// SPDX-License-Identifier: GPL-2.0 /* * xfrm_input.c * * Changes: * YOSHIFUJI Hideaki @USAGI * Split up af-specific portion * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "xfrm_inout.h" struct xfrm_trans_tasklet { struct tasklet_struct tasklet; struct sk_buff_head queue; }; struct xfrm_trans_cb { union { struct inet_skb_parm h4; #if IS_ENABLED(CONFIG_IPV6) struct inet6_skb_parm h6; #endif } header; int (*finish)(struct net *net, struct sock *sk, struct sk_buff *skb); }; #define XFRM_TRANS_SKB_CB(__skb) ((struct xfrm_trans_cb *)&((__skb)->cb[0])) static DEFINE_SPINLOCK(xfrm_input_afinfo_lock); static struct xfrm_input_afinfo const __rcu *xfrm_input_afinfo[AF_INET6 + 1]; static struct gro_cells gro_cells; static struct net_device xfrm_napi_dev; static DEFINE_PER_CPU(struct xfrm_trans_tasklet, xfrm_trans_tasklet); int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo) { int err = 0; if (WARN_ON(afinfo->family >= ARRAY_SIZE(xfrm_input_afinfo))) return -EAFNOSUPPORT; spin_lock_bh(&xfrm_input_afinfo_lock); if (unlikely(xfrm_input_afinfo[afinfo->family] != NULL)) err = -EEXIST; else rcu_assign_pointer(xfrm_input_afinfo[afinfo->family], afinfo); spin_unlock_bh(&xfrm_input_afinfo_lock); return err; } EXPORT_SYMBOL(xfrm_input_register_afinfo); int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo) { int err = 0; spin_lock_bh(&xfrm_input_afinfo_lock); if (likely(xfrm_input_afinfo[afinfo->family] != NULL)) { if (unlikely(xfrm_input_afinfo[afinfo->family] != afinfo)) err = -EINVAL; else RCU_INIT_POINTER(xfrm_input_afinfo[afinfo->family], NULL); } spin_unlock_bh(&xfrm_input_afinfo_lock); synchronize_rcu(); return err; } EXPORT_SYMBOL(xfrm_input_unregister_afinfo); static const struct xfrm_input_afinfo *xfrm_input_get_afinfo(unsigned int family) { const struct xfrm_input_afinfo *afinfo; if (WARN_ON_ONCE(family >= ARRAY_SIZE(xfrm_input_afinfo))) return NULL; rcu_read_lock(); afinfo = rcu_dereference(xfrm_input_afinfo[family]); if (unlikely(!afinfo)) rcu_read_unlock(); return afinfo; } static int xfrm_rcv_cb(struct sk_buff *skb, unsigned int family, u8 protocol, int err) { int ret; const struct xfrm_input_afinfo *afinfo = xfrm_input_get_afinfo(family); if (!afinfo) return -EAFNOSUPPORT; ret = afinfo->callback(skb, protocol, err); rcu_read_unlock(); return ret; } struct sec_path *secpath_set(struct sk_buff *skb) { struct sec_path *sp, *tmp = skb_ext_find(skb, SKB_EXT_SEC_PATH); sp = skb_ext_add(skb, SKB_EXT_SEC_PATH); if (!sp) return NULL; if (tmp) /* reused existing one (was COW'd if needed) */ return sp; /* allocated new secpath */ memset(sp->ovec, 0, sizeof(sp->ovec)); sp->olen = 0; sp->len = 0; return sp; } EXPORT_SYMBOL(secpath_set); /* Fetch spi and seq from ipsec header */ int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq) { int offset, offset_seq; int hlen; switch (nexthdr) { case IPPROTO_AH: hlen = sizeof(struct ip_auth_hdr); offset = offsetof(struct ip_auth_hdr, spi); offset_seq = offsetof(struct ip_auth_hdr, seq_no); break; case IPPROTO_ESP: hlen = sizeof(struct ip_esp_hdr); offset = offsetof(struct ip_esp_hdr, spi); offset_seq = offsetof(struct ip_esp_hdr, seq_no); break; case IPPROTO_COMP: if (!pskb_may_pull(skb, sizeof(struct ip_comp_hdr))) return -EINVAL; *spi = htonl(ntohs(*(__be16 *)(skb_transport_header(skb) + 2))); *seq = 0; return 0; default: return 1; } if (!pskb_may_pull(skb, hlen)) return -EINVAL; *spi = *(__be32 *)(skb_transport_header(skb) + offset); *seq = *(__be32 *)(skb_transport_header(skb) + offset_seq); return 