/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ #ifndef __BPF_CORE_READ_H__ #define __BPF_CORE_READ_H__ /* * enum bpf_field_info_kind is passed as a second argument into * __builtin_preserve_field_info() built-in to get a specific aspect of * a field, captured as a first argument. __builtin_preserve_field_info(field, * info_kind) returns __u32 integer and produces BTF field relocation, which * is understood and processed by libbpf during BPF object loading. See * selftests/bpf for examples. */ enum bpf_field_info_kind { BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */ BPF_FIELD_BYTE_SIZE = 1, BPF_FIELD_EXISTS = 2, /* field existence in target kernel */ BPF_FIELD_SIGNED = 3, BPF_FIELD_LSHIFT_U64 = 4, BPF_FIELD_RSHIFT_U64 = 5, }; /* second argument to __builtin_btf_type_id() built-in */ enum bpf_type_id_kind { BPF_TYPE_ID_LOCAL = 0, /* BTF type ID in local program */ BPF_TYPE_ID_TARGET = 1, /* BTF type ID in target kernel */ }; /* second argument to __builtin_preserve_type_info() built-in */ enum bpf_type_info_kind { BPF_TYPE_EXISTS = 0, /* type existence in target kernel */ BPF_TYPE_SIZE = 1, /* type size in target kernel */ BPF_TYPE_MATCHES = 2, /* type match in target kernel */ }; /* second argument to __builtin_preserve_enum_value() built-in */ enum bpf_enum_value_kind { BPF_ENUMVAL_EXISTS = 0, /* enum value existence in kernel */ BPF_ENUMVAL_VALUE = 1, /* enum value value relocation */ }; #define __CORE_RELO(src, field, info) \ __builtin_preserve_field_info((src)->field, BPF_FIELD_##info) #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \ bpf_probe_read_kernel( \ (void *)dst, \ __CORE_RELO(src, fld, BYTE_SIZE), \ (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET)) #else /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so * for big-endian we need to adjust destination pointer accordingly, based on * field byte size */ #define __CORE_BITFIELD_PROBE_READ(dst, src, fld) \ bpf_probe_read_kernel( \ (void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \ __CORE_RELO(src, fld, BYTE_SIZE), \ (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET)) #endif /* * Extract bitfield, identified by s->field, and return its value as u64. * All this is done in relocatable manner, so bitfield changes such as * signedness, bit size, offset changes, this will be handled automatically. * This version of macro is using bpf_probe_read_kernel() to read underlying * integer storage. Macro functions as an expression and its return type is * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error. */ #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({ \ unsigned long long val = 0; \ \ __CORE_BITFIELD_PROBE_READ(&val, s, field); \ val <<= __CORE_RELO(s, field, LSHIFT_U64); \ if (__CORE_RELO(s, field, SIGNED)) \ val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \ else \ val = val >> __CORE_RELO(s, field, RSHIFT_U64); \ val; \ }) /* * Extract bitfield, identified by s->field, and return its value as u64. * This version of macro is using direct memory reads and should be used from * BPF program types that support such functionality (e.g., typed raw * tracepoints). */ #define BPF_CORE_READ_BITFIELD(s, field) ({ \ const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \ unsigned long long val; \ \ /* This is a so-called barrier_var() operation that makes specified \ * variable "a black box" for optimizing compiler. \ * It forces compiler to perform BYTE_OFFSET relocation on p and use \ * its calculated value in the switch below, instead of applying \ * the same relocation 4 times for each individual memory load. \ */ \ asm volatile("" : "=r"(p) : "0"(p)); \ \ switch (__CORE_RELO(s, field, BYTE_SIZE)) { \ case 1: val = *(const unsigned char *)p; break; \ case 2: val = *(const unsigned short *)p; break; \ case 4: val = *(const unsigned int *)p; break; \ case 8: val = *(const unsigned long long *)p; break; \ } \ val <<= __CORE_RELO(s, field, LSHIFT_U64); \ if (__CORE_RELO(s, field, SIGNED)) \ val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64); \ else \ val = val >> __CORE_RELO(s, field, RSHIFT_U64); \ val; \ }) #define ___bpf_field_ref1(field) (field) #define ___bpf_field_ref2(type, field) (((typeof(type) *)0)->field) #define ___bpf_field_ref(args...) \ ___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args) /* * Convenience macro to check that field actually exists in target kernel's. * Returns: * 1, if matching field is present in target kernel; * 0, if no matching field found. * * Supports two forms: * - field reference through variable access: * bpf_core_field_exists(p->my_field); * - field reference through type and field names: * bpf_core_field_exists(struct my_type, my_field). */ #define bpf_core_field_exists(field...) \ __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS) /* * Convenience macro to get the byte size of a field. Works for integers, * struct/unions, pointers, arrays, and enums. * * Supports two forms: * - field reference through variable access: * bpf_core_field_size(p->my_field); * - field reference through type and field names: * bpf_core_field_size(struct my_type, my_field). */ #define bpf_core_field_size(field...) \ __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE) /* * Convenience