/* * (C) 2004-2009 Dominik Brodowski * * Licensed under the terms of the GNU GPL License version 2. */ #include #include #include #include #include #include #include "cpufreq.h" #include "helpers/helpers.h" #include "helpers/bitmask.h" #define LINE_LEN 10 static unsigned int count_cpus(void) { FILE *fp; char value[LINE_LEN]; unsigned int ret = 0; unsigned int cpunr = 0; fp = fopen("/proc/stat", "r"); if (!fp) { printf(_("Couldn't count the number of CPUs (%s: %s), assuming 1\n"), "/proc/stat", strerror(errno)); return 1; } while (!feof(fp)) { if (!fgets(value, LINE_LEN, fp)) continue; value[LINE_LEN - 1] = '\0'; if (strlen(value) < (LINE_LEN - 2)) continue; if (strstr(value, "cpu ")) continue; if (sscanf(value, "cpu%d ", &cpunr) != 1) continue; if (cpunr > ret) ret = cpunr; } fclose(fp); /* cpu count starts from 0, on error return 1 (UP) */ return ret + 1; } static void proc_cpufreq_output(void) { unsigned int cpu, nr_cpus; struct cpufreq_policy *policy; unsigned int min_pctg = 0; unsigned int max_pctg = 0; unsigned long min, max; printf(_(" minimum CPU frequency - maximum CPU frequency - governor\n")); nr_cpus = count_cpus(); for (cpu = 0; cpu < nr_cpus; cpu++) { policy = cpufreq_get_policy(cpu); if (!policy) continue; if (cpufreq_get_hardware_limits(cpu, &min, &max)) { max = 0; } else { min_pctg = (policy->min * 100) / max; max_pctg = (policy->max * 100) / max; } printf("CPU%3d %9lu kHz (%3d %%) - %9lu kHz (%3d %%) - %s\n", cpu , policy->min, max ? min_pctg : 0, policy->max, max ? max_pctg : 0, policy->governor); cpufreq_put_policy(policy); } } static void print_speed(unsigned long speed) { unsigned long tmp; if (speed > 1000000) { tmp = speed % 10000; if (tmp >= 5000) speed += 10000; printf("%u.%02u GHz", ((unsigned int) speed/1000000), ((unsigned int) (speed%1000000)/10000)); } else if (speed > 100000) { tmp = speed % 1000; if (tmp >= 500) speed += 1000; printf("%u MHz", ((unsigned int) speed / 1000)); } else if (speed > 1000) { tmp = speed % 100; if (tmp >= 50) speed += 100; printf("%u.%01u MHz", ((unsigned int) speed/1000), ((unsigned int) (speed%1000)/100)); } else printf("%lu kHz", speed); return; } static void print_duration(unsigned long duration) { unsigned long tmp; if (duration > 1000000) { tmp = duration % 10000; if (tmp >= 5000) duration += 10000; printf("%u.%02u ms", ((unsigned int) duration/1000000), ((unsigned int) (duration%1000000)/10000)); } else if (duration > 100000) { tmp = duration % 1000; if (tmp >= 500) duration += 1000; printf("%u us", ((unsigned int) duration / 1000)); } else if (duration > 1000) { tmp = duration % 100; if (tmp >= 50) duration += 100; printf("%u.%01u us", ((unsigned int) duration/1000), ((unsigned int) (duration%1000)/100)); } else printf("%lu ns", duration); return; } /* --boost / -b */ static int get_boost_mode(unsigned int cpu) { int support, active, b_states = 0, ret, pstate_no, i; /* ToDo: Make this more global */ unsigned long pstates[MAX_HW_PSTATES] = {0,}; if (cpupower_cpu_info.vendor != X86_VENDOR_AMD && cpupower_cpu_info.vendor != X86_VENDOR_INTEL) return 0; ret = cpufreq_has_boost_support(cpu, &support, &active, &b_states); if (ret) { printf(_("Error while evaluating Boost Capabilities" " on CPU %d -- are you root?\n"), cpu); return ret; } /* P state changes via MSR are identified via cpuid 80000007 on Intel and AMD, but we assume boost capable machines can do that if (cpuid_eax(0x80000000) >= 0x80000007 && (cpuid_edx(0x80000007) & (1 << 7))) */ printf(_(" boost state support:\n")); printf(_(" Supported: %s\n"), support ? _("yes") : _("no")); printf(_(" Active: %s\n"), active ? _("yes") : _("no")); if (cpupower_cpu_info.vendor == X86_VENDOR_AMD && cpupower_cpu_info.family >= 0x10) { ret = decode_pstates(cpu, cpupower_cpu_info.family, b_states, pstates, &pstate_no); if (ret) return ret; printf(_(" Boost States: %d\n"), b_states); printf(_(" Total States: %d\n"), pstate_no); for (i = 0; i < pstate_no; i++) { if (i < b_states) printf(_(" Pstate-Pb%d: %luMHz (boost state)" "\n"), i, pstates[i]); else printf(_(" Pstate-P%d: %luMHz\n"), i - b_states, pstates[i]); } } else if (cpupower_cpu_info.caps & CPUPOWER_CAP_HAS_TURBO_RATIO) { double bclk; unsigned long long intel_turbo_ratio = 0; unsigned int ratio; /* Any way to autodetect this ? */ if (cpupower_cpu_info.caps & CPUPOWER_CAP_IS_SNB) bclk = 100.00; else bclk = 133.33; intel_turbo_ratio = msr_intel_get_turbo_ratio(cpu); dprint (" Ratio: 0x%llx - bclk: %f\n", intel_turbo_ratio, bclk); ratio = (intel_turbo_ratio >> 24) & 0xFF; if (ratio) printf(_(" %.0f MHz max turbo 4 active cores\n"), ratio * bclk); ratio = (intel_turbo_ratio >> 16) & 0xFF; if (ratio) printf(_(" %.0f MHz max turbo 3 active cores\n"), ratio * bclk); ratio = (intel_turbo_ratio >> 8) & 0xFF; if (ratio) printf(_(" %.0f MHz max turbo 2 active cores\n"), ratio * bclk); ratio = (intel_turbo_ratio >> 0) & 0xFF; if (ratio) printf(_(" %.0f MHz max turbo 1 active cores\n"), ratio * bclk); } return 0; } static void debug_output_one(unsigned int cpu) { char *driver; struct cpufreq_affected_cpus *cpus; struct cpufreq_available_frequencies *freqs; unsigned long min, max, freq_kernel, freq_hardware; unsigned long total_trans, latency; unsigned long long total_time; struct cpufreq_policy *policy; struct cpufreq_available_governors *governors; struct cpufreq_stats *stats; if (cpufreq_cpu_exists(cpu)) return; freq_kernel = cpufreq_get_freq_kernel(cpu); freq_hardware = cpufreq_get_freq_hardware(cpu); driver = cpufreq_get_driver(cpu); if (!driver) { printf(_(" no or unknown cpufreq driver is active on this CPU\n")); } else { printf(_(" driver: %s\n"), driver); cpufreq_put_driver(driver); } cpus = cpufreq_get_related_cpus(cpu); if (cpus) { printf(_(" CPUs which run at the same hardware frequency: ")); while (cpus->next) { printf("%d ", cpus->cpu); cpus = cpus->next; } printf("%d\n", cpus->cpu); cpufreq_put_related_cpus(cpus); } cpus = cpufreq_get_affected_cpus(cpu); if (cpus) { printf(_(" CPUs which need to have their frequency coordinated by software: ")); while (cpus->next) { printf("%d ", cpus->cpu); cpus = cpus->next; } printf("%d\n", cpus->cpu); cpufreq_put_affected_cpus(cpus); } latency = cpufreq_get_transition_latency(cpu); if (latency) { printf(_(" maximum transition latency: ")); print_duration(latency); printf(".\n"); } if (!(cpufreq_get_hardware_limits(cpu, &min, &max))) { printf(_(" hardware limits: ")); print_speed(min); printf(" - "); print_speed(max); printf("\n"); } freqs = cpufreq_get_available_frequencies(cpu); if (freqs) { printf(_(" available frequency steps: ")); while (freqs->next) { print_speed(freqs->frequency); printf(", "); freqs = freqs->next; } print_speed(freqs->frequency); printf("\n"); cpufreq_put_available_frequencies(freqs); } governors = cpufreq_get_available_governors(cpu); if (governors) { printf(_(" available cpufreq governors: ")); while (governors->next) { printf("%s, ", governors->governor); governors = governors->next; } printf("%s\n", governors->governor); cpufreq_put_available_governors(governors); } policy = cpufreq_get_policy(cpu); if (policy) { printf(_(" current policy: frequency should be within ")); print_speed(policy->min); printf(_(" and ")); print_speed(policy->max); printf(".\n "); printf(_("The governor \"%s\" may" " decide which speed to use\n within this range.\n"), policy->governor); cpufreq_put_policy(policy); } if (freq_kernel || freq_hardware) { printf(_(" current CPU frequency is ")); if (freq_hardware) { print_speed(freq_hardware); printf(_(" (asserted by call to hardware)")); } else print_speed(freq_kernel); printf(".