// SPDX-License-Identifier: GPL-2.0-only // cs4234.c -- ALSA SoC CS4234 driver // // Copyright (C) 2020 Cirrus Logic, Inc. and // Cirrus Logic International Semiconductor Ltd. // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cs4234.h" struct cs4234 { struct device *dev; struct regmap *regmap; struct gpio_desc *reset_gpio; struct regulator_bulk_data core_supplies[2]; int num_core_supplies; struct completion vq_ramp_complete; struct delayed_work vq_ramp_delay; struct clk *mclk; unsigned long mclk_rate; unsigned long lrclk_rate; unsigned int format; struct snd_ratnum rate_dividers[2]; struct snd_pcm_hw_constraint_ratnums rate_constraint; }; /* -89.92dB to +6.02dB with step of 0.38dB */ static const DECLARE_TLV_DB_SCALE(dac_tlv, -8992, 38, 0); static const char * const cs4234_dac14_delay_text[] = { "0us", "100us", "150us", "200us", "225us", "250us", "275us", "300us", "325us", "350us", "375us", "400us", "425us", "450us", "475us", "500us", }; static SOC_ENUM_SINGLE_DECL(cs4234_dac14_group_delay, CS4234_TPS_CTRL, CS4234_GRP_DELAY_SHIFT, cs4234_dac14_delay_text); static const char * const cs4234_noise_gate_text[] = { "72dB", "78dB", "84dB", "90dB", "96dB", "102dB", "138dB", "Disabled", }; static SOC_ENUM_SINGLE_DECL(cs4234_ll_noise_gate, CS4234_LOW_LAT_CTRL1, CS4234_LL_NG_SHIFT, cs4234_noise_gate_text); static SOC_ENUM_SINGLE_DECL(cs4234_dac14_noise_gate, CS4234_DAC_CTRL1, CS4234_DAC14_NG_SHIFT, cs4234_noise_gate_text); static SOC_ENUM_SINGLE_DECL(cs4234_dac5_noise_gate, CS4234_DAC_CTRL2, CS4234_DAC5_NG_SHIFT, cs4234_noise_gate_text); static const char * const cs4234_dac5_config_fltr_sel_text[] = { "Interpolation Filter", "Sample and Hold" }; static SOC_ENUM_SINGLE_DECL(cs4234_dac5_config_fltr_sel, CS4234_DAC_CTRL1, CS4234_DAC5_CFG_FLTR_SHIFT, cs4234_dac5_config_fltr_sel_text); static const char * const cs4234_mute_delay_text[] = { "1x", "4x", "16x", "64x", }; static SOC_ENUM_SINGLE_DECL(cs4234_mute_delay, CS4234_VOLUME_MODE, CS4234_MUTE_DELAY_SHIFT, cs4234_mute_delay_text); static const char * const cs4234_minmax_delay_text[] = { "1x", "2x", "4x", "8x", "16x", "32x", "64x", "128x", }; static SOC_ENUM_SINGLE_DECL(cs4234_min_delay, CS4234_VOLUME_MODE, CS4234_MIN_DELAY_SHIFT, cs4234_minmax_delay_text); static SOC_ENUM_SINGLE_DECL(cs4234_max_delay, CS4234_VOLUME_MODE, CS4234_MAX_DELAY_SHIFT, cs4234_minmax_delay_text); static int cs4234_dac14_grp_delay_put(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *uctrl) { struct snd_soc_component *component = snd_soc_kcontrol_component(kctrl); struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); unsigned int val = 0; int ret = 0; snd_soc_dapm_mutex_lock(dapm); regmap_read(cs4234->regmap, CS4234_ADC_CTRL2, &val); if ((val & 0x0F) != 0x0F) { // are all the ADCs powerdown ret = -EBUSY; dev_err(component->dev, "Can't change group delay while ADC are ON\n"); goto exit; } regmap_read(cs4234->regmap, CS4234_DAC_CTRL4, &val); if ((val & 0x1F) != 0x1F) { // are all the DACs powerdown ret = -EBUSY; dev_err(component->dev, "Can't change group delay while DAC are ON\n"); goto exit; } ret = snd_soc_put_enum_double(kctrl, uctrl); exit: snd_soc_dapm_mutex_unlock(dapm); return ret; } static void cs4234_vq_ramp_done(struct work_struct *work) { struct delayed_work *dw = to_delayed_work(work); struct cs4234 *cs4234 = container_of(dw, struct cs4234, vq_ramp_delay); complete_all(&cs4234->vq_ramp_complete); } static int cs4234_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component); switch (level) { case SND_SOC_BIAS_PREPARE: switch (snd_soc_component_get_bias_level(component)) { case SND_SOC_BIAS_STANDBY: wait_for_completion(&cs4234->vq_ramp_complete); break; default: break; } break; default: break; } return 0; } static const struct snd_soc_dapm_widget cs4234_dapm_widgets[] = { SND_SOC_DAPM_AIF_IN("SDRX1", NULL, 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SDRX2", NULL, 1, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SDRX3", NULL, 2, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SDRX4", NULL, 3, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("SDRX5", NULL, 4, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DAC1", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC1_SHIFT, 1), SND_SOC_DAPM_DAC("DAC2", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC2_SHIFT, 1), SND_SOC_DAPM_DAC("DAC3", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC3_SHIFT, 1), SND_SOC_DAPM_DAC("DAC4", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC4_SHIFT, 1), SND_SOC_DAPM_DAC("DAC5", NULL, CS4234_DAC_CTRL4, CS4234_PDN_DAC5_SHIFT, 1), SND_SOC_DAPM_OUTPUT("AOUT1"), SND_SOC_DAPM_OUTPUT("AOUT2"), SND_SOC_DAPM_OUTPUT("AOUT3"), SND_SOC_DAPM_OUTPUT("AOUT4"), SND_SOC_DAPM_OUTPUT("AOUT5"), SND_SOC_DAPM_INPUT("AIN1"), SND_SOC_DAPM_INPUT("AIN2"), SND_SOC_DAPM_INPUT("AIN3"), SND_SOC_DAPM_INPUT("AIN4"), SND_SOC_DAPM_ADC("ADC1", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC1_SHIFT, 1), SND_SOC_DAPM_ADC("ADC2", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC2_SHIFT, 1), SND_SOC_DAPM_ADC("ADC3", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC3_SHIFT, 1), SND_SOC_DAPM_ADC("ADC4", NULL, CS4234_ADC_CTRL2, CS4234_PDN_ADC4_SHIFT, 1), SND_SOC_DAPM_AIF_OUT("SDTX1", NULL, 0, SND_SOC_NOPM, 0, 1), SND_SOC_DAPM_AIF_OUT("SDTX2", NULL, 1, SND_SOC_NOPM, 0, 1), SND_SOC_DAPM_AIF_OUT("SDTX3", NULL, 2, SND_SOC_NOPM, 0, 1), SND_SOC_DAPM_AIF_OUT("SDTX4", NULL, 3, SND_SOC_NOPM, 0, 1), }; static const struct snd_soc_dapm_route cs4234_dapm_routes[] = { /* Playback */ { "AOUT1", NULL, "DAC1" }, { "AOUT2", NULL, "DAC2" }, { "AOUT3", NULL, "DAC3" }, { "AOUT4", NULL, "DAC4" }, { "AOUT5", NULL, "DAC5" }, { "DAC1", NULL, "SDRX1" }, { "DAC2", NULL, "SDRX2" }, { "DAC3", NULL, "SDRX3" }, { "DAC4", NULL, "SDRX4" }, { "DAC5", NULL, "SDRX5" }, { "SDRX1", NULL, "Playback" }, { "SDRX2", NULL, "Playback" }, { "SDRX3", NULL, "Playback" }, { "SDRX4", NULL, "Playback" }, { "SDRX5", NULL, "Playback" }, /* Capture */ { "ADC1", NULL, "AIN1" }, { "ADC2", NULL, "AIN2" }, { "ADC3", NULL, "AIN3" }, { "ADC4", NULL, "AIN4" }, { "SDTX1", NULL, "ADC1" }, { "SDTX2", NULL, "ADC2" }, { "SDTX3", NULL, "ADC3" }, { "SDTX4", NULL, "ADC4" }, { "Capture", NULL, "SDTX1" }, { "Capture", NULL, "SDTX2" }, { "Capture", NULL, "SDTX3" }, { "Capture", NULL, "SDTX4" }, }; static const struct snd_kcontrol_new cs4234_snd_controls[] = { SOC_SINGLE_TLV("Master Volume", CS4234_MASTER_VOL, 0, 0xff, 1, dac_tlv), SOC_SINGLE_TLV("DAC1 Volume", CS4234_DAC1_VOL, 0, 0xff, 1, dac_tlv), SOC_SINGLE_TLV("DAC2 Volume", CS4234_DAC2_VOL, 0, 0xff, 1, dac_tlv), SOC_SINGLE_TLV("DAC3 Volume", CS4234_DAC3_VOL, 0, 0xff, 1, dac_tlv), SOC_SINGLE_TLV("DAC4 Volume", CS4234_DAC4_VOL, 0, 0xff, 1, dac_tlv), SOC_SINGLE_TLV("DAC5 Volume", CS4234_DAC5_VOL, 0, 0xff, 1, dac_tlv), SOC_SINGLE("DAC5 Soft Ramp Switch", CS4234_DAC_CTRL3, CS4234_DAC5_ATT_SHIFT, 1, 1), SOC_SINGLE("DAC1-4 Soft Ramp Switch", CS4234_DAC_CTRL3, CS4234_DAC14_ATT_SHIFT, 1, 1), SOC_SINGLE("ADC HPF Switch", CS4234_ADC_CTRL1, CS4234_ENA_HPF_SHIFT, 1, 0), SOC_ENUM_EXT("DAC1-4 Group Delay", cs4234_dac14_group_delay, snd_soc_get_enum_double, cs4234_dac14_grp_delay_put), SOC_SINGLE("ADC1 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC1_SHIFT, 1, 0), SOC_SINGLE("ADC2 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC2_SHIFT, 1, 0), SOC_SINGLE("ADC3 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC3_SHIFT, 1, 0), SOC_SINGLE("ADC4 Invert Switch", CS4234_ADC_CTRL1, CS4234_INV_ADC4_SHIFT, 1, 0), SOC_SINGLE("DAC1 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC1_SHIFT, 1, 0), SOC_SINGLE("DAC2 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC2_SHIFT, 1, 0), SOC_SINGLE("DAC3 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC3_SHIFT, 1, 0), SOC_SINGLE("DAC4 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC4_SHIFT, 1, 0), SOC_SINGLE("DAC5 Invert Switch", CS4234_DAC_CTRL2, CS4234_INV_DAC5_SHIFT, 1, 0), SOC_SINGLE("ADC1 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC1_SHIFT, 1, 1), SOC_SINGLE("ADC2 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC2_SHIFT, 1, 1), SOC_SINGLE("ADC3 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC3_SHIFT, 1, 1), SOC_SINGLE("ADC4 Switch", CS4234_ADC_CTRL2, CS4234_MUTE_ADC4_SHIFT, 1, 1), SOC_SINGLE("DAC1 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC1_SHIFT, 1, 1), SOC_SINGLE("DAC2 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC2_SHIFT, 1, 1), SOC_SINGLE("DAC3 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC3_SHIFT, 1, 1), SOC_SINGLE("DAC4 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC4_SHIFT, 1, 1), SOC_SINGLE("DAC5 Switch", CS4234_DAC_CTRL3, CS4234_MUTE_DAC5_SHIFT, 1, 1), SOC_SINGLE("Low-latency Switch", CS4234_DAC_CTRL3, CS4234_MUTE_LL_SHIFT, 1, 1), SOC_SINGLE("DAC1 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1, CS4234_INV_LL1_SHIFT, 1, 0), SOC_SINGLE("DAC2 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1, CS4234_INV_LL2_SHIFT, 1, 0), SOC_SINGLE("DAC3 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1, CS4234_INV_LL3_SHIFT, 1, 0), SOC_SINGLE("DAC4 Low-latency Invert Switch", CS4234_LOW_LAT_CTRL1, CS4234_INV_LL4_SHIFT, 1, 0), SOC_ENUM("Low-latency Noise Gate", cs4234_ll_noise_gate), SOC_ENUM("DAC1-4 Noise Gate", cs4234_dac14_noise_gate), SOC_ENUM("DAC5 Noise Gate", cs4234_dac5_noise_gate), SOC_SINGLE("DAC1-4 De-emphasis Switch", CS4234_DAC_CTRL1, CS4234_DAC14_DE_SHIFT, 1, 0), SOC_SINGLE("DAC5 De-emphasis Switch", CS4234_DAC_CTRL1, CS4234_DAC5_DE_SHIFT, 1, 