// SPDX-License-Identifier: GPL-2.0-only /* * Nuvoton NAU8825 audio codec driver * * Copyright 2015 Google Chromium project. * Author: Anatol Pomozov * Copyright 2015 Nuvoton Technology Corp. * Co-author: Meng-Huang Kuo */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nau8825.h" #define NUVOTON_CODEC_DAI "nau8825-hifi" #define NAU_FREF_MAX 13500000 #define NAU_FVCO_MAX 124000000 #define NAU_FVCO_MIN 90000000 /* cross talk suppression detection */ #define LOG10_MAGIC 646456993 #define GAIN_AUGMENT 22500 #define SIDETONE_BASE 207000 /* the maximum frequency of CLK_ADC and CLK_DAC */ #define CLK_DA_AD_MAX 6144000 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, unsigned int freq); struct nau8825_fll { int mclk_src; int ratio; int fll_frac; int fll_int; int clk_ref_div; }; struct nau8825_fll_attr { unsigned int param; unsigned int val; }; /* scaling for mclk from sysclk_src output */ static const struct nau8825_fll_attr mclk_src_scaling[] = { { 1, 0x0 }, { 2, 0x2 }, { 4, 0x3 }, { 8, 0x4 }, { 16, 0x5 }, { 32, 0x6 }, { 3, 0x7 }, { 6, 0xa }, { 12, 0xb }, { 24, 0xc }, { 48, 0xd }, { 96, 0xe }, { 5, 0xf }, }; /* ratio for input clk freq */ static const struct nau8825_fll_attr fll_ratio[] = { { 512000, 0x01 }, { 256000, 0x02 }, { 128000, 0x04 }, { 64000, 0x08 }, { 32000, 0x10 }, { 8000, 0x20 }, { 4000, 0x40 }, }; static const struct nau8825_fll_attr fll_pre_scalar[] = { { 1, 0x0 }, { 2, 0x1 }, { 4, 0x2 }, { 8, 0x3 }, }; /* over sampling rate */ struct nau8825_osr_attr { unsigned int osr; unsigned int clk_src; }; static const struct nau8825_osr_attr osr_dac_sel[] = { { 64, 2 }, /* OSR 64, SRC 1/4 */ { 256, 0 }, /* OSR 256, SRC 1 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 0, 0 }, { 32, 3 }, /* OSR 32, SRC 1/8 */ }; static const struct nau8825_osr_attr osr_adc_sel[] = { { 32, 3 }, /* OSR 32, SRC 1/8 */ { 64, 2 }, /* OSR 64, SRC 1/4 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 256, 0 }, /* OSR 256, SRC 1 */ }; static const struct reg_default nau8825_reg_defaults[] = { { NAU8825_REG_ENA_CTRL, 0x00ff }, { NAU8825_REG_IIC_ADDR_SET, 0x0 }, { NAU8825_REG_CLK_DIVIDER, 0x0050 }, { NAU8825_REG_FLL1, 0x0 }, { NAU8825_REG_FLL2, 0x3126 }, { NAU8825_REG_FLL3, 0x0008 }, { NAU8825_REG_FLL4, 0x0010 }, { NAU8825_REG_FLL5, 0x0 }, { NAU8825_REG_FLL6, 0x6000 }, { NAU8825_REG_FLL_VCO_RSV, 0xf13c }, { NAU8825_REG_HSD_CTRL, 0x000c }, { NAU8825_REG_JACK_DET_CTRL, 0x0 }, { NAU8825_REG_INTERRUPT_MASK, 0x0 }, { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff }, { NAU8825_REG_SAR_CTRL, 0x0015 }, { NAU8825_REG_KEYDET_CTRL, 0x0110 }, { NAU8825_REG_VDET_THRESHOLD_1, 0x0 }, { NAU8825_REG_VDET_THRESHOLD_2, 0x0 }, { NAU8825_REG_VDET_THRESHOLD_3, 0x0 }, { NAU8825_REG_VDET_THRESHOLD_4, 0x0 }, { NAU8825_REG_GPIO34_CTRL, 0x0 }, { NAU8825_REG_GPIO12_CTRL, 0x0 }, { NAU8825_REG_TDM_CTRL, 0x0 }, { NAU8825_REG_I2S_PCM_CTRL1, 0x000b }, { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 }, { NAU8825_REG_LEFT_TIME_SLOT, 0x0 }, { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 }, { NAU8825_REG_BIQ_CTRL, 0x0 }, { NAU8825_REG_BIQ_COF1, 0x0 }, { NAU8825_REG_BIQ_COF2, 0x0 }, { NAU8825_REG_BIQ_COF3, 0x0 }, { NAU8825_REG_BIQ_COF4, 0x0 }, { NAU8825_REG_BIQ_COF5, 0x0 }, { NAU8825_REG_BIQ_COF6, 0x0 }, { NAU8825_REG_BIQ_COF7, 0x0 }, { NAU8825_REG_BIQ_COF8, 0x0 }, { NAU8825_REG_BIQ_COF9, 0x0 }, { NAU8825_REG_BIQ_COF10, 0x0 }, { NAU8825_REG_ADC_RATE, 0x0010 }, { NAU8825_REG_DAC_CTRL1, 0x0001 }, { NAU8825_REG_DAC_CTRL2, 0x0 }, { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 }, { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, { NAU8825_REG_MUTE_CTRL, 0x0 }, { NAU8825_REG_HSVOL_CTRL, 0x0 }, { NAU8825_REG_DACL_CTRL, 0x02cf }, { NAU8825_REG_DACR_CTRL, 0x00cf }, { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 }, { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 }, { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff }, { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 }, { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 }, { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 }, { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 }, { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 }, { NAU8825_REG_IMM_MODE_CTRL, 0x0 }, { NAU8825_REG_CLASSG_CTRL, 0x0 }, { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 }, { NAU8825_REG_MISC_CTRL, 0x0 }, { NAU8825_REG_BIAS_ADJ, 0x0 }, { NAU8825_REG_TRIM_SETTINGS, 0x0 }, { NAU8825_REG_ANALOG_CONTROL_1, 0x0 }, { NAU8825_REG_ANALOG_CONTROL_2, 0x0 }, { NAU8825_REG_ANALOG_ADC_1, 0x0011 }, { NAU8825_REG_ANALOG_ADC_2, 0x0020 }, { NAU8825_REG_RDAC, 0x0008 }, { NAU8825_REG_MIC_BIAS, 0x0006 }, { NAU8825_REG_BOOST, 0x0 }, { NAU8825_REG_FEPGA, 0x0 }, { NAU8825_REG_POWER_UP_CONTROL, 0x0 }, { NAU8825_REG_CHARGE_PUMP, 0x0 }, }; /* register backup table when cross talk detection */ static struct reg_default nau8825_xtalk_baktab[] = { { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf }, { NAU8825_REG_HSVOL_CTRL, 0 }, { NAU8825_REG_DACL_CTRL, 0x00cf }, { NAU8825_REG_DACR_CTRL, 0x02cf }, }; static const unsigned short logtable[256] = { 0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7, 0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508, 0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6, 0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37, 0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f, 0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41, 0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1, 0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142, 0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68, 0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355, 0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c, 0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490, 0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3, 0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507, 0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe, 0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca, 0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c, 0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7, 0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c, 0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c, 0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a, 0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065, 0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730, 0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc, 0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469, 0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9, 0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c, 0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765, 0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83, 0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387, 0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973, 0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47 }; /** * nau8825_sema_acquire - acquire the semaphore of nau88l25 * @nau8825: component to register the codec private data with * @timeout: how long in jiffies to wait before failure or zero to wait * until release * * Attempts to acquire the semaphore with number of jiffies. If no more * tasks are allowed to acquire the semaphore, calling this function will * put the task to sleep. If the semaphore is not released within the * specified number of jiffies, this function returns. * If the semaphore is not released within the specified number of jiffies, * this function returns -ETIME. If the sleep is interrupted by a signal, * this function will return -EINTR. It returns 0 if the semaphore was * acquired successfully. * * Acquires the semaphore without jiffies. Try to acquire the semaphore * atomically. Returns 0 if the semaphore has been acquired successfully * or 1 if it it cannot be acquired. */ static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout) { int ret; if (timeout) { ret = down_timeout(&nau8825->xtalk_sem, timeout); if (ret < 0) dev_warn(nau8825->dev, "Acquire semaphore timeout\n"); } else { ret = down_trylock(&nau8825->xtalk_sem); if (ret) dev_warn(nau8825->dev, "Acquire semaphore fail\n"); } return ret; } /** * nau8825_sema_release - release the semaphore of nau88l25 * @nau8825: component to register the codec private data with * * Release the semaphore which may be called from any context and * even by tasks which have never called down(). */ static inline void nau8825_sema_release(struct nau8825 *nau8825) { up(&nau8825->xtalk_sem); } /** * nau8825_sema_reset - reset the semaphore for nau88l25 * @nau8825: component to register the codec private data with * * Reset the counter of the semaphore. Call this function to restart * a new round task management. */ static inline void nau8825_sema_reset(struct nau8825 *nau8825) { nau8825->xtalk_sem.count = 1; } /** * Ramp up the headphone volume change gradually to target level. * * @nau8825: component to register the codec private data with * @vol_from: the volume to start up * @vol_to: the target volume * @step: the volume span to move on * * The headphone volume is from 0dB to minimum -54dB and -1dB per step. * If the volume changes sharp, there is a pop noise heard in headphone. We * provide the function to ramp up the volume up or down by delaying 10ms * per step. */ static void nau8825_hpvol_ramp(struct nau8825 *nau8825, unsigned int vol_from, unsigned int vol_to, unsigned int step) { unsigned int