/* * Copyright 2012-2016 by the PaX Team * Copyright 2016 by Emese Revfy * Licensed under the GPL v2 * * Note: the choice of the license means that the compilation process is * NOT 'eligible' as defined by gcc's library exception to the GPL v3, * but for the kernel it doesn't matter since it doesn't link against * any of the gcc libraries * * This gcc plugin helps generate a little bit of entropy from program state, * used throughout the uptime of the kernel. Here is an instrumentation example: * * before: * void __latent_entropy test(int argc, char *argv[]) * { * if (argc <= 1) * printf("%s: no command arguments :(\n", *argv); * else * printf("%s: %d command arguments!\n", *argv, args - 1); * } * * after: * void __latent_entropy test(int argc, char *argv[]) * { * // latent_entropy_execute() 1. * unsigned long local_entropy; * // init_local_entropy() 1. * void *local_entropy_frameaddr; * // init_local_entropy() 3. * unsigned long tmp_latent_entropy; * * // init_local_entropy() 2. * local_entropy_frameaddr = __builtin_frame_address(0); * local_entropy = (unsigned long) local_entropy_frameaddr; * * // init_local_entropy() 4. * tmp_latent_entropy = latent_entropy; * // init_local_entropy() 5. * local_entropy ^= tmp_latent_entropy; * * // latent_entropy_execute() 3. * if (argc <= 1) { * // perturb_local_entropy() * local_entropy += 4623067384293424948; * printf("%s: no command arguments :(\n", *argv); * // perturb_local_entropy() * } else { * local_entropy ^= 3896280633962944730; * printf("%s: %d command arguments!\n", *argv, args - 1); * } * * // latent_entropy_execute() 4. * tmp_latent_entropy = rol(tmp_latent_entropy, local_entropy); * latent_entropy = tmp_latent_entropy; * } * * TODO: * - add ipa pass to identify not explicitly marked candidate functions * - mix in more program state (function arguments/return values, * loop variables, etc) * - more instrumentation control via attribute parameters * * BUGS: * - none known * * Options: * -fplugin-arg-latent_entropy_plugin-disable * * Attribute: __attribute__((latent_entropy)) * The latent_entropy gcc attribute can be only on functions and variables. * If it is on a function then the plugin will instrument it. If the attribute * is on a variable then the plugin will initialize it with a random value. * The variable must be an integer, an integer array type or a structure * with integer fields. */ #include "gcc-common.h" __visible int plugin_is_GPL_compatible; static GTY(()) tree latent_entropy_decl; static struct plugin_info latent_entropy_plugin_info = { .version = "201606141920vanilla", .help = "disable\tturn off latent entropy instrumentation\n", }; static unsigned HOST_WIDE_INT seed; /* * get_random_seed() (this is a GCC function) generates the seed. * This is a simple random generator without any cryptographic security because * the entropy doesn't come from here. */ static unsigned HOST_WIDE_INT get_random_const(void) { unsigned int i; unsigned HOST_WIDE_INT ret = 0; for (i = 0; i < 8 * sizeof(ret); i++) { ret = (ret << 1) | (seed & 1); seed >>= 1; if (ret & 1) seed ^= 0xD800000000000000ULL; } return ret; } static tree tree_get_random_const(tree type) { unsigned long long mask; mask = 1ULL << (TREE_INT_CST_LOW(TYPE_SIZE(type)) - 1); mask = 2 * (mask - 1) + 1; if (TYPE_UNSIGNED(type)) return build_int_cstu(type, mask & get_random_const()); return build_int_cst(type, mask & get_random_const()); } static tree handle_latent_entropy_attribute(tree *node, tree name, tree args __unused, int flags __unused, bool *no_add_attrs) { tree type; #if BUILDING_GCC_VERSION <= 4007 VEC(constructor_elt, gc) *vals; #else vec *vals; #endif switch (TREE_CODE(*node)) { default: *no_add_attrs = true; error("%qE attribute only applies to functions and variables", name); break; case VAR_DECL: if (DECL_INITIAL(*node)) { *no_add_attrs = true; error("variable %qD with %qE attribute must not be initialized", *node, name); break; } if (!TREE_STATIC(*node)) { *no_add_attrs = true; error("variable %qD with %qE attribute must not be local", *node, name); break; } type = TREE_TYPE(*node); switch (TREE_CODE(type)) { default: *no_add_attrs = true; error("variable %qD with %qE attribute must be an integer or a fixed length integer array type or a fixed sized structure with integer fields", *node, name); break; case RECORD_TYPE: { tree fld, lst = TYPE_FIELDS(type); unsigned int nelt = 0; for (fld = lst; fld; nelt++, fld = TREE_CHAIN(fld)) { tree fieldtype; fieldtype = TREE_TYPE(fld); if (TREE_CODE(fieldtype) == INTEGER_TYPE) continue; *no_add_attrs = true; error("structure variable %qD with %qE attribute has a non-integer field %qE", *node, name, fld); break; } if (fld) break; #if BUILDING_GCC_VERSION <= 4007 vals = VEC_alloc(constructor_elt, gc, nelt); #else vec_alloc(vals, nelt); #endif for (fld = lst; fld; fld = TREE_CHAIN(fld)) { tree random_const, fld_t = TREE_TYPE(fld); random_const = tree_get_random_const(fld_t); CONSTRUCTOR_APPEND_ELT(vals, fld, random_const); } /* Initialize the fields with random constants */ DECL_INITIAL(*node) = build_constructor(type, vals); break; } /* Initialize the variable with a random constant */ case INTEGER_TYPE: DECL_INITIAL(*node) = tree_get_random_const(type); break; case ARRAY_TYPE: { tree elt_type, array_size, elt_size; unsigned int i, nelt; HOST_WIDE_INT array_size_int, elt_size_int; elt_type = TREE_TYPE(type); elt_size = TYPE_SIZE_UNIT(TREE_TYPE(type)); array_size = TYPE_SIZE_UNIT(type); if (TREE_CODE(elt_type) != INTEGER_TYPE || !array_size || TREE_CODE(array_size) != INTEGER_CST) { *no_add_attrs = true; error("array variable %qD with %qE attribute must be a fixed length integer array type", *node, name); break; } array_size_int = TREE_INT_CST_LOW(array_size); elt_size_int = TREE_INT_CST_LOW(elt_size); nelt = array_size_int / elt_size_int; #if BUILDING_GCC_VERSION <= 4007 vals = VEC_alloc(constructor_elt, gc, nelt); #else vec_alloc(vals, nelt); #endif for (i = 0; i < nelt; i++) { tree cst = size_int(i); tree rand_cst = tree_get_random_const(elt_type); CONSTRUCTOR_APPEND_ELT(vals, cst, rand_cst); } /* * Initialize the elements of the array with random * constants */ DECL_INITIAL(*node) = build_constructor(type, vals); break; } } break; case FUNCTION_DECL: break; } return NULL_TREE; } static struct attribute_spec latent_entropy_attr = { .name = "latent_entropy", .min_length = 0, .max_length = 0, .decl_required = true, .type_required = false, .function_type_required = false, .handler = handle_latent_entropy_attribute, #if BUILDING_GCC_VERSION >= 4007 .affects_type_identity = false #endif }; static void register_attributes(void *event_data __unused, void *data __unused) { register_attribute(&latent_entropy_attr); } static bool latent_entropy_gate(void) { tree list; /* don't bother with noreturn functions for now */ if (TREE_THIS_VOLATILE(current_function_decl)) return false; /* gcc-4.5 doesn't discover some trivial noreturn functions */ if (EDGE_COUNT(EXIT_BLOCK_PTR_FOR_FN(cfun)->preds) == 0) return false; list = DECL_ATTRIBUTES(current_function_decl); return lookup_attribute("latent_entropy", list) != NULL_TREE; } static tree create_var(tree type, const char *name) { tree var; var = create_tmp_var(type, name); add_referenced_var(var); mark_sym_for_renaming(var); return var; } /* * Set up the next operation and its constant operand to use in the latent * entropy PRNG. When RHS is specified, the request is for perturbing the * local latent entropy variable, otherwise it is for perturbing the global * latent entropy variable where the two operands are already given by the * local and global latent entropy variables themselves. * * The operation is one of add/xor/rol when instrumenting the local entropy * variable and one of add/xor when perturbing the global entropy variable. * Rotation is not used for the latter case because it would transmit less * entropy to the global variable than the other two operations. */ static enum tree_code get_op(tree *rhs) { static enum tree_code op; unsigned HOST_WIDE_INT random_const; random_const = get_random_const(); switch (op) { case BIT_XOR_EXPR: op = PLUS_EXPR; break; case PLUS_EXPR: if (rhs) { op = LROTATE_EXPR; /* * This code