0; } EXPORT_SYMBOL(xfrm_parse_spi); static int xfrm4_remove_beet_encap(struct xfrm_state *x, struct sk_buff *skb) { struct iphdr *iph; int optlen = 0; int err = -EINVAL; if (unlikely(XFRM_MODE_SKB_CB(skb)->protocol == IPPROTO_BEETPH)) { struct ip_beet_phdr *ph; int phlen; if (!pskb_may_pull(skb, sizeof(*ph))) goto out; ph = (struct ip_beet_phdr *)skb->data; phlen = sizeof(*ph) + ph->padlen; optlen = ph->hdrlen * 8 + (IPV4_BEET_PHMAXLEN - phlen); if (optlen < 0 || optlen & 3 || optlen > 250) goto out; XFRM_MODE_SKB_CB(skb)->protocol = ph->nexthdr; if (!pskb_may_pull(skb, phlen)) goto out; __skb_pull(skb, phlen); } skb_push(skb, sizeof(*iph)); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); xfrm4_beet_make_header(skb); iph = ip_hdr(skb); iph->ihl += optlen / 4; iph->tot_len = htons(skb->len); iph->daddr = x->sel.daddr.a4; iph->saddr = x->sel.saddr.a4; iph->check = 0; iph->check = ip_fast_csum(skb_network_header(skb), iph->ihl); err = 0; out: return err; } static void ipip_ecn_decapsulate(struct sk_buff *skb) { struct iphdr *inner_iph = ipip_hdr(skb); if (INET_ECN_is_ce(XFRM_MODE_SKB_CB(skb)->tos)) IP_ECN_set_ce(inner_iph); } static int xfrm4_remove_tunnel_encap(struct xfrm_state *x, struct sk_buff *skb) { int err = -EINVAL; if (XFRM_MODE_SKB_CB(skb)->protocol != IPPROTO_IPIP) goto out; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto out; err = skb_unclone(skb, GFP_ATOMIC); if (err) goto out; if (x->props.flags & XFRM_STATE_DECAP_DSCP) ipv4_copy_dscp(XFRM_MODE_SKB_CB(skb)->tos, ipip_hdr(skb)); if (!(x->props.flags & XFRM_STATE_NOECN)) ipip_ecn_decapsulate(skb); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); if (skb->mac_len) eth_hdr(skb)->h_proto = skb->protocol; err = 0; out: return err; } static void ipip6_ecn_decapsulate(struct sk_buff *skb) { struct ipv6hdr *inner_iph = ipipv6_hdr(skb); if (INET_ECN_is_ce(XFRM_MODE_SKB_CB(skb)->tos)) IP6_ECN_set_ce(skb, inner_iph); } static int xfrm6_remove_tunnel_encap(struct xfrm_state *x, struct sk_buff *skb) { int err = -EINVAL; if (XFRM_MODE_SKB_CB(skb)->protocol != IPPROTO_IPV6) goto out; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto out; err = skb_unclone(skb, GFP_ATOMIC); if (err) goto out; if (x->props.flags & XFRM_STATE_DECAP_DSCP) ipv6_copy_dscp(ipv6_get_dsfield(ipv6_hdr(skb)), ipipv6_hdr(skb)); if (!(x->props.flags & XFRM_STATE_NOECN)) ipip6_ecn_decapsulate(skb); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); if (skb->mac_len) eth_hdr(skb)->h_proto = skb->protocol; err = 0; out: return err; } static int xfrm6_remove_beet_encap(struct xfrm_state *x, struct sk_buff *skb) { struct ipv6hdr *ip6h; int size = sizeof(struct ipv6hdr); int err; err = skb_cow_head(skb, size + skb->mac_len); if (err) goto out; __skb_push(skb, size); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); xfrm6_beet_make_header(skb); ip6h = ipv6_hdr(skb); ip6h->payload_len = htons(skb->len - size); ip6h->daddr = x->sel.daddr.in6; ip6h->saddr = x->sel.saddr.in6; err = 0; out: return err; } /* Remove encapsulation header. * * The IP header will be moved over the top of the encapsulation * header. * * On entry, the transport header shall point to where the IP header * should be and the network header shall be set to where the IP * header currently is. skb->data shall point to the start of the * payload. */ static int xfrm_inner_mode_encap_remove(struct xfrm_state *x, const struct xfrm_mode *inner_mode, struct sk_buff *skb) { switch (inner_mode->encap) { case