// SPDX-License-Identifier: GPL-2.0 /* * Implementation of the SID table type. * * Original author: Stephen Smalley, * Author: Ondrej Mosnacek, * * Copyright (C) 2018 Red Hat, Inc. */ #include #include #include #include #include #include #include #include #include "flask.h" #include "security.h" #include "sidtab.h" struct sidtab_str_cache { struct rcu_head rcu_member; struct list_head lru_member; struct sidtab_entry *parent; u32 len; char str[]; }; #define index_to_sid(index) (index + SECINITSID_NUM + 1) #define sid_to_index(sid) (sid - (SECINITSID_NUM + 1)) int sidtab_init(struct sidtab *s) { u32 i; memset(s->roots, 0, sizeof(s->roots)); for (i = 0; i < SECINITSID_NUM; i++) s->isids[i].set = 0; s->count = 0; s->convert = NULL; hash_init(s->context_to_sid); spin_lock_init(&s->lock); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE; INIT_LIST_HEAD(&s->cache_lru_list); spin_lock_init(&s->cache_lock); #endif return 0; } static u32 context_to_sid(struct sidtab *s, struct context *context) { struct sidtab_entry *entry; u32 sid = 0; rcu_read_lock(); hash_for_each_possible_rcu(s->context_to_sid, entry, list, context->hash) { if (context_cmp(&entry->context, context)) { sid = entry->sid; break; } } rcu_read_unlock(); return sid; } int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context) { struct sidtab_isid_entry *isid; int rc; if (sid == 0 || sid > SECINITSID_NUM) return -EINVAL; isid = &s->isids[sid - 1]; rc = context_cpy(&isid->entry.context, context); if (rc) return rc; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 isid->entry.cache = NULL; #endif isid->set = 1; /* * Multiple initial sids may map to the same context. Check that this * context is not already represented in the context_to_sid hashtable * to avoid duplicate entries and long linked lists upon hash * collision. */ if (!context_to_sid(s, context)) { isid->entry.sid = sid; hash_add(s->context_to_sid, &isid->entry.list, context->hash); } return 0; } int sidtab_hash_stats(struct sidtab *sidtab, char *page) { int i; int chain_len = 0; int slots_used = 0; int entries = 0; int max_chain_len = 0; int cur_bucket = 0; struct sidtab_entry *entry; rcu_read_lock(); hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) { entries++; if (i == cur_bucket) { chain_len++; if (chain_len == 1) slots_used++; } else { cur_bucket = i; if (chain_len > max_chain_len) max_chain_len = chain_len; chain_len = 0; } } rcu_read_unlock(); if (chain_len > max_chain_len) max_chain_len = chain_len; return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" "longest chain: %d\n", entries, slots_used, SIDTAB_HASH_BUCKETS, max_chain_len); } static u32 sidtab_level_from_count(u32 count) { u32 capacity = SIDTAB_LEAF_ENTRIES; u32 level = 0; while (count > capacity) { capacity <<= SIDTAB_INNER_SHIFT; ++level; } return level; } static int sidtab_alloc_roots(struct sidtab *s, u32 level) { u32 l; if (!s->roots[0].ptr_leaf) { s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC); if (!s->roots[0].ptr_leaf) return -ENOMEM; } for (l = 1; l <= level; ++l) if (!s->roots[l].ptr_inner) { s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC); if (!s->roots[l].ptr_inner) return -ENOMEM; s->roots[l].ptr_inner->entries[0] = s->roots[l - 1]; } return 0; } static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc) { union sidtab_entry_inner *entry; u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES; /* find the level of the subtree we need */ level = sidtab_level_from_count(index + 1); capacity_shift = level * SIDTAB_INNER_SHIFT; /* allocate roots if needed */ if (alloc && sidtab_alloc_roots(s, level) != 0) return NULL; /* lookup inside the subtree */ entry = &s->roots[level]; while (level != 0) { capacity_shift -= SIDTAB_INNER_SHIFT; --level; entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift]; leaf_index &= ((u32)1 << capacity_shift) - 1; if (!entry->ptr_inner) { if (alloc) entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC); if (!entry->ptr_inner) return NULL; } } if (!entry->ptr_leaf) { if (alloc) entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC); if (!entry->ptr_leaf) return NULL; } return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES]; } static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index) { /* read entries only after reading count */ u32 count = smp_load_acquire(&s->count); if (index >= count) return NULL; return sidtab_do_lookup(s, index, 0); } static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid) { return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL; } static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid, int force) { if (sid != 0) { struct sidtab_entry *entry; if (sid > SECINITSID_NUM) entry = sidtab_lookup(s, sid_to_index(sid)); else entry = sidtab_lookup_initial(s, sid); if (entry && (!entry->context.len || force)) return entry; } return sidtab_lookup_initial(s, SECINITSID_UNLABELED); } struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid) { return sidtab_search_core(s, sid, 0); } struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid) { return sidtab_search_core(s, sid, 1); } int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid) { unsigned long flags; u32 count; struct sidtab_convert_params *convert; struct sidtab_entry *dst, *dst_convert; int rc; *sid = context_to_sid(s, context); if (*sid) return 0; /* lock-free search failed: lock, re-search, and insert if not found */ spin_lock_irqsave(&s->lock, flags); rc = 0; *sid = context_to_sid(s, context); if (*sid) goto out_unlock; /* read entries only after reading count */ count = smp_load_acquire(&s->count); convert = s->convert; /* bail out if we already reached max entries */ rc = -EOVERFLOW; if (count >= SIDTAB_MAX) goto out_unlock; /* insert context into new entry */ rc = -ENOMEM; dst = sidtab_do_lookup(s, count, 1); if (!dst) goto out_unlock; dst->sid = index_to_sid(count); rc = context_cpy(&dst->context, context); if (rc) goto out_unlock; /* * if we are building a new sidtab, we need to convert the context * and insert it there as well */ if (convert) { rc = -ENOMEM; dst_convert = sidtab_do_lookup(convert->target, count, 1); if (!dst_convert) { context_destroy(&dst->context); goto out_unlock; } rc = convert->func(context, &dst_convert->context, convert->args); if (rc) { context_destroy(&dst->context); goto out_unlock; } dst_convert->sid = index_to_sid(count); convert->target->count = count + 1; hash_add_rcu(convert->target->context_to_sid, &dst_convert->list, dst_convert->context.hash); } if (context->len) pr_info("SELinux: Context %s is not valid (left unmapped).\n", context->str); *sid = index_to_sid(count); /* write entries before updating count */ smp_store_release(&s->count, count + 1); hash_add_rcu(s->context_to_sid, &dst->list, dst->context.hash); rc = 0; out_unlock: spin_unlock_irqrestore(&s->lock, flags); return rc; } static void sidtab_convert_hashtable(struct sidtab *s, u32 count) { struct sidtab_entry *entry; u32 i; for (i = 0; i < count; i++) { entry = sidtab_do_lookup(s, i, 0); entry->sid = index_to_sid(i); hash_add_rcu(s->context_to_sid, &entry->list, entry->context.hash); } } static int sidtab_convert_tree(union sidtab_entry_inner *edst, union sidtab_entry_inner *esrc, u32 *pos, u32 count, u32 level, struct sidtab_convert_params *convert) { int rc; u32 i; if (level != 0) { if (!edst->ptr_inner) { edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL); if (!edst->ptr_inner) return -ENOMEM; } i = 0; while (i < SIDTAB_INNER_ENTRIES && *pos < count) { rc = sidtab_convert_tree(&edst->ptr_inner->entries[i], &esrc->ptr_inner->entries[i], pos, count, level - 1, convert); if (rc) return rc; i++; } } else { if (!edst->ptr_leaf) { edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL); if (!edst->ptr_leaf) return -ENOMEM; } i = 0; while (i < SIDTAB_LEAF_ENTRIES && *pos < count) { rc = convert->func(&esrc->ptr_leaf->entries[i].context, &edst->ptr_leaf->entries[i].context, convert->args); if (rc) return rc; (*pos)++; i++; } cond_resched(); } return 0; } int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params) { unsigned long flags; u32 count, level, pos; int rc; spin_lock_irqsave(&s->lock, flags); /* concurrent