value, volume, ramp_up, from, to; if (vol_from == vol_to || step == 0) { return; } else if (vol_from < vol_to) { ramp_up = true; from = vol_from; to = vol_to; } else { ramp_up = false; from = vol_to; to = vol_from; } /* only handle volume from 0dB to minimum -54dB */ if (to > NAU8825_HP_VOL_MIN) to = NAU8825_HP_VOL_MIN; for (volume = from; volume < to; volume += step) { if (ramp_up) value = volume; else value = to - volume + from; regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, (value << NAU8825_HPL_VOL_SFT) | value); usleep_range(10000, 10500); } if (ramp_up) value = to; else value = from; regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL, NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK, (value << NAU8825_HPL_VOL_SFT) | value); } /** * Computes log10 of a value; the result is round off to 3 decimal. This func- * tion takes reference to dvb-math. The source code locates as the following. * Linux/drivers/media/dvb-core/dvb_math.c * @value: input for log10 * * return log10(value) * 1000 */ static u32 nau8825_intlog10_dec3(u32 value) { u32 msb, logentry, significand, interpolation, log10val; u64 log2val; /* first detect the msb (count begins at 0) */ msb = fls(value) - 1; /** * now we use a logtable after the following method: * * log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24 * where x = msb and therefore 1 <= y < 2 * first y is determined by shifting the value left * so that msb is bit 31 * 0x00231f56 -> 0x8C7D5800 * the result is y * 2^31 -> "significand" * then the highest 9 bits are used for a table lookup * the highest bit is discarded because it's always set * the highest nine bits in our example are 100011000 * so we would use the entry 0x18 */ significand = value << (31 - msb); logentry = (significand >> 23) & 0xff; /** * last step we do is interpolation because of the * limitations of the log table the error is that part of * the significand which isn't used for lookup then we * compute the ratio between the error and the next table entry * and interpolate it between the log table entry used and the * next one the biggest error possible is 0x7fffff * (in our example it's 0x7D5800) * needed value for next table entry is 0x800000 * so the interpolation is * (error / 0x800000) * (logtable_next - logtable_current) * in the implementation the division is moved to the end for * better accuracy there is also an overflow correction if * logtable_next is 256 */ interpolation = ((significand & 0x7fffff) * ((logtable[(logentry + 1) & 0xff] - logtable[logentry]) & 0xffff)) >> 15; log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation); /** * log10(x) = log2(x) * log10(2) */ log10val = (log2val * LOG10_MAGIC) >> 31; /** * the result is round off to 3 decimal */ return log10val / ((1 << 24) / 1000); } /** * computes cross talk suppression sidetone gain. * * @sig_org: orignal signal level * @sig_cros: cross talk signal level * * The orignal and cross talk signal vlues need to be characterized. * Once these values have been characterized, this sidetone value * can be converted to decibel with the equation below. * sidetone = 20 * log (original signal level / crosstalk signal level) * * return cross talk sidetone gain */ static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros) { u32 gain, sidetone; if (WARN_ON(sig_org == 0 || sig_cros == 0)) return 0; sig_org = nau8825_intlog10_dec3(sig_org); sig_cros = nau8825_intlog10_dec3(sig_cros); if (sig_org >= sig_cros) gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT; else gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT; sidetone = SIDETONE_BASE - gain * 2; sidetone /= 1000; return sidetone; } static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg) { int index; for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++) if (nau8825_xtalk_baktab[index].reg == reg) return index; return -EINVAL; } static void nau8825_xtalk_backup(struct nau8825 *nau8825) { int i; if (nau8825->xtalk_baktab_initialized) return; /* Backup some register values to backup table */ for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg, &nau8825_xtalk_baktab[i].def); nau8825->xtalk_baktab_initialized = true; } static void nau8825_xtalk_restore(struct nau8825 *nau8825, bool cause_cancel) { int i, volume; if (!nau8825->xtalk_baktab_initialized) return; /* Restore register values from backup table; When the driver restores * the headphone volume in XTALK_DONE state, it needs recover to * original level gradually with 3dB per step for less pop noise. * Otherwise, the restore should do ASAP. */ for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) { if (!cause_cancel && nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) { /* Ramping up the volume change to reduce pop noise */ volume = nau8825_xtalk_baktab[i].def & NAU8825_HPR_VOL_MASK; nau8825_hpvol_ramp(nau8825, 0, volume, 3); continue; } regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg, nau8825_xtalk_baktab[i].def); } nau8825->xtalk_baktab_initialized = false; } static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825) { /* Enable power of DAC path */ regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK); /* Prevent startup click by letting charge pump to ramp up and * change bump enable */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN); /* Enable clock sync of DAC and DAC clock */ regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN | NAU8825_RDAC_FS_BCLK_ENB, NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN); /* Power up output driver with 2 stage */ regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L); regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L); /* HP outputs not shouted to ground */ regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0); /* Enable HP boost driver */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS); /* Enable class G compare path to supply 1.8V or 0.9V. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL, NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN, NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN); } static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825) { /* Power up left ADC and raise 5dB than Vmid for Vref */ regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB); } static void nau8825_xtalk_clock(struct nau8825 *nau8825) { /* Recover FLL default value */ regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0); regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126); regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008); regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010); regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0); regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000); /* Enable internal VCO clock for detection signal generated */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, NAU8825_DCO_EN); /* Given specific clock frequency of internal clock to * generate signal. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_MCLK_SRC_MASK, 0xf); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, NAU8825_FLL_RATIO_MASK, 0x10); } static void nau8825_xtalk_prepare(struct nau8825 *nau8825) { int volume, index; /* Backup those registers changed by cross talk detection */ nau8825_xtalk_backup(nau8825); /* Config IIS as master to output signal by codec */ regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER | (0x2 << NAU8825_I2S_LRC_DIV_SFT) | 0x1); /* Ramp up headphone volume to 0dB to get better performance and * avoid pop noise in headphone. */ index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL); if (index != -EINVAL) { volume = nau8825_xtalk_baktab[index].def & NAU8825_HPR_VOL_MASK; nau8825_hpvol_ramp(nau8825, volume, 0, 3); } nau8825_xtalk_clock(nau8825); nau8825_xtalk_prepare_dac(nau8825); nau8825_xtalk_prepare_adc(nau8825); /* Config channel path and digital gain */ regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK, NAU8825_DACL_CH_SEL_L | 0xab); regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK, NAU8825_DACR_CH_SEL_R | 0xab); /* Config cross talk parameters and generate the 23Hz sine wave with * 1/16 full scale of signal level for impedance measurement. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK | NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK, (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th | NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN); /* RMS intrruption enable */ regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0); /* Power up left and right DAC */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0); } static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825) { /* Disable HP boost driver */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, NAU8825_HP_BOOST_DIS, 0); /* HP outputs shouted to ground */ regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); /* Power down left and right DAC */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); /* Enable the TESTDAC and disable L/R HP impedance */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP | NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); /* Power down output driver with 2 stage */ regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0); regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL, NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L | NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0); /* Disable clock sync of DAC and DAC clock */ regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC, NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0); /* Disable charge pump ramp up function and change bump */ regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0); /* Disable power of DAC path */ regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0); if (!nau8825->irq) regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); } static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825) { /* Power down left ADC and restore voltage to Vmid */ regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2, NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0); } static void nau8825_xtalk_clean(struct nau8825 *nau8825, bool cause_cancel) { /* Enable internal VCO needed for interruptions */ nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); nau8825_xtalk_clean_dac(nau8825); nau8825_xtalk_clean_adc(nau8825); /* Clear cross talk parameters and disable */ regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0); /* RMS intrruption disable */ regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN); /* Recover default value for IIS */ regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK | NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE); /* Restore value of specific register for cross talk */ nau8825_xtalk_restore(nau8825, cause_cancel); } static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol) { /* Apply ADC volume for better cross talk performance */ regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL, NAU8825_ADC_DIG_VOL_MASK, vol); /* Disables JKTIP(HPL) DAC channel for right to left measurement. * Do it before sending signal in order to erase pop noise. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN, NAU8825_BIAS_TESTDACL_EN); switch (nau8825->xtalk_state) { case NAU8825_XTALK_HPR_R2L: /* Enable right headphone impedance */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, NAU8825_BIAS_HPR_IMP); break; case NAU8825_XTALK_HPL_R2L: /* Enable left headphone impedance */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP, NAU8825_BIAS_HPL_IMP); break; default: break; } msleep(100); /* Impedance measurement mode enable */ regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, NAU8825_IMM_EN); } static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825) { /* Impedance measurement mode disable */ regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0); } /* The cross talk measurement function can reduce cross talk across the * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal * level to determine what cross talk reduction gain is. This system works by * sending a 23Hz -24dBV sine wave into the headset output DAC and through * the PGA. The output of the PGA is then connected to an internal current * sense which measures the attenuated 23Hz signal and passing the output to * an ADC which converts the measurement to a binary code. With two separated * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data * can be separated read in IMM_RMS_L for HSR and HSL after each measurement. * Thus, the measurement function has four states to complete whole sequence. * 1. Prepare state : Prepare the resource for detection and transfer to HPR * IMM stat to make JKR1(HPR) impedance measure. * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer * to HPL IMM state to make JKTIP(HPL) impedance measure. * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and * transfer to IMM state to determine suppression sidetone gain. * 4. IMM state : Computes cross talk suppression sidetone gain with orignal * and cross talk signal level. Apply this gain and then restore codec * configuration. Then transfer to Done state for ending. */ static void nau8825_xtalk_measure(struct nau8825 *nau8825) { u32 sidetone; switch (nau8825->xtalk_state) { case NAU8825_XTALK_PREPARE: /* In prepare state, set up clock, intrruption, DAC path, ADC * path and cross talk detection parameters for preparation. */ nau8825_xtalk_prepare(nau8825); msleep(280); /* Trigger right headphone impedance detection */ nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L; nau8825_xtalk_imm_start(nau8825, 0x00d2); break; case NAU8825_XTALK_HPR_R2L: /* In right headphone IMM state, read out right headphone * impedance measure result, and then start up left side. */ regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n", nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]); /* Disable then re-enable IMM mode to update */ nau8825_xtalk_imm_stop(nau8825); /* Trigger left headphone impedance detection */ nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L; nau8825_xtalk_imm_start(nau8825, 0x00ff); break; case NAU8825_XTALK_HPL_R2L: /* In left headphone IMM state, read out left headphone * impedance measure result, and delay some time to wait * detection sine wave output finish. Then, we can calculate * the cross talk suppresstion side tone according to the L/R * headphone imedance. */ regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L, &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n", nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); nau8825_xtalk_imm_stop(nau8825); msleep(150); nau8825->xtalk_state = NAU8825_XTALK_IMM; break; case NAU8825_XTALK_IMM: /* In impedance measure state, the orignal and cross talk * signal level vlues are ready. The side tone gain is deter- * mined with these signal level. After all, restore codec * configuration. */ sidetone = nau8825_xtalk_sidetone( nau8825->imp_rms[NAU8825_XTALK_HPR_R2L], nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]); dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone); regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL, (sidetone << 8) | sidetone); nau8825_xtalk_clean(nau8825, false); nau8825->xtalk_state = NAU8825_XTALK_DONE; break; default: break; } } static void nau8825_xtalk_work(struct work_struct *work) { struct nau8825 *nau8825 = container_of( work, struct nau8825, xtalk_work); nau8825_xtalk_measure(nau8825); /* To determine the cross talk side tone gain when reach * the impedance measure state. */ if (nau8825->xtalk_state == NAU8825_XTALK_IMM) nau8825_xtalk_measure(nau8825); /* Delay jack report until cross talk detection process * completed. It can avoid application to do playback * preparation before cross talk detection is still working. * Meanwhile, the protection of the cross talk detection * is released. */ if (nau8825->xtalk_state == NAU8825_XTALK_DONE) { snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event, nau8825->xtalk_event_mask); nau8825_sema_release(nau8825); nau8825->xtalk_protect = false; } } static void nau8825_xtalk_cancel(struct nau8825 *nau8825) { /* If the crosstalk is eanbled and the process is on going, * the driver forces to cancel the crosstalk task and * restores the configuration to original status. */ if (nau8825->xtalk_enable && nau8825->xtalk_state != NAU8825_XTALK_DONE) { cancel_work_sync(&nau8825->xtalk_work); nau8825_xtalk_clean(nau8825, true); } /* Reset parameters for cross talk suppression function */ nau8825_sema_reset(nau8825); nau8825->xtalk_state = NAU8825_XTALK_DONE; nau8825->xtalk_protect = false; } static bool nau8825_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV: case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL: case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R: case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: case NAU8825_REG_MISC_CTRL: case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS: case NAU8825_REG_BIAS_ADJ: case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS: return true; default: return false; } } static bool nau8825_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV: case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL: case NAU8825_REG_INTERRUPT_MASK: case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL: case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL: case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY: case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY: case NAU8825_REG_IMM_MODE_CTRL: case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL: case NAU8825_REG_MISC_CTRL: case NAU8825_REG_BIAS_ADJ: case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2: case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS: case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA: case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP: return true; default: return false; } } static bool nau8825_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8825_REG_RESET: case NAU8825_REG_IRQ_STATUS: case NAU8825_REG_INT_CLR_KEY_STATUS: case NAU8825_REG_IMM_RMS_L: case NAU8825_REG_IMM_RMS_R: case NAU8825_REG_I2C_DEVICE_ID: case NAU8825_REG_SARDOUT_RAM_STATUS: case NAU8825_REG_CHARGE_PUMP_INPUT_READ: case NAU8825_REG_GENERAL_STATUS: case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10: return true; default: return false; } } static int nau8825_adc_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: msleep(125); regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); break; case SND_SOC_DAPM_POST_PMD: if (!nau8825->irq) regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); break; default: return -EINVAL; } return 0; } static int nau8825_pump_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: /* Prevent startup click by letting charge pump to ramp up */ msleep(10); regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW); break; case SND_SOC_DAPM_PRE_PMD: regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_JAMNODCLOW, 0); break; default: return -EINVAL; } return 0; } static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: /* Disables the TESTDAC to let DAC signal pass through. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDAC_EN, 0); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); break; default: return -EINVAL; } return 0; } static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes_ext *params = (void *)kcontrol->private_value; if (!component->regmap) return -EINVAL; regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1, ucontrol->value.bytes.data, params->max); return 0; } static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_bytes_ext *params = (void *)kcontrol->private_value; void *data; if (!component->regmap) return -EINVAL; data = kmemdup(ucontrol->value.bytes.data, params->max, GFP_KERNEL | GFP_DMA); if (!data) return -ENOMEM; regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_WRT_EN, 0); regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1, data, params->max); regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN); kfree(data); return 0; } static const char * const nau8825_biq_path[] = { "ADC", "DAC" }; static const struct soc_enum nau8825_biq_path_enum = SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT, ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path); static const char * const nau8825_adc_decimation[] = { "32", "64", "128", "256" }; static const struct soc_enum nau8825_adc_decimation_enum = SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT, ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation); static const char * const nau8825_dac_oversampl[] = { "64", "256", "128", "", "32" }; static const struct soc_enum nau8825_dac_oversampl_enum = SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT, ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl); static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400); static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0); static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0); static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400); static const struct snd_kcontrol_new nau8825_controls[] = { SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL, 0, 0xff, 0, adc_vol_tlv), SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL, 12, 8, 0x0f, 0, sidetone_vol_tlv), SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL, 6, 0, 0x3f, 1, dac_vol_tlv), SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL, 8, 37, 0, fepga_gain_tlv), SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL, 0, 8, 0xff, 0, crosstalk_vol_tlv), SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum), SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum), /* programmable biquad filter */ SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum), SND_SOC_BYTES_EXT("BIQ Coefficients", 20, nau8825_biq_coeff_get, nau8825_biq_coeff_put), }; /* DAC Mux 0x33[9] and 0x34[9] */ static const char * const nau8825_dac_src[] = { "DACL", "DACR", }; static SOC_ENUM_SINGLE_DECL( nau8825_dacl_enum, NAU8825_REG_DACL_CTRL, NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src); static SOC_ENUM_SINGLE_DECL( nau8825_dacr_enum, NAU8825_REG_DACR_CTRL, NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src); static const struct snd_kcontrol_new nau8825_dacl_mux = SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum); static const struct snd_kcontrol_new nau8825_dacr_mux = SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum); static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = { SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2, 15, 1), SND_SOC_DAPM_INPUT("MIC"), SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0), SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0, NULL, 0), SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0, nau8825_adc_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL, 0), /* ADC for button press detection. A dapm supply widget is used to * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON * during suspend. */ SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL, NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0), SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0), SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACR_SFT, 0), SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_DACL_SFT, 0), SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0), SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux), SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux), SND_SOC_DAPM_PGA_S("HP amp L", 0, NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0), SND_SOC_DAPM_PGA_S("HP amp R", 0, NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0, nau8825_pump_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4, NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4, NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5, NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5, NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6, NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6, NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0), SND_SOC_DAPM_PGA_S("Output DACL", 7, NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_S("Output DACR", 7, NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */ SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8, NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0), SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8, NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0), /* High current HPOL/R boost driver */ SND_SOC_DAPM_PGA_S("HP Boost Driver", 9, NAU8825_REG_BOOST, 9, 1, NULL, 0), /* Class G operation control*/ SND_SOC_DAPM_PGA_S("Class G", 10, NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("HPOL"), SND_SOC_DAPM_OUTPUT("HPOR"), }; static const struct snd_soc_dapm_route nau8825_dapm_routes[] = { {"Frontend PGA", NULL, "MIC"}, {"ADC", NULL, "Frontend PGA"}, {"ADC", NULL, "ADC Clock"}, {"ADC", NULL, "ADC Power"}, {"AIFTX", NULL, "ADC"}, {"DDACL", NULL, "Playback"}, {"DDACR", NULL, "Playback"}, {"DDACL", NULL, "DDAC Clock"}, {"DDACR", NULL, "DDAC Clock"}, {"DACL Mux", "DACL", "DDACL"}, {"DACL Mux", "DACR", "DDACR"}, {"DACR Mux", "DACL", "DDACL"}, {"DACR Mux", "DACR", "DDACR"}, {"HP amp L", NULL, "DACL Mux"}, {"HP amp R", NULL, "DACR Mux"}, {"Charge Pump", NULL, "HP amp L"}, {"Charge Pump", NULL, "HP amp R"}, {"ADACL", NULL, "Charge Pump"}, {"ADACR", NULL, "Charge Pump"}, {"ADACL Clock", NULL, "ADACL"}, {"ADACR Clock", NULL, "ADACR"}, {"Output Driver L Stage 1", NULL, "ADACL Clock"}, {"Output Driver R Stage 1", NULL, "ADACR Clock"}, {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"}, {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"}, {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"}, {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"}, {"Output DACL", NULL, "Output Driver L Stage 3"}, {"Output DACR", NULL, "Output Driver R Stage 3"}, {"HPOL Pulldown", NULL, "Output DACL"}, {"HPOR Pulldown", NULL, "Output DACR"}, {"HP Boost Driver", NULL, "HPOL Pulldown"}, {"HP Boost Driver", NULL, "HPOR Pulldown"}, {"Class G", NULL, "HP Boost Driver"}, {"HPOL", NULL, "Class G"}, {"HPOR", NULL, "Class G"}, }; static int nau8825_clock_check(struct nau8825 *nau8825, int stream, int rate, int osr) { int osrate; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { if (osr >= ARRAY_SIZE(osr_dac_sel)) return -EINVAL; osrate = osr_dac_sel[osr].osr; } else { if (osr >= ARRAY_SIZE(osr_adc_sel)) return -EINVAL; osrate = osr_adc_sel[osr].osr; } if (!osrate || rate * osr > CLK_DA_AD_MAX) { dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n"); return -EINVAL; } return 0; } static int nau8825_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div; nau8825_sema_acquire(nau8825, 3 * HZ); /* CLK_DAC or CLK_ADC = OSR * FS * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR) * multiplied by the audio sample rate (Fs). Note that the OSR and Fs * values must be selected such that the maximum frequency is less * than 6.144 MHz. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr); osr &= NAU8825_DAC_OVERSAMPLE_MASK; if (nau8825_clock_check(nau8825, substream->stream, params_rate(params), osr)) { nau8825_sema_release(nau8825); return -EINVAL; } regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_DAC_SRC_MASK, osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT); } else { regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr); osr &= NAU8825_ADC_SYNC_DOWN_MASK; if (nau8825_clock_check(nau8825, substream->stream, params_rate(params), osr)) { nau8825_sema_release(nau8825); return -EINVAL; } regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_ADC_SRC_MASK, osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT); } /* make BCLK and LRC divde configuration if the codec as master. */ regmap_read(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, &ctrl_val); if (ctrl_val & NAU8825_I2S_MS_MASTER) { /* get the bclk and fs ratio */ bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params); if (bclk_fs <= 32) bclk_div = 2; else if (bclk_fs <= 64) bclk_div = 1; else if (bclk_fs <= 128) bclk_div = 0; else { nau8825_sema_release(nau8825); return -EINVAL; } regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_LRC_DIV_MASK | NAU8825_I2S_BLK_DIV_MASK, ((bclk_div + 1) << NAU8825_I2S_LRC_DIV_SFT) | bclk_div); } switch (params_width(params)) { case 16: val_len |= NAU8825_I2S_DL_16; break; case 20: val_len |= NAU8825_I2S_DL_20; break; case 24: val_len |= NAU8825_I2S_DL_24; break; case 32: val_len |= NAU8825_I2S_DL_32; break; default: nau8825_sema_release(nau8825); return -EINVAL; } regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, NAU8825_I2S_DL_MASK, val_len); /* Release the semaphore. */ nau8825_sema_release(nau8825); return 0; } static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); unsigned int ctrl1_val = 0, ctrl2_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: ctrl2_val |= NAU8825_I2S_MS_MASTER; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: ctrl1_val |= NAU8825_I2S_BP_INV; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: ctrl1_val |= NAU8825_I2S_DF_I2S; break; case SND_SOC_DAIFMT_LEFT_J: ctrl1_val |= NAU8825_I2S_DF_LEFT; break; case SND_SOC_DAIFMT_RIGHT_J: ctrl1_val |= NAU8825_I2S_DF_RIGTH; break; case SND_SOC_DAIFMT_DSP_A: ctrl1_val |= NAU8825_I2S_DF_PCM_AB; break; case SND_SOC_DAIFMT_DSP_B: ctrl1_val |= NAU8825_I2S_DF_PCM_AB; ctrl1_val |= NAU8825_I2S_PCMB_EN; break; default: return -EINVAL; } nau8825_sema_acquire(nau8825, 3 * HZ); regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1, NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK | NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK, ctrl1_val); regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK, ctrl2_val); /* Release the semaphore. */ nau8825_sema_release(nau8825); return 0; } static const struct snd_soc_dai_ops nau8825_dai_ops = { .hw_params = nau8825_hw_params, .set_fmt = nau8825_set_dai_fmt, }; #define NAU8825_RATES SNDRV_PCM_RATE_8000_192000 #define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver nau8825_dai = { .name = "nau8825-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = NAU8825_RATES, .formats = NAU8825_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 1, .rates = NAU8825_RATES, .formats = NAU8825_FORMATS, }, .ops = &nau8825_dai_ops, }; /** * nau8825_enable_jack_detect - Specify a jack for event reporting * * @component: component to register the jack with * @jack: jack to use to report headset and button events on * * After this function has been called the headset insert/remove and button * events will be routed to the given jack. Jack can be null to stop * reporting. */ int nau8825_enable_jack_detect(struct snd_soc_component *component, struct snd_soc_jack *jack) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); struct regmap *regmap = nau8825->regmap; nau8825->jack = jack; /* Ground HP Outputs[1:0], needed for headset auto detection * Enable Automatic Mic/Gnd switching reading on insert interrupt[6] */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L); return 0; } EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect); static bool nau8825_is_jack_inserted(struct regmap *regmap) { bool active_high, is_high; int status, jkdet; regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet); active_high = jkdet & NAU8825_JACK_POLARITY; regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status); is_high = status & NAU8825_GPIO2JD1; /* return jack connection status according to jack insertion logic * active high or active low. */ return active_high == is_high; } static void nau8825_restart_jack_detection(struct regmap *regmap) { /* this will restart the entire jack detection process including MIC/GND * switching and create interrupts. We have to go from 0 to 1 and back * to 0 to restart. */ regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_RESTART, 0); } static void nau8825_int_status_clear_all(struct regmap *regmap) { int active_irq, clear_irq, i; /* Reset the intrruption status from rightmost bit if the corres- * ponding irq event occurs. */ regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq); for (i = 0; i < NAU8825_REG_DATA_LEN; i++) { clear_irq = (0x1 << i); if (active_irq & clear_irq) regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); } } static void nau8825_eject_jack(struct nau8825 *nau8825) { struct snd_soc_dapm_context *dapm = nau8825->dapm; struct regmap *regmap = nau8825->regmap; /* Force to cancel the cross talk detection process */ nau8825_xtalk_cancel(nau8825); snd_soc_dapm_disable_pin(dapm, "SAR"); snd_soc_dapm_disable_pin(dapm, "MICBIAS"); /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); /* ground HPL/HPR, MICGRND1/2 */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); snd_soc_dapm_sync(dapm); /* Clear all interruption status */ nau8825_int_status_clear_all(regmap); /* Enable the insertion interruption, disable the ejection inter- * ruption, and then bypass de-bounce circuit. */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS, NAU8825_IRQ_EJECT_DIS); regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); /* Disable ADC needed for interruptions at audo mode */ regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); /* Close clock for jack type detection at manual mode */ nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); } /* Enable audo mode interruptions with internal clock. */ static void nau8825_setup_auto_irq(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; /* Enable headset jack type detection complete interruption and * jack ejection interruption. */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0); /* Enable internal VCO needed for interruptions */ nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0); /* Enable ADC needed for interruptions */ regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC); /* Chip needs one FSCLK cycle in order to generate interruptions, * as we cannot guarantee one will be provided by the system. Turning * master mode on then off enables us to generate that FSCLK cycle * with a minimum of contention on the clock bus. */ regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER); regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2, NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE); /* Not bypass de-bounce circuit */ regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_DB_BYPASS, 0); /* Unmask all interruptions */ regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0); /* Restart the jack detection process at auto mode */ nau8825_restart_jack_detection(regmap); } static int nau8825_button_decode(int value) { int buttons = 0; /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */ if (value & BIT(0)) buttons |= SND_JACK_BTN_0; if (value & BIT(1)) buttons |= SND_JACK_BTN_1; if (value & BIT(2)) buttons |= SND_JACK_BTN_2; if (value & BIT(3)) buttons |= SND_JACK_BTN_3; if (value & BIT(4)) buttons |= SND_JACK_BTN_4; if (value & BIT(5)) buttons |= SND_JACK_BTN_5; return buttons; } static int nau8825_jack_insert(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; struct snd_soc_dapm_context *dapm = nau8825->dapm; int jack_status_reg, mic_detected; int type = 0; regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg); mic_detected = (jack_status_reg >> 10) & 3; /* The JKSLV and JKR2 all detected in high impedance headset */ if (mic_detected == 0x3) nau8825->high_imped = true; else nau8825->high_imped = false; switch (mic_detected) { case 0: /* no mic */ type = SND_JACK_HEADPHONE; break; case 1: dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n"); type = SND_JACK_HEADSET; /* Unground MICGND1 */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 1 << 2); /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */ regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, NAU8825_MICBIAS_JKR2); /* Attach SARADC to MICGND1 */ regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_INPUT_MASK, NAU8825_SAR_INPUT_JKR2); snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); snd_soc_dapm_force_enable_pin(dapm, "SAR"); snd_soc_dapm_sync(dapm); break; case 2: dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n"); type = SND_JACK_HEADSET; /* Unground MICGND2 */ regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2, 2 << 2); /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */ regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, NAU8825_MICBIAS_JKSLV); /* Attach SARADC to MICGND2 */ regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_INPUT_MASK, NAU8825_SAR_INPUT_JKSLV); snd_soc_dapm_force_enable_pin(dapm, "MICBIAS"); snd_soc_dapm_force_enable_pin(dapm, "SAR"); snd_soc_dapm_sync(dapm); break; case 3: /* detect error case */ dev_err(nau8825->dev, "detection error; disable mic function\n"); type = SND_JACK_HEADPHONE; break; } /* Leaving HPOL/R grounded after jack insert by default. They will be * ungrounded as part of the widget power up sequence at the beginning * of playback to reduce pop. */ return type; } #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \ SND_JACK_BTN_2 | SND_JACK_BTN_3) static irqreturn_t nau8825_interrupt(int irq, void *data) { struct nau8825 *nau8825 = (struct nau8825 *)data; struct regmap *regmap = nau8825->regmap; int active_irq, clear_irq = 0, event = 0, event_mask = 0; if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) { dev_err(nau8825->dev, "failed to read irq status\n"); return IRQ_NONE; } if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) == NAU8825_JACK_EJECTION_DETECTED) { nau8825_eject_jack(nau8825); event_mask |= SND_JACK_HEADSET; clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK; } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) { int