0), SOC_SINGLE("DAC5 Master Controlled Switch", CS4234_DAC_CTRL1, CS4234_DAC5_MVC_SHIFT, 1, 0), SOC_ENUM("DAC5 Filter", cs4234_dac5_config_fltr_sel), SOC_ENUM("Mute Delay", cs4234_mute_delay), SOC_ENUM("Ramp Minimum Delay", cs4234_min_delay), SOC_ENUM("Ramp Maximum Delay", cs4234_max_delay), }; static int cs4234_dai_set_fmt(struct snd_soc_dai *codec_dai, unsigned int format) { struct snd_soc_component *component = codec_dai->component; struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component); unsigned int sp_ctrl = 0; cs4234->format = format & SND_SOC_DAIFMT_FORMAT_MASK; switch (cs4234->format) { case SND_SOC_DAIFMT_LEFT_J: sp_ctrl |= CS4234_LEFT_J << CS4234_SP_FORMAT_SHIFT; break; case SND_SOC_DAIFMT_I2S: sp_ctrl |= CS4234_I2S << CS4234_SP_FORMAT_SHIFT; break; case SND_SOC_DAIFMT_DSP_A: /* TDM mode in datasheet */ sp_ctrl |= CS4234_TDM << CS4234_SP_FORMAT_SHIFT; break; default: dev_err(component->dev, "Unsupported dai format\n"); return -EINVAL; } switch (format & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBM_CFM: if (cs4234->format == SND_SOC_DAIFMT_DSP_A) { dev_err(component->dev, "Unsupported DSP A format in master mode\n"); return -EINVAL; } sp_ctrl |= CS4234_MST_SLV_MASK; break; default: dev_err(component->dev, "Unsupported master/slave mode\n"); return -EINVAL; } switch (format & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: sp_ctrl |= CS4234_INVT_SCLK_MASK; break; default: dev_err(component->dev, "Unsupported inverted clock setting\n"); return -EINVAL; } regmap_update_bits(cs4234->regmap, CS4234_SP_CTRL, CS4234_SP_FORMAT_MASK | CS4234_MST_SLV_MASK | CS4234_INVT_SCLK_MASK, sp_ctrl); return 0; } static int cs4234_dai_hw_params(struct snd_pcm_substream *sub, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component); unsigned int mclk_mult, double_speed = 0; int ret = 0, rate_ad, sample_width; cs4234->lrclk_rate = params_rate(params); mclk_mult = cs4234->mclk_rate / cs4234->lrclk_rate; if (cs4234->lrclk_rate > 48000) { double_speed = 1; mclk_mult *= 2; } switch (mclk_mult) { case 256: case 384: case 512: regmap_update_bits(cs4234->regmap, CS4234_CLOCK_SP, CS4234_SPEED_MODE_MASK, double_speed << CS4234_SPEED_MODE_SHIFT); regmap_update_bits(cs4234->regmap, CS4234_CLOCK_SP, CS4234_MCLK_RATE_MASK, ((mclk_mult / 128) - 2) << CS4234_MCLK_RATE_SHIFT); break; default: dev_err(component->dev, "Unsupported mclk/lrclk rate\n"); return -EINVAL; } switch (cs4234->lrclk_rate) { case 48000: case 96000: rate_ad = CS4234_48K; break; case 44100: case 88200: rate_ad = CS4234_44K1; break; case 32000: case 64000: rate_ad = CS4234_32K; break; default: dev_err(component->dev, "Unsupported LR clock\n"); return -EINVAL; } regmap_update_bits(cs4234->regmap, CS4234_CLOCK_SP, CS4234_BASE_RATE_MASK, rate_ad << CS4234_BASE_RATE_SHIFT); sample_width = params_width(params); switch (sample_width) { case 16: sample_width = 0; break; case 18: sample_width = 1; break; case 20: sample_width = 2; break; case 24: sample_width = 3; break; default: dev_err(component->dev, "Unsupported sample width\n"); return -EINVAL; } if (sub->stream == SNDRV_PCM_STREAM_CAPTURE) regmap_update_bits(cs4234->regmap, CS4234_SAMPLE_WIDTH, CS4234_SDOUTX_SW_MASK, sample_width << CS4234_SDOUTX_SW_SHIFT); else regmap_update_bits(cs4234->regmap, CS4234_SAMPLE_WIDTH, CS4234_INPUT_SW_MASK | CS4234_LOW_LAT_SW_MASK | CS4234_DAC5_SW_MASK, sample_width << CS4234_INPUT_SW_SHIFT | sample_width << CS4234_LOW_LAT_SW_SHIFT | sample_width << CS4234_DAC5_SW_SHIFT); return ret; } /* Scale MCLK rate by 64 to avoid overflow in the ratnum calculation */ #define CS4234_MCLK_SCALE 64 static const struct snd_ratnum cs4234_dividers[] = { { .num = 0, .den_min = 256 / CS4234_MCLK_SCALE, .den_max = 512 / CS4234_MCLK_SCALE, .den_step = 128 / CS4234_MCLK_SCALE, }, { .num = 0, .den_min = 128 / CS4234_MCLK_SCALE, .den_max = 192 / CS4234_MCLK_SCALE, .den_step = 64 / CS4234_MCLK_SCALE, }, }; static int cs4234_dai_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct cs4234 *cs4234 = rule->private; int mclk = cs4234->mclk_rate; struct snd_interval ranges[] = { { /* Single Speed Mode */ .min = mclk / clamp(mclk / 30000, 256, 512), .max = mclk / clamp(mclk / 50000, 256, 512), }, { /* Double Speed Mode */ .min = mclk / clamp(mclk / 60000, 128, 256), .max = mclk / clamp(mclk / 100000, 128, 256), }, }; return snd_interval_ranges(hw_param_interval(params, rule->var), ARRAY_SIZE(ranges), ranges, 0); } static int cs4234_dai_startup(struct snd_pcm_substream *sub, struct snd_soc_dai *dai) { struct snd_soc_component *comp = dai->component; struct cs4234 *cs4234 = snd_soc_component_get_drvdata(comp); int i, ret; switch (cs4234->format) { case SND_SOC_DAIFMT_LEFT_J: case SND_SOC_DAIFMT_I2S: cs4234->rate_constraint.nrats = 2; /* * Playback only supports 24-bit samples in these modes. * Note: SNDRV_PCM_HW_PARAM_SAMPLE_BITS constrains the physical * width, which we don't care about, so constrain the format. */ if (sub->stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = snd_pcm_hw_constraint_mask64( sub->runtime, SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_3LE); if (ret < 0) return ret; ret = snd_pcm_hw_constraint_minmax(sub->runtime, SNDRV_PCM_HW_PARAM_CHANNELS, 1, 4); if (ret < 0) return ret; } break; case SND_SOC_DAIFMT_DSP_A: cs4234->rate_constraint.nrats = 1; break; default: dev_err(comp->dev, "Startup unsupported DAI format\n"); return -EINVAL; } for (i = 0; i < cs4234->rate_constraint.nrats; i++) cs4234->rate_dividers[i].num = cs4234->mclk_rate / CS4234_MCLK_SCALE; ret = snd_pcm_hw_constraint_ratnums(sub->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &cs4234->rate_constraint); if (ret < 0) return ret; /* * MCLK/rate may be a valid ratio but out-of-spec (e.g. 24576000/64000) * so this rule limits the range of sample rate for given MCLK. */ return snd_pcm_hw_rule_add(sub->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, cs4234_dai_rule_rate, cs4234, -1); } static int cs4234_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; struct cs4234 *cs4234 = snd_soc_component_get_drvdata(component); unsigned int slot_offset, dac5_slot, dac5_mask_group; uint8_t dac5_masks[4]; if (slot_width != 32) { dev_err(component->dev, "Unsupported slot width\n"); return -EINVAL; } /* Either 4 or 5 consecutive bits, DAC5 is optional */ slot_offset = ffs(tx_mask) - 1; tx_mask >>= slot_offset; if ((slot_offset % 4) || ((tx_mask != 0x0F) && (tx_mask != 0x1F))) { dev_err(component->dev, "Unsupported tx slots allocation\n"); return -EINVAL; } regmap_update_bits(cs4234->regmap, CS4234_SP_DATA_SEL, CS4234_DAC14_SRC_MASK, (slot_offset / 4) << CS4234_DAC14_SRC_SHIFT); regmap_update_bits(cs4234->regmap, CS4234_SP_DATA_SEL, CS4234_LL_SRC_MASK, (slot_offset / 4) << CS4234_LL_SRC_SHIFT); if (tx_mask == 0x1F) { dac5_slot = slot_offset + 4; memset(dac5_masks, 0xFF, sizeof(dac5_masks)); dac5_mask_group = dac5_slot / 8; dac5_slot %= 8; dac5_masks[dac5_mask_group] ^= BIT(7 - dac5_slot); regmap_bulk_write(cs4234->regmap, CS4234_SDIN1_MASK1, dac5_masks, ARRAY_SIZE(dac5_masks)); } return 0; } static const struct snd_soc_dai_ops cs4234_dai_ops = { .set_fmt = cs4234_dai_set_fmt, .hw_params = cs4234_dai_hw_params, .startup = cs4234_dai_startup, .set_tdm_slot = cs4234_dai_set_tdm_slot, }; static struct snd_soc_dai_driver cs4234_dai[] = { { .name = "cs4234-dai", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 5, .rates = CS4234_PCM_RATES, .formats = CS4234_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 4, .rates = CS4234_PCM_RATES, .formats = CS4234_FORMATS, }, .ops = &cs4234_dai_ops, .symmetric_rate = 1, }, }; static const struct reg_default cs4234_default_reg[] = { { CS4234_CLOCK_SP, 0x04}, { CS4234_SAMPLE_WIDTH, 0xFF}, { CS4234_SP_CTRL, 0x48}, { CS4234_SP_DATA_SEL, 0x01}, { CS4234_SDIN1_MASK1, 0xFF}, { CS4234_SDIN1_MASK2, 0xFF}, { CS4234_SDIN2_MASK1, 0xFF}, { CS4234_SDIN2_MASK2, 0xFF}, { CS4234_TPS_CTRL, 0x00}, { CS4234_ADC_CTRL1, 0xC0}, { CS4234_ADC_CTRL2, 0xFF}, { CS4234_LOW_LAT_CTRL1, 0xE0}, { CS4234_DAC_CTRL1, 0xE0}, { CS4234_DAC_CTRL2, 0xE0}, { CS4234_DAC_CTRL3, 0xBF}, { CS4234_DAC_CTRL4, 0x1F}, { CS4234_VOLUME_MODE, 0x87}, { CS4234_MASTER_VOL, 0x10}, { CS4234_DAC1_VOL, 0x10}, { CS4234_DAC2_VOL, 0x10}, { CS4234_DAC3_VOL, 0x10}, { CS4234_DAC4_VOL, 0x10}, { CS4234_DAC5_VOL, 0x10}, { CS4234_INT_CTRL, 0x40}, { CS4234_INT_MASK1, 0x10}, { CS4234_INT_MASK2, 0x20}, }; static bool cs4234_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS4234_DEVID_AB ... CS4234_DEVID_EF: case CS4234_REVID ... CS4234_DAC5_VOL: case CS4234_INT_CTRL ... CS4234_MAX_REGISTER: return true; default: return false; } } static bool cs4234_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case CS4234_INT_NOTIFY1: case CS4234_INT_NOTIFY2: return true; default: return false; } } static bool cs4234_writeable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS4234_DEVID_AB ... CS4234_REVID: case CS4234_INT_NOTIFY1 ... CS4234_INT_NOTIFY2: return false; default: return true; } } static const struct snd_soc_component_driver soc_component_cs4234 = { .dapm_widgets = cs4234_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs4234_dapm_widgets), .dapm_routes = cs4234_dapm_routes, .num_dapm_routes = ARRAY_SIZE(cs4234_dapm_routes), .controls = cs4234_snd_controls, .num_controls = ARRAY_SIZE(cs4234_snd_controls), .set_bias_level = cs4234_set_bias_level, .non_legacy_dai_naming = 1, .idle_bias_on = 1, .suspend_bias_off = 1, }; static const struct regmap_config cs4234_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = CS4234_MAX_REGISTER, .readable_reg = cs4234_readable_register, .volatile_reg = cs4234_volatile_reg, .writeable_reg = cs4234_writeable_register, .reg_defaults = cs4234_default_reg, .num_reg_defaults = ARRAY_SIZE(cs4234_default_reg), .cache_type = REGCACHE_RBTREE, .use_single_read = true, .use_single_write = true, }; static const char * const cs4234_core_supplies[] = { "VA", "VL", }; static void cs4234_shutdown(struct cs4234 *cs4234) { cancel_delayed_work_sync(&cs4234->vq_ramp_delay); reinit_completion(&cs4234->vq_ramp_complete); regmap_update_bits(cs4234->regmap, CS4234_DAC_CTRL4, CS4234_VQ_RAMP_MASK, CS4234_VQ_RAMP_MASK); msleep(50); regcache_cache_only(cs4234->regmap, true); /* Clear VQ Ramp Bit in cache for the next PowerUp */ regmap_update_bits(cs4234->regmap, CS4234_DAC_CTRL4, CS4234_VQ_RAMP_MASK, 0); gpiod_set_value_cansleep(cs4234->reset_gpio, 0); regulator_bulk_disable(cs4234->num_core_supplies, cs4234->core_supplies); clk_disable_unprepare(cs4234->mclk); } static int cs4234_powerup(struct cs4234 *cs4234) { int ret; ret = clk_prepare_enable(cs4234->mclk); if (ret) { dev_err(cs4234->dev, "Failed to enable mclk: %d\n", ret); return ret; } ret = regulator_bulk_enable(cs4234->num_core_supplies, cs4234->core_supplies); if (ret) { dev_err(cs4234->dev, "Failed to enable core supplies: %d\n", ret); clk_disable_unprepare(cs4234->mclk); return ret; } usleep_range(CS4234_HOLD_RESET_TIME_US, 2 * CS4234_HOLD_RESET_TIME_US); gpiod_set_value_cansleep(cs4234->reset_gpio, 1); /* Make sure hardware reset done 2 ms + (3000/MCLK) */ usleep_range(CS4234_BOOT_TIME_US, CS4234_BOOT_TIME_US * 2); queue_delayed_work(system_power_efficient_wq, &cs4234->vq_ramp_delay, msecs_to_jiffies(CS4234_VQ_CHARGE_MS)); return 0; } static int cs4234_i2c_probe(struct i2c_client *i2c_client, const struct i2c_device_id *id) { struct cs4234 *cs4234; struct device *dev = &i2c_client->dev; unsigned int revid; uint32_t devid; uint8_t ids[3]; int ret = 0, i; cs4234 = devm_kzalloc(dev, sizeof(*cs4234), GFP_KERNEL); if (!cs4234) return -ENOMEM; i2c_set_clientdata(i2c_client, cs4234); cs4234->dev = dev; init_completion(&cs4234->vq_ramp_complete); INIT_DELAYED_WORK(&cs4234->vq_ramp_delay, cs4234_vq_ramp_done); cs4234->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(cs4234->reset_gpio)) return PTR_ERR(cs4234->reset_gpio); BUILD_BUG_ON(ARRAY_SIZE(cs4234->core_supplies) < ARRAY_SIZE(cs4234_core_supplies)); cs4234->num_core_supplies = ARRAY_SIZE(cs4234_core_supplies); for (i = 0; i < ARRAY_SIZE(cs4234_core_supplies); i++) cs4234->core_supplies[i].supply = cs4234_core_supplies[i]; ret = devm_regulator_bulk_get(dev, cs4234->num_core_supplies, cs4234->core_supplies); if (ret) { dev_err(dev, "Failed to request core supplies %d\n", ret); return ret; } cs4234->mclk = devm_clk_get(dev, "mclk"); if (IS_ERR(cs4234->mclk)) { ret = PTR_ERR(cs4234->mclk); dev_err(dev, "Failed to get the mclk: %d\n", ret); return ret; } cs4234->mclk_rate = clk_get_rate(cs4234->mclk); if (cs4234->mclk_rate < 7680000 || cs4234->mclk_rate > 25600000) { dev_err(dev, "Invalid Master Clock rate\n"); return -EINVAL; } cs4234->regmap = devm_regmap_init_i2c(i2c_client, &cs4234_regmap); if (IS_ERR(cs4234->regmap)) { ret = PTR_ERR(cs4234->regmap); dev_err(dev, "regmap_init() failed: %d\n", ret); return ret; } ret = cs4234_powerup(cs4234); if (ret) return ret; ret = regmap_bulk_read(cs4234->regmap, CS4234_DEVID_AB, ids, ARRAY_SIZE(ids)); if (ret < 0) { dev_err(dev, "Failed to read DEVID: %d\n", ret); goto fail_shutdown; } devid = (ids[0] << 16) | (ids[1] << 8) | ids[2]; if (devid != CS4234_SUPPORTED_ID) { dev_err(dev, "Unknown device ID: %x\n", devid); ret = -EINVAL; goto fail_shutdown; } ret = regmap_read(cs4234->regmap, CS4234_REVID, &revid); if (ret < 0) { dev_err(dev, "Failed to read CS4234_REVID: %d\n", ret); goto fail_shutdown; } dev_info(dev, "Cirrus Logic CS4234, Alpha Rev: %02X, Numeric Rev: %02X\n", (revid & 0xF0) >> 4, revid & 0x0F); ret = regulator_get_voltage(cs4234->core_supplies[CS4234_SUPPLY_VA].consumer); switch (ret) { case 3135000 ... 3650000: regmap_update_bits(cs4234->regmap, CS4234_ADC_CTRL1, CS4234_VA_SEL_MASK, CS4234_3V3 << CS4234_VA_SEL_SHIFT); break; case 4750000 ... 5250000: regmap_update_bits(cs4234->regmap, CS4234_ADC_CTRL1, CS4234_VA_SEL_MASK, CS4234_5V << CS4234_VA_SEL_SHIFT); break; default: dev_err(dev, "Invalid VA voltage\n"); ret = -EINVAL; goto fail_shutdown; } pm_runtime_set_active(&i2c_client->dev); pm_runtime_enable(&i2c_client->dev); memcpy(&cs4234->rate_dividers, &cs4234_dividers, sizeof(cs4234_dividers)); cs4234->rate_constraint.rats = cs4234->rate_dividers; ret = snd_soc_register_component(dev, &soc_component_cs4234, cs4234_dai, ARRAY_SIZE(cs4234_dai)); if (ret < 0) { dev_err(dev, "Failed to register component:%d\n", ret); pm_runtime_disable(&i2c_client->dev); goto fail_shutdown; } return ret; fail_shutdown: cs4234_shutdown(cs4234); return ret; } static int cs4234_i2c_remove(struct i2c_client *i2c_client) { struct cs4234 *cs4234 = i2c_get_clientdata(i2c_client); struct device *dev = &i2c_client->dev; snd_soc_unregister_component(dev); pm_runtime_disable(dev); cs4234_shutdown(cs4234); return 0; } static int __maybe_unused cs4234_runtime_resume(struct device *dev) { struct cs4234 *cs4234 = dev_get_drvdata(dev); int ret; ret = cs4234_powerup(cs4234); if (ret) return ret; regcache_mark_dirty(cs4234->regmap); regcache_cache_only(cs4234->regmap, false); ret = regcache_sync(cs4234->regmap); if (ret) { dev_err(dev, "Failed to sync regmap: %d\n", ret); cs4234_shutdown(cs4234); return ret; } return 0; } static int __maybe_unused cs4234_runtime_suspend(struct device *dev) { struct cs4234 *cs4234 = dev_get_drvdata(dev); cs4234_shutdown(cs4234); return 0; } static const struct dev_pm_ops cs4234_pm = { SET_RUNTIME_PM_OPS(cs4234_runtime_suspend, cs4234_runtime_resume, NULL) }; static const struct of_device_id cs4234_of_match[] = { { .compatible = "cirrus,cs4234", }, { } }; MODULE_DEVICE_TABLE(of, cs4234_of_match); static struct i2c_driver cs4234_i2c_driver = { .driver = { .name = "cs4234", .pm = &cs4234_pm, .of_match_table = cs4234_of_match, }, .probe = cs4234_i2c_probe, .remove = cs4234_i2c_remove, }; module_i2c_driver(cs4234_i2c_driver); MODULE_DESCRIPTION("ASoC Cirrus Logic CS4234 driver"); MODULE_AUTHOR("Lucas Tanure "); MODULE_LICENSE("GPL v2");