macro to get field's byte offset. * * Supports two forms: * - field reference through variable access: * bpf_core_field_offset(p->my_field); * - field reference through type and field names: * bpf_core_field_offset(struct my_type, my_field). */ #define bpf_core_field_offset(field...) \ __builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET) /* * Convenience macro to get BTF type ID of a specified type, using a local BTF * information. Return 32-bit unsigned integer with type ID from program's own * BTF. Always succeeds. */ #define bpf_core_type_id_local(type) \ __builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL) /* * Convenience macro to get BTF type ID of a target kernel's type that matches * specified local type. * Returns: * - valid 32-bit unsigned type ID in kernel BTF; * - 0, if no matching type was found in a target kernel BTF. */ #define bpf_core_type_id_kernel(type) \ __builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET) /* * Convenience macro to check that provided named type * (struct/union/enum/typedef) exists in a target kernel. * Returns: * 1, if such type is present in target kernel's BTF; * 0, if no matching type is found. */ #define bpf_core_type_exists(type) \ __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS) /* * Convenience macro to check that provided named type * (struct/union/enum/typedef) "matches" that in a target kernel. * Returns: * 1, if the type matches in the target kernel's BTF; * 0, if the type does not match any in the target kernel */ #define bpf_core_type_matches(type) \ __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_MATCHES) /* * Convenience macro to get the byte size of a provided named type * (struct/union/enum/typedef) in a target kernel. * Returns: * >= 0 size (in bytes), if type is present in target kernel's BTF; * 0, if no matching type is found. */ #define bpf_core_type_size(type) \ __builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE) /* * Convenience macro to check that provided enumerator value is defined in * a target kernel. * Returns: * 1, if specified enum type and its enumerator value are present in target * kernel's BTF; * 0, if no matching enum and/or enum value within that enum is found. */ #define bpf_core_enum_value_exists(enum_type, enum_value) \ __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS) /* * Convenience macro to get the integer value of an enumerator value in * a target kernel. * Returns: * 64-bit value, if specified enum type and its enumerator value are * present in target kernel's BTF; * 0, if no matching enum and/or enum value within that enum is found. */ #define bpf_core_enum_value(enum_type, enum_value) \ __builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE) /* * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures * offset relocation for source address using __builtin_preserve_access_index() * built-in, provided by Clang. * * __builtin_preserve_access_index() takes as an argument an expression of * taking an address of a field within struct/union. It makes compiler emit * a relocation, which records BTF type ID describing root struct/union and an * accessor string which describes exact embedded field that was used to take * an address. See detailed description of this relocation format and * semantics in comments to struct bpf_field_reloc in libbpf_internal.h. * * This relocation allows libbpf to adjust BPF instruction to use correct * actual field offset, based on target kernel BTF type that matches original * (local) BTF, used to record relocation. */ #define bpf_core_read(dst, sz, src) \ bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src)) /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define bpf_core_read_user(dst, sz, src) \ bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src)) /* * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str() * additionally emitting BPF CO-RE field relocation for specified source * argument. */ #define bpf_core_read_str(dst, sz, src) \ bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src)) /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define bpf_core_read_user_str(dst, sz, src) \ bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src)) #define ___concat(a, b) a ## b #define ___apply(fn, n) ___concat(fn, n) #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N /* * return number of provided arguments; used for switch-based variadic macro * definitions (see ___last, ___arrow, etc below) */ #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) /* * return 0 if no arguments are passed, N - otherwise; used for * recursively-defined macros to specify termination (0) case, and generic * (N) case (e.g., ___read_ptrs, ___core_read) */ #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0) #define ___last1(x) x #define ___last2(a, x) x #define ___last3(a, b, x) x #define ___last4(a, b, c, x) x #define ___last5(a, b, c, d, x) x #define ___last6(a, b, c, d, e, x) x #define ___last7(a, b, c, d, e, f, x) x #define ___last8(a, b, c, d, e, f, g, x) x #define ___last9(a, b, c, d, e, f, g, h, x) x #define ___last10(a, b, c, d, e, f, g, h, i, x) x #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__) #define ___nolast2(a, _) a #define ___nolast3(a, b, _) a, b #define ___nolast4(a, b, c, _) a, b, c #define ___nolast5(a, b, c, d, _) a, b, c, d #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__) #define ___arrow1(a) a #define ___arrow2(a, b) a->b #define ___arrow3(a, b, c) a->b->c #define ___arrow4(a, b, c, d) a->b->c->d #define ___arrow5(a, b, c, d, e) a->b->c->d->e #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__) #define ___type(...) typeof(___arrow(__VA_ARGS__)) #define ___read(read_fn, dst, src_type, src, accessor) \ read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor) /* "recursively" read a sequence of inner pointers using local __t var */ #define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a); #define ___rd_last(fn, ...) \ ___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__)); #define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__) #define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__) #define ___read_ptrs(fn, src, ...) \ ___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__) #define ___core_read0(fn, fn_ptr, dst, src, a) \ ___read(fn, dst, ___type(src), src, a); #define ___core_readN(fn, fn_ptr, dst, src, ...) \ ___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__)) \ ___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t, \ ___last(__VA_ARGS__)); #define ___core_read(fn, fn_ptr, dst, src, a, ...) \ ___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst, \ src, a, ##__VA_ARGS__) /* * BPF_CORE_READ_INTO() is a more performance-conscious variant of * BPF_CORE_READ(), in which final field is read into user-provided storage. * See BPF_CORE_READ() below for more details on general usage. */ #define BPF_CORE_READ_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read, bpf_core_read, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * Variant of BPF_CORE_READ_INTO() for reading from user-space memory. * * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read_user, bpf_core_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* Non-CO-RE variant of BPF_CORE_READ_INTO() */ #define BPF_PROBE_READ_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read, bpf_probe_read, \ dst, (src), a, ##__VA_ARGS__) \ }) /* Non-CO-RE variant of BPF_CORE_READ_USER_INTO(). * * As no CO-RE relocations are emitted, source types can be arbitrary and are * not restricted to kernel types only. */ #define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_user, bpf_probe_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as * BPF_CORE_READ() for intermediate pointers, but then executes (and returns * corresponding error code) bpf_core_read_str() for final string read. */ #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read_str, bpf_core_read, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory. * * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */ #define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_core_read_user_str, bpf_core_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */ #define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_str, bpf_probe_read, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO(). * * As no CO-RE relocations are emitted, source types can be arbitrary and are * not restricted to kernel types only. */ #define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({ \ ___core_read(bpf_probe_read_user_str, bpf_probe_read_user, \ dst, (src), a, ##__VA_ARGS__) \ }) /* * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially * when there are few pointer chasing steps. * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like: * int x = s->a.b.c->d.e->f->g; * can be succinctly achieved using BPF_CORE_READ as: * int x = BPF_CORE_READ(s, a.b.c, d.e, f, g); * * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically * equivalent to: * 1. const void *__t = s->a.b.c; * 2. __t = __t->d.e; * 3. __t = __t->f; * 4. return __t->g; * * Equivalence is logical, because there is a heavy type casting/preservation * involved, as well as all the reads are happening through * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to * emit CO-RE relocations. * * N.B. Only up to 9 "field accessors" are supported, which should be more * than enough for any practical purpose. */ #define BPF_CORE_READ(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) /* * Variant of BPF_CORE_READ() for reading from user-space memory. * * NOTE: all the source types involved are still *kernel types* and need to * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will * fail. Custom user types are not relocatable with CO-RE. * The typical situation in which BPF_CORE_READ_USER() might be used is to * read kernel UAPI types from the user-space memory passed in as a syscall * input argument. */ #define BPF_CORE_READ_USER(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) /* Non-CO-RE variant of BPF_CORE_READ() */ #define BPF_PROBE_READ(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) /* * Non-CO-RE variant of BPF_CORE_READ_USER(). * * As no CO-RE relocations are emitted, source types can be arbitrary and are * not restricted to kernel types only. */ #define BPF_PROBE_READ_USER(src, a, ...) ({ \ ___type((src), a, ##__VA_ARGS__) __r; \ BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__); \ __r; \ }) #endif