/* * multiorder.c: Multi-order radix tree entry testing * Copyright (c) 2016 Intel Corporation * Author: Ross Zwisler * Author: Matthew Wilcox * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include "test.h" #define for_each_index(i, base, order) \ for (i = base; i < base + (1 << order); i++) static void __multiorder_tag_test(int index, int order) { RADIX_TREE(tree, GFP_KERNEL); int base, err, i; /* our canonical entry */ base = index & ~((1 << order) - 1); printv(2, "Multiorder tag test with index %d, canonical entry %d\n", index, base); err = item_insert_order(&tree, index, order); assert(!err); /* * Verify we get collisions for covered indices. We try and fail to * insert an exceptional entry so we don't leak memory via * item_insert_order(). */ for_each_index(i, base, order) { err = __radix_tree_insert(&tree, i, order, (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY)); assert(err == -EEXIST); } for_each_index(i, base, order) { assert(!radix_tree_tag_get(&tree, i, 0)); assert(!radix_tree_tag_get(&tree, i, 1)); } assert(radix_tree_tag_set(&tree, index, 0)); for_each_index(i, base, order) { assert(radix_tree_tag_get(&tree, i, 0)); assert(!radix_tree_tag_get(&tree, i, 1)); } assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1); assert(radix_tree_tag_clear(&tree, index, 0)); for_each_index(i, base, order) { assert(!radix_tree_tag_get(&tree, i, 0)); assert(radix_tree_tag_get(&tree, i, 1)); } assert(radix_tree_tag_clear(&tree, index, 1)); assert(!radix_tree_tagged(&tree, 0)); assert(!radix_tree_tagged(&tree, 1)); item_kill_tree(&tree); } static void __multiorder_tag_test2(unsigned order, unsigned long index2) { RADIX_TREE(tree, GFP_KERNEL); unsigned long index = (1 << order); index2 += index; assert(item_insert_order(&tree, 0, order) == 0); assert(item_insert(&tree, index2) == 0); assert(radix_tree_tag_set(&tree, 0, 0)); assert(radix_tree_tag_set(&tree, index2, 0)); assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2); item_kill_tree(&tree); } static void multiorder_tag_tests(void) { int i, j; /* test multi-order entry for indices 0-7 with no sibling pointers */ __multiorder_tag_test(0, 3); __multiorder_tag_test(5, 3); /* test multi-order entry for indices 8-15 with no sibling pointers */ __multiorder_tag_test(8, 3); __multiorder_tag_test(15, 3); /* * Our order 5 entry covers indices 0-31 in a tree with height=2. * This is broken up as follows: * 0-7: canonical entry * 8-15: sibling 1 * 16-23: sibling 2 * 24-31: sibling 3 */ __multiorder_tag_test(0, 5); __multiorder_tag_test(29, 5); /* same test, but with indices 32-63 */ __multiorder_tag_test(32, 5); __multiorder_tag_test(44, 5); /* * Our order 8 entry covers indices 0-255 in a tree with height=3. * This is broken up as follows: * 0-63: canonical entry * 64-127: sibling 1 * 128-191: sibling 2 * 192-255: sibling 3 */ __multiorder_tag_test(0, 8); __multiorder_tag_test(190, 8); /* same test, but with indices 256-511 */ __multiorder_tag_test(256, 8); __multiorder_tag_test(300, 8); __multiorder_tag_test(0x12345678UL, 8); for (i = 1; i < 10; i++) for (j = 0; j < (10 << i); j++) __multiorder_tag_test2(i, j); } static void multiorder_check(unsigned long index, int order) { unsigned long i; unsigned long min = index & ~((1UL << order) - 1); unsigned long max = min + (1UL << order); void **slot; struct item *item2 = item_create(min, order); RADIX_TREE(tree, GFP_KERNEL); printv(2, "Multiorder index %ld, order %d\n", index, order); assert(item_insert_order(&tree, index, order) == 0); for (i = min; i < max; i++) { struct item *item = item_lookup(&tree, i); assert(item != 0); assert(item->index == index); } for (i = 0; i < min; i++) item_check_absent(&tree, i); for (i = max; i < 2*max; i++) item_check_absent(&tree, i); for (i = min; i < max; i++) assert(radix_tree_insert(&tree, i, item2) == -EEXIST); slot = radix_tree_lookup_slot(&tree, index); free(*slot); radix_tree_replace_slot(&tree, slot, item2); for (i = min; i < max; i++) { struct item *item = item_lookup(&tree, i); assert(item != 0); assert(item->index == min); } assert(item_delete(&tree, min) != 0); for (i = 0; i < 2*max; i++) item_check_absent(&tree, i); } static void multiorder_shrink(unsigned long index, int order) { unsigned long i; unsigned long max = 1 << order; RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_node *node; printv(2, "Multiorder shrink index %ld, order %d\n", index, order); assert(item_insert_order(&tree, 0, order) == 0); node = tree.rnode; assert(item_insert(&tree, index) == 0); assert(node != tree.rnode); assert(item_delete(&tree, index) != 0); assert(node == tree.rnode); for (i = 0; i < max; i++) { struct item *item = item_lookup(&tree, i); assert(item != 0); assert(item->index == 0); } for (i = max; i < 2*max; i++) item_check_absent(&tree, i); if (!item_delete(&tree, 0)) { printv(2, "failed to delete index %ld (order %d)\n", index, order); abort(); } for (i = 0; i < 2*max; i++) item_check_absent(&tree, i); } static void multiorder_insert_bug(void) { RADIX_TREE(tree, GFP_KERNEL); item_insert(&tree, 0); radix_tree_tag_set(&tree, 0, 0); item_insert_order(&tree, 3 << 6, 6); item_kill_tree(&tree); } void multiorder_iteration(void) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_iter iter; void **slot; int i, j, err; printv(1, "Multiorder iteration test\n"); #define NUM_ENTRIES 11 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; for (i = 0; i < NUM_ENTRIES; i++) { err = item_insert_order(&tree, index[i], order[i]); assert(!err); } for (j = 0; j < 256; j++) { for (i = 0; i < NUM_ENTRIES; i++) if (j <= (index[i] | ((1 << order[i]) - 1))) break; radix_tree_for_each_slot(slot, &tree, &iter, j) { int height = order[i] / RADIX_TREE_MAP_SHIFT; int shift = height * RADIX_TREE_MAP_SHIFT; unsigned long mask = (1UL << order[i]) - 1; struct item *item = *slot; assert((iter.index | mask) == (index[i] | mask)); assert(iter.shift == shift); assert(!radix_tree_is_internal_node(item)); assert((item->index | mask) == (index[i] | mask)); assert(item->order == order[i]); i++; } } item_kill_tree(&tree); } void multiorder_tagged_iteration(void) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_iter iter; void **slot; int i, j; printv(1, "Multiorder tagged iteration test\n"); #define MT_NUM_ENTRIES 9 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; #define TAG_ENTRIES 7 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; for (i = 0; i < MT_NUM_ENTRIES; i++) assert(!item_insert_order(&tree, index[i], order[i])); assert(!radix_tree_tagged(&tree, 1)); for (i = 0; i < TAG_ENTRIES; i++) assert(radix_tree_tag_set(&tree, tag_index[i], 1)); for (j = 0; j < 256; j++) { int k; for (i = 0; i < TAG_ENTRIES; i++) { for (k = i; index[k] < tag_index[i]; k++) ; if (j <= (index[k] | ((1 << order[k]) - 1))) break; } radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) { unsigned long mask; struct item *item = *slot; for (k = i; index[k] < tag_index[i]; k++) ; mask = (1UL << order[k]) - 1; assert((iter.index | mask) == (tag_index[i] | mask)); assert(!radix_tree_is_internal_node(item)); assert((item->index | mask) == (tag_index[i] | mask)); assert(item->order == order[k]); i++; } } assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) == TAG_ENTRIES); for (j = 0; j < 256; j++) { int mask, k; for (i = 0; i < TAG_ENTRIES; i++) { for (k = i; index[k] < tag_index[i]; k++) ; if (j <= (index[k] | ((1 << order[k]) - 