limits the value of random_const to * the size of a long for the rotation */ random_const %= TYPE_PRECISION(long_unsigned_type_node); break; } case LROTATE_EXPR: default: op = BIT_XOR_EXPR; break; } if (rhs) *rhs = build_int_cstu(long_unsigned_type_node, random_const); return op; } static gimple create_assign(enum tree_code code, tree lhs, tree op1, tree op2) { return gimple_build_assign_with_ops(code, lhs, op1, op2); } static void perturb_local_entropy(basic_block bb, tree local_entropy) { gimple_stmt_iterator gsi; gimple assign; tree rhs; enum tree_code op; op = get_op(&rhs); assign = create_assign(op, local_entropy, local_entropy, rhs); gsi = gsi_after_labels(bb); gsi_insert_before(&gsi, assign, GSI_NEW_STMT); update_stmt(assign); } static void __perturb_latent_entropy(gimple_stmt_iterator *gsi, tree local_entropy) { gimple assign; tree temp; enum tree_code op; /* 1. create temporary copy of latent_entropy */ temp = create_var(long_unsigned_type_node, "temp_latent_entropy"); /* 2. read... */ add_referenced_var(latent_entropy_decl); mark_sym_for_renaming(latent_entropy_decl); assign = gimple_build_assign(temp, latent_entropy_decl); gsi_insert_before(gsi, assign, GSI_NEW_STMT); update_stmt(assign); /* 3. ...modify... */ op = get_op(NULL); assign = create_assign(op, temp, temp, local_entropy); gsi_insert_after(gsi, assign, GSI_NEW_STMT); update_stmt(assign); /* 4. ...write latent_entropy */ assign = gimple_build_assign(latent_entropy_decl, temp); gsi_insert_after(gsi, assign, GSI_NEW_STMT); update_stmt(assign); } static bool handle_tail_calls(basic_block bb, tree local_entropy) { gimple_stmt_iterator gsi; for (gsi = gsi_start_bb(bb); !gsi_end_p(gsi); gsi_next(&gsi)) { gcall *call; gimple stmt = gsi_stmt(gsi); if (!is_gimple_call(stmt)) continue; call = as_a_gcall(stmt); if (!gimple_call_tail_p(call)) continue; __perturb_latent_entropy(&gsi, local_entropy); return true; } return false; } static void perturb_latent_entropy(tree local_entropy) { edge_iterator ei; edge e, last_bb_e; basic_block last_bb; gcc_assert(single_pred_p(EXIT_BLOCK_PTR_FOR_FN(cfun))); last_bb_e = single_pred_edge(EXIT_BLOCK_PTR_FOR_FN(cfun)); FOR_EACH_EDGE(e, ei, last_bb_e->src->preds) { if (ENTRY_BLOCK_PTR_FOR_FN(cfun) == e->src) continue; if (EXIT_BLOCK_PTR_FOR_FN(cfun) == e->src) continue; handle_tail_calls(e->src, local_entropy); } last_bb = single_pred(EXIT_BLOCK_PTR_FOR_FN(cfun)); if (!handle_tail_calls(last_bb, local_entropy)) { gimple_stmt_iterator gsi = gsi_last_bb(last_bb); __perturb_latent_entropy(&gsi, local_entropy); } } static void init_local_entropy(basic_block bb, tree local_entropy) { gimple assign, call; tree frame_addr, rand_const, tmp, fndecl, udi_frame_addr; enum tree_code op; unsigned HOST_WIDE_INT rand_cst; gimple_stmt_iterator gsi = gsi_after_labels(bb); /* 1. create local_entropy_frameaddr */ frame_addr = create_var(ptr_type_node, "local_entropy_frameaddr"); /* 2. local_entropy_frameaddr = __builtin_frame_address() */ fndecl = builtin_decl_implicit(BUILT_IN_FRAME_ADDRESS); call = gimple_build_call(fndecl, 1, integer_zero_node); gimple_call_set_lhs(call, frame_addr); gsi_insert_before(&gsi, call, GSI_NEW_STMT); update_stmt(call); udi_frame_addr = fold_convert(long_unsigned_type_node, frame_addr); assign = gimple_build_assign(local_entropy, udi_frame_addr); gsi_insert_after(&gsi, assign, GSI_NEW_STMT); update_stmt(assign); /* 3. create temporary copy of latent_entropy */ tmp = create_var(long_unsigned_type_node, "temp_latent_entropy"); /* 4. read the global entropy variable into local entropy */ add_referenced_var(latent_entropy_decl); mark_sym_for_renaming(latent_entropy_decl); assign = gimple_build_assign(tmp, latent_entropy_decl); gsi_insert_after(&gsi, assign, GSI_NEW_STMT); update_stmt(assign); /* 5. mix local_entropy_frameaddr into local entropy */ assign = create_assign(BIT_XOR_EXPR, local_entropy, local_entropy, tmp); gsi_insert_after(&gsi, assign, GSI_NEW_STMT); update_stmt(assign); rand_cst = get_random_const(); rand_const = build_int_cstu(long_unsigned_type_node, rand_cst); op = get_op(NULL); assign = create_assign(op, local_entropy, local_entropy, rand_const); gsi_insert_after(&gsi, assign, GSI_NEW_STMT); update_stmt(assign); } static bool create_latent_entropy_decl(void) { varpool_node_ptr node; if (latent_entropy_decl != NULL_TREE) return true; FOR_EACH_VARIABLE(node) { tree name, var = NODE_DECL(node); if (DECL_NAME_LENGTH(var) < sizeof("latent_entropy") - 1) continue; name = DECL_NAME(var); if (strcmp(IDENTIFIER_POINTER(name), "latent_entropy")) continue; latent_entropy_decl = var; break; } return latent_entropy_decl != NULL_TREE; } static unsigned int latent_entropy_execute(void) { basic_block bb; tree local_entropy; if (!create_latent_entropy_decl()) return 0; /* prepare for step 2 below */ gcc_assert(single_succ_p(ENTRY_BLOCK_PTR_FOR_FN(cfun))); bb = single_succ(ENTRY_BLOCK_PTR_FOR_FN(cfun)); if (!single_pred_p(bb)) { split_edge(single_succ_edge(ENTRY_BLOCK_PTR_FOR_FN(cfun))); gcc_assert(single_succ_p(ENTRY_BLOCK_PTR_FOR_FN(cfun))); bb = single_succ(ENTRY_BLOCK_PTR_FOR_FN(cfun)); } /* 1. create the local entropy variable */ local_entropy = create_var(long_unsigned_type_node, "local_entropy"); /* 2. initialize the local entropy variable */ init_local_entropy(bb, local_entropy); bb = bb->next_bb; /* * 3. instrument each BB with an operation on the * local entropy variable */ while (bb != EXIT_BLOCK_PTR_FOR_FN(cfun)) { perturb_local_entropy(bb, local_entropy); bb = bb->next_bb; }; /* 4. mix local entropy into the global entropy variable */ perturb_latent_entropy(local_entropy); return 0; } static void latent_entropy_start_unit(void *gcc_data __unused, void *user_data __unused) { tree type, id; int quals; seed = get_random_seed(false); if (in_lto_p) return; /* extern volatile unsigned long latent_entropy */ quals = TYPE_QUALS(long_unsigned_type_node) | TYPE_QUAL_VOLATILE; type = build_qualified_type(long_unsigned_type_node, quals); id = get_identifier("latent_entropy"); latent_entropy_decl = build_decl(UNKNOWN_LOCATION, VAR_DECL, id, type); TREE_STATIC(latent_entropy_decl) = 1; TREE_PUBLIC(latent_entropy_decl) = 1; TREE_USED(latent_entropy_decl) = 1; DECL_PRESERVE_P(latent_entropy_decl) = 1; TREE_THIS_VOLATILE(latent_entropy_decl) = 1; DECL_EXTERNAL(latent_entropy_decl) = 1; DECL_ARTIFICIAL(latent_entropy_decl) = 1; lang_hooks.decls.pushdecl(latent_entropy_decl); } #define PASS_NAME latent_entropy #define PROPERTIES_REQUIRED PROP_gimple_leh | PROP_cfg #define TODO_FLAGS_FINISH TODO_verify_ssa | TODO_verify_stmts | TODO_dump_func \ | TODO_update_ssa #include "gcc-generate-gimple-pass.h" __visible int plugin_init(struct plugin_name_args *plugin_info, struct plugin_gcc_version *version) { bool enabled = true; const char * const plugin_name = plugin_info->base_name; const int argc = plugin_info->argc; const struct plugin_argument * const argv = plugin_info->argv; int i; struct register_pass_info latent_entropy_pass_info; latent_entropy_pass_info.pass = make_latent_entropy_pass(); latent_entropy_pass_info.reference_pass_name = "optimized"; latent_entropy_pass_info.ref_pass_instance_number = 1; latent_entropy_pass_info.pos_op = PASS_POS_INSERT_BEFORE; static const struct ggc_root_tab gt_ggc_r_gt_latent_entropy[] = { { .base = &latent_entropy_decl, .nelt = 1, .stride = sizeof(latent_entropy_decl), .cb = >_ggc_mx_tree_node, .pchw = >_pch_nx_tree_node }, LAST_GGC_ROOT_TAB }; if (!plugin_default_version_check(version, &gcc_version)) { error(G_("incompatible gcc/plugin versions")); return 1; } for (i = 0; i < argc; ++i) { if (!(strcmp(argv[i].key, "disable"))) { enabled = false; continue; } error(G_("unknown option '-fplugin-arg-%s-%s'"), plugin_name, argv[i].key); } register_callback(plugin_name, PLUGIN_INFO, NULL, &latent_entropy_plugin_info); if (enabled) { register_callback(plugin_name, PLUGIN_START_UNIT, &latent_entropy_start_unit, NULL); register_callback(plugin_name, PLUGIN_REGISTER_GGC_ROOTS, NULL, (void *)>_ggc_r_gt_latent_entropy); register_callback(plugin_name, PLUGIN_PASS_MANAGER_SETUP, NULL, &latent_entropy_pass_info); } register_callback(plugin_name, PLUGIN_ATTRIBUTES, register_attributes, NULL); return 0; }