policy loads are not allowed */ if (s->convert) { spin_unlock_irqrestore(&s->lock, flags); return -EBUSY; } count = s->count; level = sidtab_level_from_count(count); /* allocate last leaf in the new sidtab (to avoid race with * live convert) */ rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM; if (rc) { spin_unlock_irqrestore(&s->lock, flags); return rc; } /* set count in case no new entries are added during conversion */ params->target->count = count; /* enable live convert of new entries */ s->convert = params; /* we can safely convert the tree outside the lock */ spin_unlock_irqrestore(&s->lock, flags); pr_info("SELinux: Converting %u SID table entries...\n", count); /* convert all entries not covered by live convert */ pos = 0; rc = sidtab_convert_tree(¶ms->target->roots[level], &s->roots[level], &pos, count, level, params); if (rc) { /* we need to keep the old table - disable live convert */ spin_lock_irqsave(&s->lock, flags); s->convert = NULL; spin_unlock_irqrestore(&s->lock, flags); return rc; } /* * The hashtable can also be modified in sidtab_context_to_sid() * so we must re-acquire the lock here. */ spin_lock_irqsave(&s->lock, flags); sidtab_convert_hashtable(params->target, count); spin_unlock_irqrestore(&s->lock, flags); return 0; } static void sidtab_destroy_entry(struct sidtab_entry *entry) { context_destroy(&entry->context); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 kfree(rcu_dereference_raw(entry->cache)); #endif } static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level) { u32 i; if (level != 0) { struct sidtab_node_inner *node = entry.ptr_inner; if (!node) return; for (i = 0; i < SIDTAB_INNER_ENTRIES; i++) sidtab_destroy_tree(node->entries[i], level - 1); kfree(node); } else { struct sidtab_node_leaf *node = entry.ptr_leaf; if (!node) return; for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++) sidtab_destroy_entry(&node->entries[i]); kfree(node); } } void sidtab_destroy(struct sidtab *s) { u32 i, level; for (i = 0; i < SECINITSID_NUM; i++) if (s->isids[i].set) sidtab_destroy_entry(&s->isids[i].entry); level = SIDTAB_MAX_LEVEL; while (level && !s->roots[level].ptr_inner) --level; sidtab_destroy_tree(s->roots[level], level); /* * The context_to_sid hashtable's objects are all shared * with the isids array and context tree, and so don't need * to be cleaned up here. */ } #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len) { struct sidtab_str_cache *cache, *victim = NULL; /* do not cache invalid contexts */ if (entry->context.len) return; /* * Skip the put operation when in non-task context to avoid the need * to disable interrupts while holding s->cache_lock. */ if (!in_task()) return; spin_lock(&s->cache_lock); cache = rcu_dereference_protected(entry->cache, lockdep_is_held(&s->cache_lock)); if (cache) { /* entry in cache - just bump to the head of LRU list */ list_move(&cache->lru_member, &s->cache_lru_list); goto out_unlock; } cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC); if (!cache) goto out_unlock; if (s->cache_free_slots == 0) { /* pop a cache entry from the tail and free it */ victim = container_of(s->cache_lru_list.prev, struct sidtab_str_cache, lru_member); list_del(&victim->lru_member); rcu_assign_pointer(victim->parent->cache, NULL); } else { s->cache_free_slots--; } cache->parent = entry; cache->len = str_len; memcpy(cache->str, str, str_len); list_add(&cache->lru_member, &s->cache_lru_list); rcu_assign_pointer(entry->cache, cache); out_unlock: spin_unlock(&s->cache_lock); kfree_rcu(victim, rcu_member); } int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len) { struct sidtab_str_cache *cache; int rc = 0; if (entry->context.len) return -ENOENT; /* do not cache invalid contexts */ rcu_read_lock(); cache = rcu_dereference(entry->cache); if (!cache) { rc = -ENOENT; } else { *out_len = cache->len; if (out) { *out = kmemdup(cache->str, cache->len, GFP_ATOMIC); if (!*out) rc = -ENOMEM; } } rcu_read_unlock(); if (!rc && out) sidtab_sid2str_put(s, entry, *out, *out_len); return rc; } #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */