL; char bw[32], cac_time[32]; pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); for (i = 0; i < rd->n_reg_rules; i++) { reg_rule = &rd->reg_rules[i]; freq_range = ®_rule->freq_range; power_rule = ®_rule->power_rule; if (reg_rule->flags & NL80211_RRF_AUTO_BW) snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", freq_range->max_bandwidth_khz, reg_get_max_bandwidth(rd, reg_rule)); else snprintf(bw, sizeof(bw), "%d KHz", freq_range->max_bandwidth_khz); if (reg_rule->flags & NL80211_RRF_DFS) scnprintf(cac_time, sizeof(cac_time), "%u s", reg_rule->dfs_cac_ms/1000); else scnprintf(cac_time, sizeof(cac_time), "N/A"); /* * There may not be documentation for max antenna gain * in certain regions */ if (power_rule->max_antenna_gain) pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, bw, power_rule->max_antenna_gain, power_rule->max_eirp, cac_time); else pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", freq_range->start_freq_khz, freq_range->end_freq_khz, bw, power_rule->max_eirp, cac_time); } } bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: case NL80211_DFS_FCC: case NL80211_DFS_ETSI: case NL80211_DFS_JP: return true; default: pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region); return false; } } static void print_regdomain(const struct ieee80211_regdomain *rd) { struct regulatory_request *lr = get_last_request(); if (is_intersected_alpha2(rd->alpha2)) { if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { struct cfg80211_registered_device *rdev; rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); if (rdev) { pr_debug("Current regulatory domain updated by AP to: %c%c\n", rdev->country_ie_alpha2[0], rdev->country_ie_alpha2[1]); } else pr_debug("Current regulatory domain intersected:\n"); } else pr_debug("Current regulatory domain intersected:\n"); } else if (is_world_regdom(rd->alpha2)) { pr_debug("World regulatory domain updated:\n"); } else { if (is_unknown_alpha2(rd->alpha2)) pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n"); else { if (reg_request_cell_base(lr)) pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n", rd->alpha2[0], rd->alpha2[1]); else pr_debug("Regulatory domain changed to country: %c%c\n", rd->alpha2[0], rd->alpha2[1]); } } pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); print_rd_rules(rd); } static void print_regdomain_info(const struct ieee80211_regdomain *rd) { pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_rd_rules(rd); } static int reg_set_rd_core(const struct ieee80211_regdomain *rd) { if (!is_world_regdom(rd->alpha2)) return -EINVAL; update_world_regdomain(rd); return 0; } static int reg_set_rd_user(const struct ieee80211_regdomain *rd, struct regulatory_request *user_request) { const struct ieee80211_regdomain *intersected_rd = NULL; if (!regdom_changes(rd->alpha2)) return -EALREADY; if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_regdomain_info(rd); return -EINVAL; } if (!user_request->intersect) { reset_regdomains(false, rd); return 0; } intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); if (!intersected_rd) return -EINVAL; kfree(rd); rd = NULL; reset_regdomains(false, intersected_rd); return 0; } static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, struct regulatory_request *driver_request) { const struct ieee80211_regdomain *regd; const struct ieee80211_regdomain *intersected_rd = NULL; const struct ieee80211_regdomain *tmp; struct wiphy *request_wiphy; if (is_world_regdom(rd->alpha2)) return -EINVAL; if (!regdom_changes(rd->alpha2)) return -EALREADY; if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_regdomain_info(rd); return -EINVAL; } request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); if (!request_wiphy) return -ENODEV; if (!driver_request->intersect) { if (request_wiphy->regd) return -EALREADY; regd = reg_copy_regd(rd); if (IS_ERR(regd)) return PTR_ERR(regd); rcu_assign_pointer(request_wiphy->regd, regd); reset_regdomains(false, rd); return 0; } intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); if (!intersected_rd) return -EINVAL; /* * We can trash what CRDA provided now. * However if a driver requested this specific regulatory * domain we keep it for its private use */ tmp = get_wiphy_regdom(request_wiphy); rcu_assign_pointer(request_wiphy->regd, rd); rcu_free_regdom(tmp); rd = NULL; reset_regdomains(false, intersected_rd); return 0; } static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, struct regulatory_request *country_ie_request) { struct