key_status; regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, &key_status); /* upper 8 bits of the register are for short pressed keys, * lower 8 bits - for long pressed buttons */ nau8825->button_pressed = nau8825_button_decode( key_status >> 8); event |= nau8825->button_pressed; event_mask |= NAU8825_BUTTONS; clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ; } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) { event_mask = NAU8825_BUTTONS; clear_irq = NAU8825_KEY_RELEASE_IRQ; } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) { if (nau8825_is_jack_inserted(regmap)) { event |= nau8825_jack_insert(nau8825); if (nau8825->xtalk_enable && !nau8825->high_imped) { /* Apply the cross talk suppression in the * headset without high impedance. */ if (!nau8825->xtalk_protect) { /* Raise protection for cross talk de- * tection if no protection before. * The driver has to cancel the pro- * cess and restore changes if process * is ongoing when ejection. */ int ret; nau8825->xtalk_protect = true; ret = nau8825_sema_acquire(nau8825, 0); if (ret) nau8825->xtalk_protect = false; } /* Startup cross talk detection process */ if (nau8825->xtalk_protect) { nau8825->xtalk_state = NAU8825_XTALK_PREPARE; schedule_work(&nau8825->xtalk_work); } } else { /* The cross talk suppression shouldn't apply * in the headset with high impedance. Thus, * relieve the protection raised before. */ if (nau8825->xtalk_protect) { nau8825_sema_release(nau8825); nau8825->xtalk_protect = false; } } } else { dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n"); nau8825_eject_jack(nau8825); } event_mask |= SND_JACK_HEADSET; clear_irq = NAU8825_HEADSET_COMPLETION_IRQ; /* Record the interruption report event for driver to report * the event later. The jack report will delay until cross * talk detection process is done. */ if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) { nau8825->xtalk_event = event; nau8825->xtalk_event_mask = event_mask; } } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) { /* crosstalk detection enable and process on going */ if (nau8825->xtalk_enable && nau8825->xtalk_protect) schedule_work(&nau8825->xtalk_work); clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ; } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) == NAU8825_JACK_INSERTION_DETECTED) { /* One more step to check GPIO status directly. Thus, the * driver can confirm the real insertion interruption because * the intrruption at manual mode has bypassed debounce * circuit which can get rid of unstable status. */ if (nau8825_is_jack_inserted(regmap)) { /* Turn off insertion interruption at manual mode */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, NAU8825_IRQ_INSERT_DIS, NAU8825_IRQ_INSERT_DIS); regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN); /* Enable interruption for jack type detection at audo * mode which can detect microphone and jack type. */ nau8825_setup_auto_irq(nau8825); } } if (!clear_irq) clear_irq = active_irq; /* clears the rightmost interruption */ regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq); /* Delay jack report until cross talk detection is done. It can avoid * application to do playback preparation when cross talk detection * process is still working. Otherwise, the resource like clock and * power will be issued by them at the same time and conflict happens. */ if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE) snd_soc_jack_report(nau8825->jack, event, event_mask); return IRQ_HANDLED; } static void nau8825_setup_buttons(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_TRACKING_GAIN_MASK, nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT); regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_COMPARE_TIME_MASK, nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT); regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL, NAU8825_SAR_SAMPLING_TIME_MASK, nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT); regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, NAU8825_KEYDET_LEVELS_NR_MASK, (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT); regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, NAU8825_KEYDET_HYSTERESIS_MASK, nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT); regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL, NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK, nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1, (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2, (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3, (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]); regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4, (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]); /* Enable short press and release interruptions */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN, 0); } static void nau8825_init_regs(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; /* Latch IIC LSB value */ regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001); /* Enable Bias/Vmid */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_VMID, NAU8825_BIAS_VMID); regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST, NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN); /* VMID Tieoff */ regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_VMID_SEL_MASK, nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT); /* Disable Boost Driver, Automatic Short circuit protection enable */ regmap_update_bits(regmap, NAU8825_REG_BOOST, NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN, NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS | NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN); regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, NAU8825_JKDET_OUTPUT_EN, nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN); regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, NAU8825_JKDET_PULL_EN, nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN); regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL, NAU8825_JKDET_PULL_UP, nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_POLARITY, /* jkdet_polarity - 1 is for active-low */ nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_INSERT_DEBOUNCE_MASK, nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_EJECT_DEBOUNCE_MASK, nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT); /* Pull up IRQ pin */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN, NAU8825_IRQ_PIN_PULLUP | NAU8825_IRQ_PIN_PULL_EN); /* Mask unneeded IRQs: 1 - disable, 0 - enable */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff); regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage); if (nau8825->sar_threshold_num) nau8825_setup_buttons(nau8825); /* Default oversampling/decimations settings are unusable * (audible hiss). Set it to something better. */ regmap_update_bits(regmap, NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN, NAU8825_ADC_SYNC_DOWN_64); regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64); /* Disable DACR/L power */ regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL); /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input * signal to avoid any glitches due to power up transients in both * the analog and digital DAC circuit. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ, NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN); /* CICCLP off */ regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1, NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF); /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */ regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2, NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB, NAU8825_HP_NON_CLASSG_CURRENT_2xADJ | NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB); /* Class G timer 64ms */ regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL, NAU8825_CLASSG_TIMER_MASK, 0x20 << NAU8825_CLASSG_TIMER_SFT); /* DAC clock delay 2ns, VREF */ regmap_update_bits(regmap, NAU8825_REG_RDAC, NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK, (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) | (0x3 << NAU8825_RDAC_VREF_SFT)); /* Config L/R channel */ regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL, NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L); regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL, NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R); /* Disable short Frame Sync detection logic */ regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT, NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET); } static const struct regmap_config nau8825_regmap_config = { .val_bits = NAU8825_REG_DATA_LEN, .reg_bits = NAU8825_REG_ADDR_LEN, .max_register = NAU8825_REG_MAX, .readable_reg = nau8825_readable_reg, .writeable_reg = nau8825_writeable_reg, .volatile_reg = nau8825_volatile_reg, .cache_type = REGCACHE_RBTREE, .reg_defaults = nau8825_reg_defaults, .