XFRM_MODE_BEET: if (inner_mode->family == AF_INET) return xfrm4_remove_beet_encap(x, skb); if (inner_mode->family == AF_INET6) return xfrm6_remove_beet_encap(x, skb); break; case XFRM_MODE_TUNNEL: if (inner_mode->family == AF_INET) return xfrm4_remove_tunnel_encap(x, skb); if (inner_mode->family == AF_INET6) return xfrm6_remove_tunnel_encap(x, skb); break; } WARN_ON_ONCE(1); return -EOPNOTSUPP; } static int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb) { struct xfrm_mode *inner_mode = x->inner_mode; const struct xfrm_state_afinfo *afinfo; int err = -EAFNOSUPPORT; rcu_read_lock(); afinfo = xfrm_state_afinfo_get_rcu(x->outer_mode->family); if (likely(afinfo)) err = afinfo->extract_input(x, skb); if (err) { rcu_read_unlock(); return err; } if (x->sel.family == AF_UNSPEC) { inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol); if (!inner_mode) { rcu_read_unlock(); return -EAFNOSUPPORT; } } afinfo = xfrm_state_afinfo_get_rcu(inner_mode->family); if (unlikely(!afinfo)) { rcu_read_unlock(); return -EAFNOSUPPORT; } skb->protocol = afinfo->eth_proto; rcu_read_unlock(); return xfrm_inner_mode_encap_remove(x, inner_mode, skb); } /* Remove encapsulation header. * * The IP header will be moved over the top of the encapsulation header. * * On entry, skb_transport_header() shall point to where the IP header * should be and skb_network_header() shall be set to where the IP header * currently is. skb->data shall point to the start of the payload. */ static int xfrm4_transport_input(struct xfrm_state *x, struct sk_buff *skb) { #if IS_ENABLED(CONFIG_INET_XFRM_MODE_TRANSPORT) int ihl = skb->data - skb_transport_header(skb); if (skb->transport_header != skb->network_header) { memmove(skb_transport_header(skb), skb_network_header(skb), ihl); skb->network_header = skb->transport_header; } ip_hdr(skb)->tot_len = htons(skb->len + ihl); skb_reset_transport_header(skb); return 0; #else return -EOPNOTSUPP; #endif } static int xfrm6_transport_input(struct xfrm_state *x, struct sk_buff *skb) { #if IS_ENABLED(CONFIG_INET6_XFRM_MODE_TRANSPORT) int ihl = skb->data - skb_transport_header(skb); if (skb->transport_header != skb->network_header) { memmove(skb_transport_header(skb), skb_network_header(skb), ihl); skb->network_header = skb->transport_header; } ipv6_hdr(skb)->payload_len = htons(skb->len + ihl - sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); return 0; #else return -EOPNOTSUPP; #endif } static int xfrm_inner_mode_input(struct xfrm_state *x, const struct xfrm_mode *inner_mode, struct sk_buff *skb) { switch (inner_mode->encap) { case XFRM_MODE_BEET: case XFRM_MODE_TUNNEL: return xfrm_prepare_input(x, skb); case XFRM_MODE_TRANSPORT: if (inner_mode->family == AF_INET) return xfrm4_transport_input(x, skb); if (inner_mode->family == AF_INET6) return xfrm6_transport_input(x, skb); break; case XFRM_MODE_ROUTEOPTIMIZATION: WARN_ON_ONCE(1); break; default: WARN_ON_ONCE(1); break; } return -EOPNOTSUPP; } int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type) { const struct xfrm_state_afinfo *afinfo; struct net *net = dev_net(skb->dev); int err; __be32 seq; __be32 seq_hi; struct xfrm_state *x = NULL; xfrm_address_t *daddr; struct xfrm_mode *inner_mode; u32 mark = skb->mark; unsigned int family = AF_UNSPEC; int decaps = 0; int async = 0; bool xfrm_gro = false; bool crypto_done = false; struct xfrm_offload *xo = xfrm_offload(skb); struct sec_path *sp; if (encap_type < 0) { x = xfrm_input_state(skb); if (unlikely(x->km.state != XFRM_STATE_VALID)) { if (x->km.state == XFRM_STATE_ACQ) XFRM_INC_STATS(net, LINUX_MIB_XFRMACQUIREERROR); else XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEINVALID); goto drop; } family = x->outer_mode->family; /* An encap_type of -1 indicates async resumption. */ if (encap_type == -1) { async = 1; seq = XFRM_SKB_CB(skb)->seq.input.low; goto resume; } /* encap_type < -1 indicates a GRO call. */ encap_type = 0; seq = XFRM_SPI_SKB_CB(skb)->seq; if (xo && (xo->flags & CRYPTO_DONE)) { crypto_done = true; family = XFRM_SPI_SKB_CB(skb)->family; if (!(xo->status & CRYPTO_SUCCESS)) { if (xo->status & (CRYPTO_TRANSPORT_AH_AUTH_FAILED | CRYPTO_TRANSPORT_ESP_AUTH_FAILED | CRYPTO_TUNNEL_AH_AUTH_FAILED | CRYPTO_TUNNEL_ESP_AUTH_FAILED)) { xfrm_audit_state_icvfail(x, skb, x->type->proto); x->stats.integrity_failed++; XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR); goto drop; } if (xo->status & CRYPTO_INVALID_PROTOCOL) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR); goto drop; } XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR); goto drop; } if ((err = xfrm_parse_spi(skb, nexthdr, &spi, &seq)) != 0) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR); goto drop; } } goto lock; } family = XFRM_SPI_SKB_CB(skb)->family; /* if tunnel is present override skb->mark value with tunnel i_key */ switch (family) { case AF_INET: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) mark = be32_to_cpu(XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4->parms.i_key); break; case AF_INET6: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) mark = be32_to_cpu(XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6->parms.i_key); break; } sp = secpath_set(skb); if (!sp) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR); goto drop; } seq = 0; if (!spi && (err = xfrm_parse_spi(skb, nexthdr, &spi, &seq)) != 0) { secpath_reset(skb); XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR); goto drop; } daddr = (xfrm_address_t *)(skb_network_header(skb) + XFRM_SPI_SKB_CB(skb)->daddroff); do { sp = skb_sec_path(skb); if (sp->len == XFRM_MAX_DEPTH) { secpath_reset(skb); XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR); goto drop; } x = xfrm_state_lookup(net, mark, daddr, spi, nexthdr, family); if (x == NULL) { secpath_reset(skb); XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES); xfrm_audit_state_notfound(skb, family, spi, seq); goto drop; } skb->mark = xfrm_smark_get(skb->mark, x); sp->xvec[sp->len++] = x; skb_dst_force(skb); if (!skb_dst(skb)) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR); goto drop; } lock: spin_lock(&x->lock); if (unlikely(x->km.state != XFRM_STATE_VALID)) { if (x->km.state == XFRM_STATE_ACQ) XFRM_INC_STATS(net, LINUX_MIB_XFRMACQUIREERROR); else XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEINVALID); goto drop_unlock; } if ((x->encap ? x->encap->encap_type : 0) != encap_type) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMISMATCH); goto drop_unlock; } if (x->repl->check(x, skb, seq)) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR); goto drop_unlock; } if (xfrm_state_check_expire(x)) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEEXPIRED); goto drop_unlock; } spin_unlock(&x->lock); if (xfrm_tunnel_check(skb, x, family)) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR); goto drop; } seq_hi = htonl(xfrm_replay_seqhi(x, seq)); XFRM_SKB_CB(skb)->seq.input.low = seq; XFRM_SKB_CB(skb)->seq.input.hi = seq_hi; dev_hold(skb->dev); if (crypto_done) nexthdr = x->type_offload->input_tail(x, skb); else nexthdr = x->type->input(x, skb); if (nexthdr == -EINPROGRESS) return 0; resume: dev_put(skb->dev); spin_lock(&x->lock); if (nexthdr <= 0) { if (nexthdr == -EBADMSG) { xfrm_audit_state_icvfail(x, skb, x->type->proto); x->stats.integrity_failed++; } XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEPROTOERROR); goto drop_unlock; } /* only the first xfrm gets the encap type */ encap_type = 0; if (async && x->repl->recheck(x, skb, seq)) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATESEQERROR); goto drop_unlock; } x->repl->advance(x, seq); x->curlft.bytes += skb->len; x->curlft.packets++; spin_unlock(&x->lock); XFRM_MODE_SKB_CB(skb)->protocol = nexthdr; inner_mode = x->inner_mode; if (x->sel.family == AF_UNSPEC) { inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol); if (inner_mode == NULL) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR); goto drop; } } if (xfrm_inner_mode_input(x, inner_mode, skb)) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEMODEERROR); goto drop; } if (x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL) { decaps = 1; break; } /* * We need the inner address. However, we only get here for * transport mode so the outer address is identical. */ daddr = &x->id.daddr; family = x->outer_mode->family; err = xfrm_parse_spi(skb, nexthdr, &spi, &seq); if (err < 0) { XFRM_INC_STATS(net, LINUX_MIB_XFRMINHDRERROR); goto drop; } crypto_done = false; } while (!err); err = xfrm_rcv_cb(skb, family, x->type->proto, 0); if (err) goto drop; nf_reset(skb); if (decaps) { sp = skb_sec_path(skb); if (sp) sp->olen = 0; skb_dst_drop(skb); gro_cells_receive(&gro_cells, skb); return 0; } else { xo = xfrm_offload(skb); if (xo) xfrm_gro = xo->flags & XFRM_GRO; err = -EAFNOSUPPORT; rcu_read_lock(); afinfo = xfrm_state_afinfo_get_rcu(x->inner_mode->family); if (likely(afinfo)) err = afinfo->transport_finish(skb, xfrm_gro || async); rcu_read_unlock(); if (xfrm_gro) { sp = skb_sec_path(skb); if (sp) sp->olen = 0; skb_dst_drop(skb); gro_cells_receive(&gro_cells, skb); return err; } return err; } drop_unlock: spin_unlock(&x->lock); drop: xfrm_rcv_cb(skb, family, x && x->type ? x->type->proto : nexthdr, -1); kfree_skb(skb); return 0; } EXPORT_SYMBOL(xfrm_input); int xfrm_input_resume(struct sk_buff *skb, int nexthdr) { return xfrm_input(skb, nexthdr, 0, -1); } EXPORT_SYMBOL(xfrm_input_resume); static void xfrm_trans_reinject(unsigned long data) { struct xfrm_trans_tasklet *trans = (void *)data; struct sk_buff_head queue; struct sk_buff *skb; __skb_queue_head_init(&queue); skb_queue_splice_init(&trans->queue, &queue); while ((skb = __skb_dequeue(&queue))) XFRM_TRANS_SKB_CB(skb)->finish(dev_net(skb->dev), NULL, skb); } int xfrm_trans_queue(struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)) { struct xfrm_trans_tasklet *trans; trans = this_cpu_ptr(&xfrm_trans_tasklet); if (skb_queue_len(&trans->queue) >= netdev_max_backlog) return -ENOBUFS; XFRM_TRANS_SKB_CB(skb)->finish = finish; __skb_queue_tail(&trans->queue, skb); tasklet_schedule(&trans->tasklet); return 0; } EXPORT_SYMBOL(xfrm_trans_queue); void __init xfrm_input_init(void) { int err; int i; init_dummy_netdev(&xfrm_napi_dev); err = gro_cells_init(&gro_cells, &xfrm_napi_dev); if (err) gro_cells.cells = NULL; for_each_possible_cpu(i) { struct xfrm_trans_tasklet *trans; trans = &per_cpu(xfrm_trans_tasklet, i); __skb_queue_head_init(&trans->queue); tasklet_init(&trans->tasklet, xfrm_trans_reinject, (unsigned long)trans); } }