wiphy *request_wiphy; if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && !is_unknown_alpha2(rd->alpha2)) return -EINVAL; /* * Lets only bother proceeding on the same alpha2 if the current * rd is non static (it means CRDA was present and was used last) * and the pending request came in from a country IE */ if (!is_valid_rd(rd)) { pr_err("Invalid regulatory domain detected: %c%c\n", rd->alpha2[0], rd->alpha2[1]); print_regdomain_info(rd); return -EINVAL; } request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); if (!request_wiphy) return -ENODEV; if (country_ie_request->intersect) return -EINVAL; reset_regdomains(false, rd); return 0; } /* * Use this call to set the current regulatory domain. Conflicts with * multiple drivers can be ironed out later. Caller must've already * kmalloc'd the rd structure. */ int set_regdom(const struct ieee80211_regdomain *rd, enum ieee80211_regd_source regd_src) { struct regulatory_request *lr; bool user_reset = false; int r; if (IS_ERR_OR_NULL(rd)) return -ENODATA; if (!reg_is_valid_request(rd->alpha2)) { kfree(rd); return -EINVAL; } if (regd_src == REGD_SOURCE_CRDA) reset_crda_timeouts(); lr = get_last_request(); /* Note that this doesn't update the wiphys, this is done below */ switch (lr->initiator) { case NL80211_REGDOM_SET_BY_CORE: r = reg_set_rd_core(rd); break; case NL80211_REGDOM_SET_BY_USER: cfg80211_save_user_regdom(rd); r = reg_set_rd_user(rd, lr); user_reset = true; break; case NL80211_REGDOM_SET_BY_DRIVER: r = reg_set_rd_driver(rd, lr); break; case NL80211_REGDOM_SET_BY_COUNTRY_IE: r = reg_set_rd_country_ie(rd, lr); break; default: WARN(1, "invalid initiator %d\n", lr->initiator); kfree(rd); return -EINVAL; } if (r) { switch (r) { case -EALREADY: reg_set_request_processed(); break; default: /* Back to world regulatory in case of errors */ restore_regulatory_settings(user_reset, false); } kfree(rd); return r; } /* This would make this whole thing pointless */ if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) return -EINVAL; /* update all wiphys now with the new established regulatory domain */ update_all_wiphy_regulatory(lr->initiator); print_regdomain(get_cfg80211_regdom()); nl80211_send_reg_change_event(lr); reg_set_request_processed(); return 0; } static int __regulatory_set_wiphy_regd(struct wiphy *wiphy, struct ieee80211_regdomain *rd) { const struct ieee80211_regdomain *regd; const struct ieee80211_regdomain *prev_regd; struct cfg80211_registered_device *rdev; if (WARN_ON(!wiphy || !rd)) return -EINVAL; if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED), "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n")) return -EPERM; if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) { print_regdomain_info(rd); return -EINVAL; } regd = reg_copy_regd(rd); if (IS_ERR(regd)) return PTR_ERR(regd); rdev = wiphy_to_rdev(wiphy); spin_lock(®_requests_lock); prev_regd = rdev->requested_regd; rdev->requested_regd = regd; spin_unlock(®_requests_lock); kfree(prev_regd); return 0; } int regulatory_set_wiphy_regd(struct wiphy *wiphy, struct ieee80211_regdomain *rd) { int ret = __regulatory_set_wiphy_regd(wiphy, rd); if (ret) return ret; schedule_work(®_work); return 0; } EXPORT_SYMBOL(regulatory_set_wiphy_regd); int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy, struct ieee80211_regdomain *rd) { int ret; ASSERT_RTNL(); ret = __regulatory_set_wiphy_regd(wiphy, rd); if (ret) return ret; /* process the request immediately */ reg_process_self_managed_hints(); return 0; } EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl); void wiphy_regulatory_register(struct wiphy *wiphy) { struct regulatory_request *lr = get_last_request(); /* self-managed devices ignore beacon hints and country IE */ if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) { wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS | REGULATORY_COUNTRY_IE_IGNORE; /* * The last request may have been received before this * registration call. Call the driver notifier if * initiator is USER. */ if (lr->initiator == NL80211_REGDOM_SET_BY_USER) reg_call_notifier(wiphy, lr); } if (!reg_dev_ignore_cell_hint(wiphy)) reg_num_devs_support_basehint++; wiphy_update_regulatory(wiphy, lr->initiator); wiphy_all_share_dfs_chan_state(wiphy); } void wiphy_regulatory_deregister(struct wiphy *wiphy) { struct wiphy *request_wiphy = NULL; struct regulatory_request *lr; lr = get_last_request(); if (!reg_dev_ignore_cell_hint(wiphy)) reg_num_devs_support_basehint--; rcu_free_regdom(get_wiphy_regdom(wiphy)); RCU_INIT_POINTER(wiphy->regd, NULL); if (lr) request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); if (!request_wiphy || request_wiphy != wiphy) return; lr->wiphy_idx = WIPHY_IDX_INVALID; lr->country_ie_env = ENVIRON_ANY; } /* * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for * UNII band definitions */ int cfg80211_get_unii(int freq) { /* UNII-1 */ if (freq >= 5150 && freq <= 5250) return 0; /* UNII-2A */ if (freq > 5250 && freq <= 5350) return 1; /* UNII-2B */ if (freq > 5350 && freq <= 5470) return 2; /* UNII-2C */ if (freq > 5470 && freq <= 5725) return 3; /* UNII-3 */ if (freq > 5725 && freq <= 5825) return 4; return -EINVAL; } bool regulatory_indoor_allowed(void) { return reg_is_indoor; } bool regulatory_pre_cac_allowed(struct wiphy *wiphy) { const struct ieee80211_regdomain *regd = NULL; const struct ieee80211_regdomain *wiphy_regd = NULL; bool pre_cac_allowed = false; rcu_read_lock(); regd = rcu_dereference(cfg80211_regdomain); wiphy_regd = rcu_dereference(wiphy->regd); if (!wiphy_regd) { if (regd->dfs_region == NL80211_DFS_ETSI) pre_cac_allowed = true; rcu_read_unlock(); return pre_cac_allowed; } if (regd->dfs_region == wiphy_regd->dfs_region && wiphy_regd->dfs_region == NL80211_DFS_ETSI) pre_cac_allowed = true; rcu_read_unlock(); return pre_cac_allowed; } void regulatory_propagate_dfs_state(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state, enum nl80211_radar_event event) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); if (WARN_ON(!cfg80211_chandef_valid(chandef))) return; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { if (wiphy == &rdev->wiphy) continue; if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) continue; if (!ieee80211_get_channel(&rdev->wiphy, chandef->chan->center_freq)) continue; cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state); if (event == NL80211_RADAR_DETECTED || event == NL80211_RADAR_CAC_FINISHED) cfg80211_sched_dfs_chan_update(rdev); nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL); } } static int __init regulatory_init_db(void) { int err; /* * It's possible that - due to other bugs/issues - cfg80211 * never called regulatory_init() below, or that it failed; * in that case, don't try to do any further work here as * it's doomed to lead to crashes. */ if (IS_ERR_OR_NULL(reg_pdev)) return -EINVAL; err = load_builtin_regdb_keys(); if (err) return err; /* We always try to get an update for the static regdomain */ err = regulatory_hint_core(cfg80211_world_regdom->alpha2); if (err) { if (err == -ENOMEM) { platform_device_unregister(reg_pdev); return err; } /* * N.B. kobject_uevent_env() can fail mainly for when we're out * memory which is handled and propagated appropriately above * but it can also fail during a netlink_broadcast() or during * early boot for call_usermodehelper(). For now treat these * errors as non-fatal. */ pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); } /* * Finally, if the user set the module parameter treat it * as a user hint. */ if (!is_world_regdom(ieee80211_regdom)) regulatory_hint_user(ieee80211_regdom, NL80211_USER_REG_HINT_USER); return 0; } #ifndef MODULE late_initcall(regulatory_init_db); #endif int __init regulatory_init(void) { reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); if (IS_ERR(reg_pdev)) return PTR_ERR(reg_pdev); spin_lock_init(®_requests_lock); spin_lock_init(®_pending_beacons_lock); spin_lock_init(®_indoor_lock); rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); user_alpha2[0] = '9'; user_alpha2[1] = '7'; #ifdef MODULE return regulatory_init_db(); #else return 0; #endif } void regulatory_exit(void) { struct regulatory_request *reg_request, *tmp; struct reg_beacon *reg_beacon, *btmp; cancel_work_sync(®_work); cancel_crda_timeout_sync(); cancel_delayed_work_sync(®_check_chans); /* Lock to suppress warnings */ rtnl_lock(); reset_regdomains(true, NULL); rtnl_unlock(); dev_set_uevent_suppress(®_pdev->dev, true); platform_device_unregister(reg_pdev); list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { list_del(®_beacon->list); kfree(reg_beacon); } list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { list_del(®_beacon->list); kfree(reg_beacon); } list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { list_del(®_request->list); kfree(reg_request); } if (!IS_ERR_OR_NULL(regdb)) kfree(regdb); if (!IS_ERR_OR_NULL(cfg80211_user_regdom)) kfree(cfg80211_user_regdom); free_regdb_keyring(); }