// SPDX-License-Identifier: GPL-2.0 /* * ALSA SoC Texas Instruments TAS6424 Quad-Channel Audio Amplifier * * Copyright (C) 2016-2017 Texas Instruments Incorporated - http://www.ti.com/ * Author: Andreas Dannenberg * Andrew F. Davis */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tas6424.h" /* Define how often to check (and clear) the fault status register (in ms) */ #define TAS6424_FAULT_CHECK_INTERVAL 200 static const char * const tas6424_supply_names[] = { "dvdd", /* Digital power supply. Connect to 3.3-V supply. */ "vbat", /* Supply used for higher voltage analog circuits. */ "pvdd", /* Class-D amp output FETs supply. */ }; #define TAS6424_NUM_SUPPLIES ARRAY_SIZE(tas6424_supply_names) struct tas6424_data { struct device *dev; struct regmap *regmap; struct regulator_bulk_data supplies[TAS6424_NUM_SUPPLIES]; struct delayed_work fault_check_work; unsigned int last_cfault; unsigned int last_fault1; unsigned int last_fault2; unsigned int last_warn; struct gpio_desc *standby_gpio; struct gpio_desc *mute_gpio; }; /* * DAC digital volumes. From -103.5 to 24 dB in 0.5 dB steps. Note that * setting the gain below -100 dB (register value <0x7) is effectively a MUTE * as per device datasheet. */ static DECLARE_TLV_DB_SCALE(dac_tlv, -10350, 50, 0); static const struct snd_kcontrol_new tas6424_snd_controls[] = { SOC_SINGLE_TLV("Speaker Driver CH1 Playback Volume", TAS6424_CH1_VOL_CTRL, 0, 0xff, 0, dac_tlv), SOC_SINGLE_TLV("Speaker Driver CH2 Playback Volume", TAS6424_CH2_VOL_CTRL, 0, 0xff, 0, dac_tlv), SOC_SINGLE_TLV("Speaker Driver CH3 Playback Volume", TAS6424_CH3_VOL_CTRL, 0, 0xff, 0, dac_tlv), SOC_SINGLE_TLV("Speaker Driver CH4 Playback Volume", TAS6424_CH4_VOL_CTRL, 0, 0xff, 0, dac_tlv), SOC_SINGLE_STROBE("Auto Diagnostics Switch", TAS6424_DC_DIAG_CTRL1, TAS6424_LDGBYPASS_SHIFT, 1), }; static int tas6424_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component); dev_dbg(component->dev, "%s() event=0x%0x\n", __func__, event); if (event & SND_SOC_DAPM_POST_PMU) { /* Observe codec shutdown-to-active time */ msleep(12); /* Turn on TAS6424 periodic fault checking/handling */ tas6424->last_fault1 = 0; tas6424->last_fault2 = 0; tas6424->last_warn = 0; schedule_delayed_work(&tas6424->fault_check_work, msecs_to_jiffies(TAS6424_FAULT_CHECK_INTERVAL)); } else if (event & SND_SOC_DAPM_PRE_PMD) { /* Disable TAS6424 periodic fault checking/handling */ cancel_delayed_work_sync(&tas6424->fault_check_work); } return 0; } static const struct snd_soc_dapm_widget tas6424_dapm_widgets[] = { SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas6424_dac_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_OUTPUT("OUT") }; static const struct snd_soc_dapm_route tas6424_audio_map[] = { { "DAC", NULL, "DAC IN" }, { "OUT", NULL, "DAC" }, }; static int tas6424_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; unsigned int rate = params_rate(params); unsigned int width = params_width(params); u8 sap_ctrl = 0; dev_dbg(component->dev, "%s() rate=%u width=%u\n", __func__, rate, width); switch (rate) { case 44100: sap_ctrl |= TAS6424_SAP_RATE_44100; break; case 48000: sap_ctrl |= TAS6424_SAP_RATE_48000; break; case 96000: sap_ctrl |= TAS6424_SAP_RATE_96000; break; default: dev_err(component->dev, "unsupported sample rate: %u\n", rate); return -EINVAL; } switch (width) { case 16: sap_ctrl |= TAS6424_SAP_TDM_SLOT_SZ_16; break; case 24: break; default: dev_err(component->dev, "unsupported sample width: %u\n", width); return -EINVAL; } snd_soc_component_update_bits(component, TAS6424_SAP_CTRL, TAS6424_SAP_RATE_MASK | TAS6424_SAP_TDM_SLOT_SZ_16, sap_ctrl); return 0; } static int tas6424_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; u8 serial_format = 0; dev_dbg(component->dev, "%s() fmt=0x%0x\n", __func__, fmt); /* clock masters */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; default: dev_err(component->dev, "Invalid DAI master/slave interface\n"); return -EINVAL; } /* signal polarity */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; default: dev_err(component->dev, "Invalid DAI clock signal polarity\n"); return -EINVAL; } /* interface format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: serial_format |= TAS6424_SAP_I2S; break; case SND_SOC_DAIFMT_DSP_A: serial_format |= TAS6424_SAP_DSP; break; case SND_SOC_DAIFMT_DSP_B: /* * We can use the fact that the TAS6424 does not care about the * LRCLK duty cycle during TDM to receive DSP_B formatted data * in LEFTJ mode (no delaying of the 1st data bit). */ serial_format |= TAS6424_SAP_LEFTJ; break; case SND_SOC_DAIFMT_LEFT_J: serial_format |= TAS6424_SAP_LEFTJ; break; default: dev_err(component->dev, "Invalid DAI interface format\n"); return -EINVAL; } snd_soc_component_update_bits(component, TAS6424_SAP_CTRL, TAS6424_SAP_FMT_MASK, serial_format); return 0; } static int tas6424_set_dai_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; unsigned int first_slot, last_slot; bool sap_tdm_slot_last; dev_dbg(component->dev, "%s() tx_mask=%d rx_mask=%d\n", __func__, tx_mask, rx_mask); if (!tx_mask || !rx_mask) return 0; /* nothing needed to disable TDM mode */ /* * Determine the first slot and last slot that is being requested so * we'll be able to more easily enforce certain constraints as the * TAS6424's TDM interface is not fully configurable. */ first_slot = __ffs(tx_mask); last_slot = __fls(rx_mask); if (last_slot - first_slot != 4) { dev_err(component->dev, "tdm mask must cover 4 contiguous slots\n"); return -EINVAL; } switch (first_slot) { case 0: sap_tdm_slot_last = false; break; case 4: sap_tdm_slot_last = true; break; default: dev_err(component->dev, "tdm mask must start at slot 0 or 4\n"); return -EINVAL; } snd_soc_component_update_bits(component, TAS6424_SAP_CTRL, TAS6424_SAP_TDM_SLOT_LAST, sap_tdm_slot_last ? TAS6424_SAP_TDM_SLOT_LAST : 0); return 0; } static int tas6424_mute(struct snd_soc_dai *dai, int mute) { struct snd_soc_component *component = dai->component; struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component); unsigned int val; dev_dbg(component->dev, "%s() mute=%d\n", __func__, mute); if (tas6424->mute_gpio) { gpiod_set_value_cansleep(tas6424->mute_gpio, mute); return 0; } if (mute) val = TAS6424_ALL_STATE_MUTE; else val = TAS6424_ALL_STATE_PLAY; snd_soc_component_write(component, TAS6424_CH_STATE_CTRL, val); return 0; } static int tas6424_power_off(struct snd_soc_component *component) { struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component); int ret; snd_soc_component_write(component, TAS6424_CH_STATE_CTRL, TAS6424_ALL_STATE_HIZ); regcache_cache_only(tas6424->regmap, true); regcache_mark_dirty(tas6424->regmap); ret = regulator_bulk_disable(ARRAY_SIZE(tas6424->supplies), tas6424->supplies); if (ret < 0) { dev_err(component->dev, "failed to disable supplies: %d\n", ret); return ret; } return 0; } static int tas6424_power_on(struct snd_soc_component *component) { struct tas6424_data *tas6424 = snd_soc_component_get_drvdata(component); int ret; u8 chan_states; int no_auto_diags = 0; unsigned int reg_val; if (!regmap_read(tas6424->regmap, TAS6424_DC_DIAG_CTRL1, ®_val)) no_auto_diags = reg_val & TAS6424_LDGBYPASS_MASK; ret = regulator_bulk_enable(ARRAY_SIZE(tas6424->supplies), tas6424->supplies); if (ret < 0) { dev_err(component->dev, "failed to enable supplies: %d\n", ret); return ret; } regcache_cache_only(tas6424->regmap, false); ret = regcache_sync(tas6424->regmap); if (ret < 0) { dev_err(component->dev, "failed to sync regcache: %d\n", ret); return ret; } if (tas6424->mute_gpio) { gpiod_set_value_cansleep(tas6424->mute_gpio, 0); /* * channels are muted via the mute pin. Don't also mute * them via the registers so that subsequent register * access is not necessary to un-mute the channels */ chan_states = TAS6424_ALL_STATE_PLAY; } else { chan_states = TAS6424_ALL_STATE_MUTE; } snd_soc_component_write(component, TAS6424_CH_STATE_CTRL, chan_states); /* any time we come out of HIZ, the output channels automatically run DC * load diagnostics if autodiagnotics are enabled. wait here until this * completes. */ if (!no_auto_diags) msleep(230); return 0; } static int tas6424_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { dev_dbg(component->dev, "%s() level=%d\n", __func__, level); switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) tas6424_power_on(component); break; case SND_SOC_BIAS_OFF: tas6424_power_off(component); break; } return 0; } static struct snd_soc_component_driver soc_codec_dev_tas6424 = { .set_bias_level = tas6424_set_bias_level, .controls = tas6424_snd_controls, .num_controls = ARRAY_SIZE(tas6424_snd_controls), .dapm_widgets = tas6424_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tas6424_dapm_widgets), .dapm_routes = tas6424_audio_map, .num_dapm_routes = ARRAY_SIZE(tas6424_audio_map), .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static const struct snd_soc_dai_ops tas6424_speaker_dai_ops = { .hw_params = tas6424_hw_params, .set_fmt = tas6424_set_dai_fmt, .set_tdm_slot = tas6424_set_dai_tdm_slot, .digital_mute = tas6424_mute, }; static struct snd_soc_dai_driver tas6424_dai[] = { { .name = "tas6424-amplifier", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 4, .rates = TAS6424_RATES, .formats = TAS6424_FORMATS, }, .ops = &tas6424_speaker_dai_ops, }, }; static void tas6424_fault_check_work(struct work_struct *work) { struct tas6424_data *tas6424 = container_of(work, struct tas6424_data, fault_check_work.work); struct device *dev = tas6424->dev; unsigned int reg; int ret; ret = regmap_read(tas6424->regmap, TAS6424_CHANNEL_FAULT, ®); if (ret < 0) { dev_err(dev, "failed to read CHANNEL_FAULT register: %d\n", ret); goto out; } if (!reg) { tas6424->last_cfault = reg; goto check_global_fault1_reg; } /* * Only flag errors once for a given occurrence. This is needed as * the TAS6424 will take time clearing the fault condition internally * during which we don't want to bombard the system with the same * error message over and over. */ if ((reg & TAS6424_FAULT_OC_CH1) && !(tas6424->last_cfault & TAS6424_FAULT_OC_CH1)) dev_crit(dev, "experienced a channel 1 overcurrent fault\n"); if ((reg & TAS6424_FAULT_OC_CH2) && !(tas6424->last_cfault & TAS6424_FAULT_OC_CH2)) dev_crit(dev, "experienced a channel 2 overcurrent fault\n"); if ((reg & TAS6424_FAULT_OC_CH3) && !(tas6424->last_cfault & TAS6424_FAULT_OC_CH3)) dev_crit(dev, "experienced a channel 3 overcurrent fault\n"); if ((reg & TAS6424_FAULT_OC_CH4) && !(tas6424->last_cfault & TAS6424_FAULT_OC_CH4)) dev_crit(dev, "experienced a channel 4 overcurrent fault\n"); if ((reg & TAS6424_FAULT_DC_CH1) && !(tas6424->last_cfault & TAS6424_FAULT_DC_CH1)) dev_crit(dev, "experienced a channel 1 DC fault\n"); if ((reg & TAS6424_FAULT_DC_CH2) && !(tas6424->last_cfault & TAS6424_FAULT_DC_CH2)) dev_crit(dev, "experienced a channel 2 DC fault\n"); if ((reg & TAS6424_FAULT_DC_CH3) && !(tas6424->last_cfault & TAS6424_FAULT_DC_CH3)) dev_crit(dev, "experienced a channel 3 DC fault\n"); if ((reg & TAS6424_FAULT_DC_CH4) && !(tas6424->last_cfault & TAS6424_FAULT_DC_CH4)) dev_crit(dev, "experienced a channel 4 DC fault\n"); /* Store current fault1 value so we can detect any changes next time */ tas6424->last_cfault = reg; check_global_fault1_reg: ret = regmap_read(tas6424->regmap, TAS6424_GLOB_FAULT1, ®); if (ret < 0) { dev_err(dev, "failed to read GLOB_FAULT1 register: %d\n", ret); goto out; } /* * Ignore any clock faults as there is no clean way to check for them. * We would need to start checking for those faults *after* the SAIF * stream has been setup, and stop checking *before* the stream is * stopped to avoid any false-positives. However there are no * appropriate hooks to monitor these events. */ reg &= TAS6424_FAULT_PVDD_OV | TAS6424_FAULT_VBAT_OV | TAS6424_FAULT_PVDD_UV | TAS6424_FAULT_VBAT_UV; if (!reg) { tas6424->last_fault1 = reg; goto check_global_fault2_reg; } if ((reg & TAS6424_FAULT_PVDD_OV) && !(tas6424->last_fault1 & TAS6424_FAULT_PVDD_OV)) dev_crit(dev, "experienced a PVDD overvoltage fault\n"); if ((reg & TAS6424_FAULT_VBAT_OV) && !(tas6424->last_fault1 & TAS6424_FAULT_VBAT_OV)) dev_crit(dev, "experienced a VBAT overvoltage fault\n"); if ((reg & TAS6424_FAULT_PVDD_UV) && !(tas6424->last_fault1 & TAS6424_FAULT_PVDD_UV)) dev_crit(dev, "experienced a PVDD undervoltage fault\n"); if ((reg & TAS6424_FAULT_VBAT_UV) && !(tas6424->last_fault1 & TAS6424_FAULT_VBAT_UV)) dev_crit(dev, "experienced a VBAT undervoltage fault\n"); /* Store current fault1 value so we can detect any changes next time */ tas6424->last_fault1 = reg; check_global_fault2_reg: ret = regmap_read(tas6424->regmap, TAS6424_GLOB_FAULT2, ®); if (ret < 0) { dev_err(dev, "failed to read GLOB_FAULT2 register: %d\n", ret); goto out; } reg &= TAS6424_FAULT_OTSD | TAS6424_FAULT_OTSD_CH1 | TAS6424_FAULT_OTSD_CH2 | TAS6424_FAULT_OTSD_CH3 | TAS6424_FAULT_OTSD_CH4; if (!reg) { tas6424->last_fault2 = reg; goto check_warn_reg; } if ((reg & TAS6424_FAULT_OTSD) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD)) dev_crit(dev, "experienced a global overtemp shutdown\n"); if ((reg & TAS6424_FAULT_OTSD_CH1) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH1)) dev_crit(dev, "experienced an overtemp shutdown on CH1\n"); if ((reg & TAS6424_FAULT_OTSD_CH2) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH2)) dev_crit(dev, "experienced an overtemp shutdown on CH2\n"); if ((reg & TAS6424_FAULT_OTSD_CH3) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH3)) dev_crit(dev, "experienced an overtemp shutdown on CH3\n"); if ((reg & TAS6424_FAULT_OTSD_CH4) && !(tas6424->last_fault2 & TAS6424_FAULT_OTSD_CH4)) dev_crit(dev, "experienced an overtemp shutdown on CH4\n"); /* Store current fault2 value so we can detect any changes next time */ tas6424->last_fault2 = reg; check_warn_reg: ret = regmap_read(tas6424->regmap, TAS6424_WARN, ®); if (ret < 0) { dev_err(dev, "failed to read WARN register: %d\n", ret); goto out; } reg &= TAS6424_WARN_VDD_UV | TAS6424_WARN_VDD_POR | TAS6424_WARN_VDD_OTW | TAS6424_WARN_VDD_OTW_CH1 | TAS6424_WARN_VDD_OTW_CH2 | TAS6424_WARN_VDD_OTW_CH3 | TAS6424_WARN_VDD_OTW_CH4; if (!reg) { tas6424->last_warn = reg; goto out; } if ((reg & TAS6424_WARN_VDD_UV) && !(tas6424->last_warn & TAS6424_WARN_VDD_UV)) dev_warn(dev, "experienced a VDD under voltage condition\n"); if ((reg & TAS6424_WARN_VDD_POR) && !(tas6424->last_warn & TAS6424_WARN_VDD_POR)) dev_warn(dev, "experienced a VDD POR condition\n"); if ((reg & TAS6424_WARN_VDD_OTW) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW)) dev_warn(dev, "experienced a global overtemp warning\n"); if ((reg & TAS6424_WARN_VDD_OTW_CH1) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH1)) dev_warn(dev, "experienced an overtemp warning on CH1\n"); if ((reg & TAS6424_WARN_VDD_OTW_CH2) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH2)) dev_warn(dev, "experienced an overtemp warning on CH2\n"); if ((reg & TAS6424_WARN_VDD_OTW_CH3) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH3)) dev_warn(dev, "experienced an overtemp warning on CH3\n"); if ((reg & TAS6424_WARN_VDD_OTW_CH4) && !(tas6424->last_warn & TAS6424_WARN_VDD_OTW_CH4)) dev_warn(dev, "experienced an overtemp warning on CH4\n"); /* Store current warn value so we can detect any changes next time */ tas6424->last_warn = reg; /* Clear any warnings by toggling the CLEAR_FAULT control bit */ ret = regmap_write_bits(tas6424->regmap, TAS6424_MISC_CTRL3, TAS6424_CLEAR_FAULT, TAS6424_CLEAR_FAULT); if (ret < 0) dev_err(dev, "failed to write MISC_CTRL3 register: %d\n", ret); ret = regmap_write_bits(tas6424->regmap, TAS6424_MISC_CTRL3, TAS6424_CLEAR_FAULT, 0); if (ret < 0) dev_err(dev, "failed to write MISC_CTRL3 register: %d\n", ret); out: /* Schedule the next fault check at the specified interval */ schedule_delayed_work(&tas6424->fault_check_work, msecs_to_jiffies(TAS6424_FAULT_CHECK_INTERVAL)); } static const struct reg_default tas6424_reg_defaults[] = { { TAS6424_MODE_CTRL, 0x00 }, { TAS6424_MISC_CTRL1, 0x32 }, { TAS6424_MISC_CTRL2, 0x62 }, { TAS6424_SAP_CTRL, 0x04 }, { TAS6424_CH_STATE_CTRL, 0x55 }, { TAS6424_CH1_VOL_CTRL, 0xcf }, { TAS6424_CH2_VOL_CTRL, 0xcf }, { TAS6424_CH3_VOL_CTRL, 0xcf }, { TAS6424_CH4_VOL_CTRL, 0xcf }, { TAS6424_DC_DIAG_CTRL1, 0x00 }, { TAS6424_DC_DIAG_CTRL2, 0x11 }, { TAS6424_DC_DIAG_CTRL3, 0x11 }, { TAS6424_PIN_CTRL, 0xff }, { TAS6424_AC_DIAG_CTRL1, 0x00 }, { TAS6424_MISC_CTRL3, 0x00 }, { TAS6424_CLIP_CTRL, 0x01 }, { TAS6424_CLIP_WINDOW, 0x14 }, { TAS6424_CLIP_WARN, 0x00 }, { TAS6424_CBC_STAT, 0x00 }, { TAS6424_MISC_CTRL4, 0x40 }, }; static bool tas6424_is_writable_reg(struct device *dev, unsigned int reg) { switch (reg) { case TAS6424_MODE_CTRL: case TAS6424_MISC_CTRL1: case TAS6424_MISC_CTRL2: case TAS6424_SAP_CTRL: case TAS6424_CH_STATE_CTRL: case TAS6424_CH1_VOL_CTRL: case TAS6424_CH2_VOL_CTRL: case TAS6424_CH3_VOL_CTRL: case TAS6424_CH4_VOL_CTRL: case TAS6424_DC_DIAG_CTRL1: case TAS6424_DC_DIAG_CTRL2: case TAS6424_DC_DIAG_CTRL3: case TAS6424_PIN_CTRL: case TAS6424_AC_DIAG_CTRL1: case TAS6424_MISC_CTRL3: case TAS6424_CLIP_CTRL: case TAS6424_CLIP_WINDOW: case TAS6424_CLIP_WARN: case TAS6424_CBC_STAT: case TAS6424_MISC_CTRL4: return true; default: return false; } } static bool tas6424_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case TAS6424_DC_LOAD_DIAG_REP12: case TAS6424_DC_LOAD_DIAG_REP34: case TAS6424_DC_LOAD_DIAG_REPLO: case TAS6424_CHANNEL_STATE: case TAS6424_CHANNEL_FAULT: case TAS6424_GLOB_FAULT1: case TAS6424_GLOB_FAULT2: case TAS6424_WARN: case TAS6424_AC_LOAD_DIAG_REP1: case TAS6424_AC_LOAD_DIAG_REP2: case TAS6424_AC_LOAD_DIAG_REP3: case TAS6424_AC_LOAD_DIAG_REP4: return true; default: return false; } } static const struct regmap_config tas6424_regmap_config = { .reg_bits = 8, .val_bits = 8, .writeable_reg = tas6424_is_writable_reg, .volatile_reg = tas6424_is_volatile_reg, .max_register = TAS6424_MAX, .reg_defaults = tas6424_reg_defaults, .num_reg_defaults = ARRAY_SIZE(tas6424_reg_defaults), .cache_type = REGCACHE_RBTREE, }; #if IS_ENABLED(CONFIG_OF) static const struct of_device_id tas6424_of_ids[] = { { .compatible = "ti,tas6424", }, { }, }; MODULE_DEVICE_TABLE(of, tas6424_of_ids); #endif static int tas6424_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct tas6424_data *tas6424; int ret; int i; tas6424 = devm_kzalloc(dev, sizeof(*tas6424), GFP_KERNEL); if (!tas6424) return -ENOMEM; dev_set_drvdata(dev, tas6424); tas6424->dev = dev; tas6424->regmap = devm_regmap_init_i2c(client, &tas6424_regmap_config); if (IS_ERR(tas6424->regmap)) { ret = PTR_ERR(tas6424->regmap); dev_err(dev, "unable to allocate register map: %d\n", ret); return ret; } /* * Get control of the standby pin and set it LOW to take the codec * out of the stand-by mode. * Note: The actual pin polarity is taken care of in the GPIO lib * according the polarity specified in the DTS. */ tas6424->standby_gpio = devm_gpiod_get_optional(dev, "standby", GPIOD_OUT_LOW); if (IS_ERR(tas6424->standby_gpio)) { if (PTR_ERR(tas6424->standby_gpio) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(dev, "failed to get standby GPIO: %ld\n", PTR_ERR(tas6424->standby_gpio)); tas6424->standby_gpio = NULL; } /* * Get control of the mute pin and set it HIGH in order to start with * all the output muted. * Note: The actual pin polarity is taken care of in the GPIO lib * according the polarity specified in the DTS. */ tas6424->mute_gpio = devm_gpiod_get_optional(dev, "mute", GPIOD_OUT_HIGH); if (IS_ERR(tas6424->mute_gpio)) { if (PTR_ERR(tas6424->mute_gpio) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(dev, "failed to get nmute GPIO: %ld\n", PTR_ERR(tas6424->mute_gpio)); tas6424->mute_gpio = NULL; } for (i = 0; i < ARRAY_SIZE(tas6424->supplies); i++) tas6424->supplies[i].supply = tas6424_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(tas6424->supplies), tas6424->supplies); if (ret) { dev_err(dev, "unable to request supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(tas6424->supplies), tas6424->supplies); if (ret) { dev_err(dev, "unable to enable supplies: %d\n", ret); return ret; } /* Reset device to establish well-defined startup state */ ret = regmap_update_bits(tas6424->regmap, TAS6424_MODE_CTRL, TAS6424_RESET, TAS6424_RESET); if (ret) { dev_err(dev, "unable to reset device: %d\n", ret); return ret; } INIT_DELAYED_WORK(&tas6424->fault_check_work, tas6424_fault_check_work); ret = devm_snd_soc_register_component(dev, &soc_codec_dev_tas6424, tas6424_dai, ARRAY_SIZE(tas6424_dai)); if (ret < 0) { dev_err(dev, "unable to register codec: %d\n", ret); return ret; } return 0; } static int tas6424_i2c_remove(struct i2c_client *client) { struct device *dev = &client->dev; struct tas6424_data *tas6424 = dev_get_drvdata(dev); int ret; cancel_delayed_work_sync(&tas6424->fault_check_work); /* put the codec in stand-by */ if (tas6424->standby_gpio) gpiod_set_value_cansleep(tas6424->standby_gpio, 1); ret = regulator_bulk_disable(ARRAY_SIZE(tas6424->supplies), tas6424->supplies); if (ret < 0) { dev_err(dev, "unable to disable supplies: %d\n", ret); return ret; } return 0; } static const struct i2c_device_id tas6424_i2c_ids[] = { { "tas6424", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tas6424_i2c_ids); static struct i2c_driver tas6424_i2c_driver = { .driver = { .name = "tas6424", .of_match_table = of_match_ptr(tas6424_of_ids), }, .probe = tas6424_i2c_probe, .remove = tas6424_i2c_remove, .id_table = tas6424_i2c_ids, }; module_i2c_driver(tas6424_i2c_driver); MODULE_AUTHOR("Andreas Dannenberg "); MODULE_AUTHOR("Andrew F. Davis "); MODULE_DESCRIPTION("TAS6424 Audio amplifier driver"); MODULE_LICENSE("GPL v2");