\n"); } stats = cpufreq_get_stats(cpu, &total_time); if (stats) { printf(_(" cpufreq stats: ")); while (stats) { print_speed(stats->frequency); printf(":%.2f%%", (100.0 * stats->time_in_state) / total_time); stats = stats->next; if (stats) printf(", "); } cpufreq_put_stats(stats); total_trans = cpufreq_get_transitions(cpu); if (total_trans) printf(" (%lu)\n", total_trans); else printf("\n"); } get_boost_mode(cpu); } /* --freq / -f */ static int get_freq_kernel(unsigned int cpu, unsigned int human) { unsigned long freq = cpufreq_get_freq_kernel(cpu); if (!freq) return -EINVAL; if (human) { print_speed(freq); printf("\n"); } else printf("%lu\n", freq); return 0; } /* --hwfreq / -w */ static int get_freq_hardware(unsigned int cpu, unsigned int human) { unsigned long freq = cpufreq_get_freq_hardware(cpu); if (!freq) return -EINVAL; if (human) { print_speed(freq); printf("\n"); } else printf("%lu\n", freq); return 0; } /* --hwlimits / -l */ static int get_hardware_limits(unsigned int cpu) { unsigned long min, max; if (cpufreq_get_hardware_limits(cpu, &min, &max)) return -EINVAL; printf("%lu %lu\n", min, max); return 0; } /* --driver / -d */ static int get_driver(unsigned int cpu) { char *driver = cpufreq_get_driver(cpu); if (!driver) return -EINVAL; printf("%s\n", driver); cpufreq_put_driver(driver); return 0; } /* --policy / -p */ static int get_policy(unsigned int cpu) { struct cpufreq_policy *policy = cpufreq_get_policy(cpu); if (!policy) return -EINVAL; printf("%lu %lu %s\n", policy->min, policy->max, policy->governor); cpufreq_put_policy(policy); return 0; } /* --governors / -g */ static int get_available_governors(unsigned int cpu) { struct cpufreq_available_governors *governors = cpufreq_get_available_governors(cpu); if (!governors) return -EINVAL; while (governors->next) { printf("%s ", governors->governor); governors = governors->next; } printf("%s\n", governors->governor); cpufreq_put_available_governors(governors); return 0; } /* --affected-cpus / -a */ static int get_affected_cpus(unsigned int cpu) { struct cpufreq_affected_cpus *cpus = cpufreq_get_affected_cpus(cpu); if (!cpus) return -EINVAL; while (cpus->next) { printf("%d ", cpus->cpu); cpus = cpus->next; } printf("%d\n", cpus->cpu); cpufreq_put_affected_cpus(cpus); return 0; } /* --related-cpus / -r */ static int get_related_cpus(unsigned int cpu) { struct cpufreq_affected_cpus *cpus = cpufreq_get_related_cpus(cpu); if (!cpus) return -EINVAL; while (cpus->next) { printf("%d ", cpus->cpu); cpus = cpus->next; } printf("%d\n", cpus->cpu); cpufreq_put_related_cpus(cpus); return 0; } /* --stats / -s */ static int get_freq_stats(unsigned int cpu, unsigned int human) { unsigned long total_trans = cpufreq_get_transitions(cpu); unsigned long long total_time; struct cpufreq_stats *stats = cpufreq_get_stats(cpu, &total_time); while (stats) { if (human) { print_speed(stats->frequency); printf(":%.2f%%", (100.0 * stats->time_in_state) / total_time); } else printf("%lu:%llu", stats->frequency, stats->time_in_state); stats = stats->next; if (stats) printf(", "); } cpufreq_put_stats(stats); if (total_trans) printf(" (%lu)\n", total_trans); return 0; } /* --latency / -y */ static int get_latency(unsigned int cpu, unsigned int human) { unsigned long latency = cpufreq_get_transition_latency(cpu); if (!latency) return -EINVAL; if (human) { print_duration(latency); printf("\n"); } else printf("%lu\n", latency); return 0; } void freq_info_help(void) { printf(_("Usage: cpupower freqinfo [options]\n")); printf(_("Options:\n")); printf(_(" -e, --debug Prints out debug information [default]\n")); printf(_(" -f, --freq Get frequency the CPU currently runs at, according\n" " to the cpufreq core *\n")); printf(_(" -w, --hwfreq Get frequency the CPU currently runs at, by reading\n" " it from hardware (only available to root) *\n")); printf(_(" -l, --hwlimits Determine the minimum and maximum CPU frequency allowed *\n")); printf(_(" -d, --driver Determines the used cpufreq kernel driver *\n")); printf(_(" -p, --policy Gets the currently used cpufreq policy *\n")); printf(_(" -g, --governors Determines available cpufreq governors *\n")); printf(_(" -r, --related-cpus Determines which CPUs run at the same hardware frequency *\n")); printf(_(" -a, --affected-cpus Determines which CPUs need to have their frequency\n" " coordinated by software *\n")); printf(_(" -s, --stats Shows cpufreq statistics if available\n")); printf(_(" -y, --latency Determines the maximum latency on CPU frequency changes *\n")); printf(_(" -b, --boost Checks for turbo or boost modes *\n")); printf(_(" -o, --proc Prints out information like provided by the /proc/cpufreq\n" " interface in 2.4. and early 2.6. kernels\n")); printf(_(" -m, --human human-readable output for the -f, -w, -s and -y parameters\n")); printf(_(" -h, --help Prints out this screen\n")); printf("\n"); printf(_("If no argument is given, full output about\n" "cpufreq is printed which is useful e.g. for reporting bugs.\n\n")); printf(_("By default info of CPU 0 is shown which can be overridden\n" "with the cpupower --cpu main command option.\n")); } static struct option info_opts[] = { { .name = "debug", .has_arg = no_argument, .flag = NULL, .val = 'e'}, { .name = "boost", .has_arg = no_argument, .flag = NULL, .val = 'b'}, { .name = "freq", .has_arg = no_argument, .flag = NULL, .val = 'f'}, { .name = "hwfreq", .has_arg = no_argument, .flag = NULL, .val = 'w'}, { .name = "hwlimits", .has_arg = no_argument, .flag = NULL, .val = 'l'}, { .name = "driver", .has_arg = no_argument, .flag = NULL, .val = 'd'}, { .name = "policy", .has_arg = no_argument, .flag = NULL, .val = 'p'}, { .name = "governors", .has_arg = no_argument, .flag = NULL, .val = 'g'}, { .name = "related-cpus", .has_arg = no_argument, .flag = NULL, .val = 'r'}, { .name = "affected-cpus",.has_arg = no_argument, .flag = NULL, .val = 'a'}, { .name = "stats", .has_arg = no_argument, .flag = NULL, .val = 's'}, { .name = "latency", .has_arg = no_argument, .flag = NULL, .val = 'y'}, { .name = "proc", .has_arg = no_argument, .flag = NULL, .val = 'o'}, { .name = "human", .has_arg = no_argument, .flag = NULL, .val = 'm'}, { .name = "help", .has_arg = no_argument, .flag = NULL, .val = 'h'}, { }, }; int cmd_freq_info(int argc, char **argv) { extern char *optarg; extern int optind, opterr, optopt; int ret = 0, cont = 1; unsigned int cpu = 0; unsigned int human = 0; int output_param = 0; do { ret = getopt_long(argc, argv, "hoefwldpgrasmyb", info_opts, NULL); switch (ret) { case '?': output_param = '?'; cont = 0; break; case 'h': output_param = 'h'; cont = 0; break; case -1: cont = 0; break; case 'b': case 'o': case 'a': case 'r': case 'g': case 'p': case 'd': case 'l': case 'w': case 'f': case 'e': case 's': case 'y': if (output_param) { output_param = -1; cont = 0; break; } output_param = ret; break; case 'm': if (human) { output_param = -1; cont = 0; break; } human = 1; break; default: fprintf(stderr, "invalid or unknown argument\n"); return EXIT_FAILURE; } } while (cont); switch (output_param) { case 'o': if (!bitmask_isallclear(cpus_chosen)) { printf(_("The argument passed to this tool can't be " "combined with passing a --cpu argument\n")); return -EINVAL; } break; case 0: output_param = 'e'; } ret = 0; /* Default is: show output of CPU 0 only */ if (bitmask_isallclear(cpus_chosen)) bitmask_setbit(cpus_chosen, 0); switch (output_param) { case -1: printf(_("You can't specify more than one --cpu parameter and/or\n" "more than one output-specific argument\n")); return -EINVAL; case '?': printf(_("invalid or unknown argument\n")); freq_info_help(); return -EINVAL; case 'h': freq_info_help(); return EXIT_SUCCESS; case 'o': proc_cpufreq_output(); return EXIT_SUCCESS; } for (cpu = bitmask_first(cpus_chosen); cpu <= bitmask_last(cpus_chosen); cpu++) { if (!bitmask_isbitset(cpus_chosen, cpu)) continue; if (cpufreq_cpu_exists(cpu)) { printf(_("couldn't analyze CPU %d as it doesn't seem to be present\n"), cpu); continue; } printf(_("analyzing CPU %d:\n"), cpu); switch (output_param) { case 'b': get_boost_mode(cpu); break; case 'e': debug_output_one(cpu); break; case 'a': ret = get_affected_cpus(cpu); break; case 'r': ret = get_related_cpus(cpu); break; case 'g': ret = get_available_governors(cpu); break; case 'p': ret = get_policy(cpu); break; case 'd': ret = get_driver(cpu); break; case 'l': ret = get_hardware_limits(cpu); break; case 'w': ret = get_freq_hardware(cpu, human); break; case 'f': ret = get_freq_kernel(cpu, human); break; case 's': ret = get_freq_stats(cpu, human); break; case 'y': ret = get_latency(cpu, human); break; } if (ret) return ret; } return ret; }