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults), }; static int nau8825_component_probe(struct snd_soc_component *component) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); nau8825->dapm = dapm; return 0; } static void nau8825_component_remove(struct snd_soc_component *component) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); /* Cancel and reset cross tak suppresstion detection funciton */ nau8825_xtalk_cancel(nau8825); } /** * nau8825_calc_fll_param - Calculate FLL parameters. * @fll_in: external clock provided to codec. * @fs: sampling rate. * @fll_param: Pointer to structure of FLL parameters. * * Calculate FLL parameters to configure codec. * * Returns 0 for success or negative error code. */ static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs, struct nau8825_fll *fll_param) { u64 fvco, fvco_max; unsigned int fref, i, fvco_sel; /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK */ for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { fref = fll_in / fll_pre_scalar[i].param; if (fref <= NAU_FREF_MAX) break; } if (i == ARRAY_SIZE(fll_pre_scalar)) return -EINVAL; fll_param->clk_ref_div = fll_pre_scalar[i].val; /* Choose the FLL ratio based on FREF */ for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { if (fref >= fll_ratio[i].param) break; } if (i == ARRAY_SIZE(fll_ratio)) return -EINVAL; fll_param->ratio = fll_ratio[i].val; /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. * FDCO must be within the 90MHz - 124MHz or the FFL cannot be * guaranteed across the full range of operation. * FDCO = freq_out * 2 * mclk_src_scaling */ fvco_max = 0; fvco_sel = ARRAY_SIZE(mclk_src_scaling); for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && fvco_max < fvco) { fvco_max = fvco; fvco_sel = i; } } if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) return -EINVAL; fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional * input based on FDCO, FREF and FLL ratio. */ fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); fll_param->fll_int = (fvco >> 16) & 0x3FF; fll_param->fll_frac = fvco & 0xFFFF; return 0; } static void nau8825_fll_apply(struct nau8825 *nau8825, struct nau8825_fll *fll_param) { regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK, NAU8825_CLK_SRC_MCLK | fll_param->mclk_src); /* Make DSP operate at high speed for better performance. */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1, NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK, fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT)); /* FLL 16-bit fractional input */ regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac); /* FLL 10-bit integer input */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3, NAU8825_FLL_INTEGER_MASK, fll_param->fll_int); /* FLL pre-scaler */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4, NAU8825_FLL_REF_DIV_MASK, fll_param->clk_ref_div << NAU8825_FLL_REF_DIV_SFT); /* select divided VCO input */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF); /* Disable free-running mode */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); if (fll_param->fll_frac) { /* set FLL loop filter enable and cutoff frequency at 500Khz */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | NAU8825_FLL_FTR_SW_FILTER); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_SDM_EN | NAU8825_CUTOFF500, NAU8825_SDM_EN | NAU8825_CUTOFF500); } else { /* disable FLL loop filter and cutoff frequency */ regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5, NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN | NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU); regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_SDM_EN | NAU8825_CUTOFF500, 0); } } /* freq_out must be 256*Fs in order to achieve the best performance */ static int nau8825_set_pll(struct snd_soc_component *component, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); struct nau8825_fll fll_param; int ret, fs; fs = freq_out / 256; ret = nau8825_calc_fll_param(freq_in, fs, &fll_param); if (ret < 0) { dev_err(component->dev, "Unsupported input clock %d\n", freq_in); return ret; } dev_dbg(component->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, fll_param.fll_int, fll_param.clk_ref_div); nau8825_fll_apply(nau8825, &fll_param); mdelay(2); regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); return 0; } static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq) { int ret = 0; nau8825->mclk = devm_clk_get(nau8825->dev, "mclk"); if (IS_ERR(nau8825->mclk)) { dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally"); return 0; } if (!nau8825->mclk_freq) { ret = clk_prepare_enable(nau8825->mclk); if (ret) { dev_err(nau8825->dev, "Unable to prepare codec mclk\n"); return ret; } } if (nau8825->mclk_freq != freq) { freq = clk_round_rate(nau8825->mclk, freq); ret = clk_set_rate(nau8825->mclk, freq); if (ret) { dev_err(nau8825->dev, "Unable to set mclk rate\n"); return ret; } nau8825->mclk_freq = freq; } return 0; } static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap) { regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK); regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, 0); /* Make DSP operate as default setting for power saving. */ regmap_update_bits(regmap, NAU8825_REG_FLL1, NAU8825_ICTRL_LATCH_MASK, 0); } static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id, unsigned int freq) { struct regmap *regmap = nau8825->regmap; int ret; switch (clk_id) { case NAU8825_CLK_DIS: /* Clock provided externally and disable internal VCO clock */ nau8825_configure_mclk_as_sysclk(regmap); if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; case NAU8825_CLK_MCLK: /* Acquire the semaphore to synchronize the playback and * interrupt handler. In order to avoid the playback inter- * fered by cross talk process, the driver make the playback * preparation halted until cross talk process finish. */ nau8825_sema_acquire(nau8825, 3 * HZ); nau8825_configure_mclk_as_sysclk(regmap); /* MCLK not changed by clock tree */ regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_MCLK_SRC_MASK, 0); /* Release the semaphore. */ nau8825_sema_release(nau8825); ret = nau8825_mclk_prepare(nau8825, freq); if (ret) return ret; break; case NAU8825_CLK_INTERNAL: if (nau8825_is_jack_inserted(nau8825->regmap)) { regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN, NAU8825_DCO_EN); regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO); /* Decrease the VCO frequency and make DSP operate * as default setting for power saving. */ regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER, NAU8825_CLK_MCLK_SRC_MASK, 0xf); regmap_update_bits(regmap, NAU8825_REG_FLL1, NAU8825_ICTRL_LATCH_MASK | NAU8825_FLL_RATIO_MASK, 0x10); regmap_update_bits(regmap, NAU8825_REG_FLL6, NAU8825_SDM_EN, NAU8825_SDM_EN); } else { /* The clock turns off intentionally for power saving * when no headset connected. */ nau8825_configure_mclk_as_sysclk(regmap); dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n"); } if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; case NAU8825_CLK_FLL_MCLK: /* Acquire the semaphore to synchronize the playback and * interrupt handler. In order to avoid the playback inter- * fered by cross talk process, the driver make the playback * preparation halted until cross talk process finish. */ nau8825_sema_acquire(nau8825, 3 * HZ); /* Higher FLL reference input frequency can only set lower * gain error, such as 0000 for input reference from MCLK * 12.288Mhz. */ regmap_update_bits(regmap, NAU8825_REG_FLL3, NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, NAU8825_FLL_CLK_SRC_MCLK | 0); /* Release the semaphore. */ nau8825_sema_release(nau8825); ret = nau8825_mclk_prepare(nau8825, freq); if (ret) return ret; break; case NAU8825_CLK_FLL_BLK: /* Acquire the semaphore to synchronize the playback and * interrupt handler. In order to avoid the playback inter- * fered by cross talk process, the driver make the playback * preparation halted until cross talk process finish. */ nau8825_sema_acquire(nau8825, 3 * HZ); /* If FLL reference input is from low frequency source, * higher error gain can apply such as 0xf which has * the most sensitive gain error correction threshold, * Therefore, FLL has the most accurate DCO to * target frequency. */ regmap_update_bits(regmap, NAU8825_REG_FLL3, NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, NAU8825_FLL_CLK_SRC_BLK | (0xf << NAU8825_GAIN_ERR_SFT)); /* Release the semaphore. */ nau8825_sema_release(nau8825); if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; case NAU8825_CLK_FLL_FS: /* Acquire the semaphore to synchronize the playback and * interrupt handler. In order to avoid the playback inter- * fered by cross talk process, the driver make the playback * preparation halted until cross talk process finish. */ nau8825_sema_acquire(nau8825, 3 * HZ); /* If FLL reference input is from low frequency source, * higher error gain can apply such as 0xf which has * the most sensitive gain error correction threshold, * Therefore, FLL has the most accurate DCO to * target frequency. */ regmap_update_bits(regmap, NAU8825_REG_FLL3, NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK, NAU8825_FLL_CLK_SRC_FS | (0xf << NAU8825_GAIN_ERR_SFT)); /* Release the semaphore. */ nau8825_sema_release(nau8825); if (nau8825->mclk_freq) { clk_disable_unprepare(nau8825->mclk); nau8825->mclk_freq = 0; } break; default: dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id); return 0; } static int nau8825_set_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); return nau8825_configure_sysclk(nau8825, clk_id, freq); } static int nau8825_resume_setup(struct nau8825 *nau8825) { struct regmap *regmap = nau8825->regmap; /* Close clock when jack type detection at manual mode */ nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0); /* Clear all interruption status */ nau8825_int_status_clear_all(regmap); /* Enable both insertion and ejection interruptions, and then * bypass de-bounce circuit. */ regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN); regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL, NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS); regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0); return 0; } static int nau8825_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); int ret; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { if (nau8825->mclk_freq) { ret = clk_prepare_enable(nau8825->mclk); if (ret) { dev_err(nau8825->dev, "Unable to prepare component mclk\n"); return ret; } } /* Setup codec configuration after resume */ nau8825_resume_setup(nau8825); } break; case SND_SOC_BIAS_OFF: /* Reset the configuration of jack type for detection */ /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */ regmap_update_bits(nau8825->regmap, NAU8825_REG_MIC_BIAS, NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0); /* ground HPL/HPR, MICGRND1/2 */ regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf); /* Cancel and reset cross talk detection funciton */ nau8825_xtalk_cancel(nau8825); /* Turn off all interruptions before system shutdown. Keep the * interruption quiet before resume setup completes. */ regmap_write(nau8825->regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff); /* Disable ADC needed for interruptions at audo mode */ regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0); if (nau8825->mclk_freq) clk_disable_unprepare(nau8825->mclk); break; } return 0; } static int __maybe_unused nau8825_suspend(struct snd_soc_component *component) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); disable_irq(nau8825->irq); snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); /* Power down codec power; don't suppoet button wakeup */ snd_soc_dapm_disable_pin(nau8825->dapm, "SAR"); snd_soc_dapm_disable_pin(nau8825->dapm, "MICBIAS"); snd_soc_dapm_sync(nau8825->dapm); regcache_cache_only(nau8825->regmap, true); regcache_mark_dirty(nau8825->regmap); return 0; } static int __maybe_unused nau8825_resume(struct snd_soc_component *component) { struct nau8825 *nau8825 = snd_soc_component_get_drvdata(component); int ret; regcache_cache_only(nau8825->regmap, false); regcache_sync(nau8825->regmap); nau8825->xtalk_protect = true; ret = nau8825_sema_acquire(nau8825, 0); if (ret) nau8825->xtalk_protect = false; enable_irq(nau8825->irq); return 0; } static const struct snd_soc_component_driver nau8825_component_driver = { .probe = nau8825_component_probe, .remove = nau8825_component_remove, .set_sysclk = nau8825_set_sysclk, .set_pll = nau8825_set_pll, .set_bias_level = nau8825_set_bias_level, .suspend = nau8825_suspend, .resume = nau8825_resume, .controls = nau8825_controls, .num_controls = ARRAY_SIZE(nau8825_controls), .dapm_widgets = nau8825_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets), .dapm_routes = nau8825_dapm_routes, .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes), .suspend_bias_off = 1, .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static void nau8825_reset_chip(struct regmap *regmap) { regmap_write(regmap, NAU8825_REG_RESET, 0x00); regmap_write(regmap, NAU8825_REG_RESET, 0x00); } static void nau8825_print_device_properties(struct nau8825 *nau8825) { int i; struct device *dev = nau8825->dev; dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable); dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable); dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up); dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity); dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage); dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance); dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num); for (i = 0; i < nau8825->sar_threshold_num; i++) dev_dbg(dev, "sar-threshold[%d]=%d\n", i, nau8825->sar_threshold[i]); dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis); dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage); dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time); dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time); dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce); dev_dbg(dev, "jack-insert-debounce: %d\n", nau8825->jack_insert_debounce); dev_dbg(dev, "jack-eject-debounce: %d\n", nau8825->jack_eject_debounce); dev_dbg(dev, "crosstalk-enable: %d\n", nau8825->xtalk_enable); } static int nau8825_read_device_properties(struct device *dev, struct nau8825 *nau8825) { int ret; nau8825->jkdet_enable = device_property_read_bool(dev, "nuvoton,jkdet-enable"); nau8825->jkdet_pull_enable = device_property_read_bool(dev, "nuvoton,jkdet-pull-enable"); nau8825->jkdet_pull_up = device_property_read_bool(dev, "nuvoton,jkdet-pull-up"); ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity", &nau8825->jkdet_polarity); if (ret) nau8825->jkdet_polarity = 1; ret = device_property_read_u32(dev, "nuvoton,micbias-voltage", &nau8825->micbias_voltage); if (ret) nau8825->micbias_voltage = 6; ret = device_property_read_u32(dev, "nuvoton,vref-impedance", &nau8825->vref_impedance); if (ret) nau8825->vref_impedance = 2; ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num", &nau8825->sar_threshold_num); if (ret) nau8825->sar_threshold_num = 4; ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold", nau8825->sar_threshold, nau8825->sar_threshold_num); if (ret) { nau8825->sar_threshold[0] = 0x08; nau8825->sar_threshold[1] = 0x12; nau8825->sar_threshold[2] = 0x26; nau8825->sar_threshold[3] = 0x73; } ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis", &nau8825->sar_hysteresis); if (ret) nau8825->sar_hysteresis = 0; ret = device_property_read_u32(dev, "nuvoton,sar-voltage", &nau8825->sar_voltage); if (ret) nau8825->sar_voltage = 6; ret = device_property_read_u32(dev, "nuvoton,sar-compare-time", &nau8825->sar_compare_time); if (ret) nau8825->sar_compare_time = 1; ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time", &nau8825->sar_sampling_time); if (ret) nau8825->sar_sampling_time = 1; ret = device_property_read_u32(dev, "nuvoton,short-key-debounce", &nau8825->key_debounce); if (ret) nau8825->key_debounce = 3; ret = device_property_read_u32(dev, "nuvoton,jack-insert-debounce", &nau8825->jack_insert_debounce); if (ret) nau8825->jack_insert_debounce = 7; ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce", &nau8825->jack_eject_debounce); if (ret) nau8825->jack_eject_debounce = 0; nau8825->xtalk_enable = device_property_read_bool(dev, "nuvoton,crosstalk-enable"); nau8825->mclk = devm_clk_get(dev, "mclk"); if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) { return -EPROBE_DEFER; } else if (PTR_ERR(nau8825->mclk) == -ENOENT) { /* The MCLK is managed externally or not used at all */ nau8825->mclk = NULL; dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally"); } else if (IS_ERR(nau8825->mclk)) { return -EINVAL; } return 0; } static int nau8825_setup_irq(struct nau8825 *nau8825) { int ret; ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL, nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "nau8825", nau8825); if (ret) { dev_err(nau8825->dev, "Cannot request irq %d (%d)\n", nau8825->irq, ret); return ret; } return 0; } static int nau8825_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct device *dev = &i2c->dev; struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev); int ret, value; if (!nau8825) { nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL); if (!nau8825) return -ENOMEM; ret = nau8825_read_device_properties(dev, nau8825); if (ret) return ret; } i2c_set_clientdata(i2c, nau8825); nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config); if (IS_ERR(nau8825->regmap)) return PTR_ERR(nau8825->regmap); nau8825->dev = dev; nau8825->irq = i2c->irq; /* Initiate parameters, semaphore and work queue which are needed in * cross talk suppression measurment function. */ nau8825->xtalk_state = NAU8825_XTALK_DONE; nau8825->xtalk_protect = false; nau8825->xtalk_baktab_initialized = false; sema_init(&nau8825->xtalk_sem, 1); INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work); nau8825_print_device_properties(nau8825); nau8825_reset_chip(nau8825->regmap); ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value); if (ret < 0) { dev_err(dev, "Failed to read device id from the NAU8825: %d\n", ret); return ret; } if ((value & NAU8825_SOFTWARE_ID_MASK) != NAU8825_SOFTWARE_ID_NAU8825) { dev_err(dev, "Not a NAU8825 chip\n"); return -ENODEV; } nau8825_init_regs(nau8825); if (i2c->irq) nau8825_setup_irq(nau8825); return devm_snd_soc_register_component(&i2c->dev, &nau8825_component_driver, &nau8825_dai, 1); } static int nau8825_i2c_remove(struct i2c_client *client) { return 0; } static const struct i2c_device_id nau8825_i2c_ids[] = { { "nau8825", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids); #ifdef CONFIG_OF static const struct of_device_id nau8825_of_ids[] = { { .compatible = "nuvoton,nau8825", }, {} }; MODULE_DEVICE_TABLE(of, nau8825_of_ids); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id nau8825_acpi_match[] = { { "10508825", 0 }, {}, }; MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match); #endif static struct i2c_driver nau8825_driver = { .driver = { .name = "nau8825", .of_match_table = of_match_ptr(nau8825_of_ids), .acpi_match_table = ACPI_PTR(nau8825_acpi_match), }, .probe = nau8825_i2c_probe, .remove = nau8825_i2c_remove, .id_table = nau8825_i2c_ids, }; module_i2c_driver(nau8825_driver); MODULE_DESCRIPTION("ASoC nau8825 driver"); MODULE_AUTHOR("Anatol Pomozov "); MODULE_LICENSE("GPL");