1))) break; } radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) { struct item *item = *slot; for (k = i; index[k] < tag_index[i]; k++) ; mask = (1 << order[k]) - 1; assert((iter.index | mask) == (tag_index[i] | mask)); assert(!radix_tree_is_internal_node(item)); assert((item->index | mask) == (tag_index[i] | mask)); assert(item->order == order[k]); i++; } } assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0) == TAG_ENTRIES); i = 0; radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) { assert(iter.index == tag_index[i]); i++; } item_kill_tree(&tree); } /* * Basic join checks: make sure we can't find an entry in the tree after * a larger entry has replaced it */ static void multiorder_join1(unsigned long index, unsigned order1, unsigned order2) { unsigned long loc; void *item, *item2 = item_create(index + 1, order1); RADIX_TREE(tree, GFP_KERNEL); item_insert_order(&tree, index, order2); item = radix_tree_lookup(&tree, index); radix_tree_join(&tree, index + 1, order1, item2); loc = find_item(&tree, item); if (loc == -1) free(item); item = radix_tree_lookup(&tree, index + 1); assert(item == item2); item_kill_tree(&tree); } /* * Check that the accounting of exceptional entries is handled correctly * by joining an exceptional entry to a normal pointer. */ static void multiorder_join2(unsigned order1, unsigned order2) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_node *node; void *item1 = item_create(0, order1); void *item2; item_insert_order(&tree, 0, order2); radix_tree_insert(&tree, 1 << order2, (void *)0x12UL); item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); assert(item2 == (void *)0x12UL); assert(node->exceptional == 1); item2 = radix_tree_lookup(&tree, 0); free(item2); radix_tree_join(&tree, 0, order1, item1); item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); assert(item2 == item1); assert(node->exceptional == 0); item_kill_tree(&tree); } /* * This test revealed an accounting bug for exceptional entries at one point. * Nodes were being freed back into the pool with an elevated exception count * by radix_tree_join() and then radix_tree_split() was failing to zero the * count of exceptional entries. */ static void multiorder_join3(unsigned int order) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_node *node; void **slot; struct radix_tree_iter iter; unsigned long i; for (i = 0; i < (1 << order); i++) { radix_tree_insert(&tree, i, (void *)0x12UL); } radix_tree_join(&tree, 0, order, (void *)0x16UL); rcu_barrier(); radix_tree_split(&tree, 0, 0); radix_tree_for_each_slot(slot, &tree, &iter, 0) { radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL); } __radix_tree_lookup(&tree, 0, &node, NULL); assert(node->exceptional == node->count); item_kill_tree(&tree); } static void multiorder_join(void) { int i, j, idx; for (idx = 0; idx < 1024; idx = idx * 2 + 3) { for (i = 1; i < 15; i++) { for (j = 0; j < i; j++) { multiorder_join1(idx, i, j); } } } for (i = 1; i < 15; i++) { for (j = 0; j < i; j++) { multiorder_join2(i, j); } } for (i = 3; i < 10; i++) { multiorder_join3(i); } } static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc) { struct radix_tree_preload *rtp = &radix_tree_preloads; if (rtp->nr != 0) printv(2, "split(%u %u) remaining %u\n", old_order, new_order, rtp->nr); /* * Can't check for equality here as some nodes may have been * RCU-freed while we ran. But we should never finish with more * nodes allocated since they should have all been preloaded. */ if (nr_allocated > alloc) printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order, alloc, nr_allocated); } static void __multiorder_split(int old_order, int new_order) { RADIX_TREE(tree, GFP_ATOMIC); void **slot; struct radix_tree_iter iter; unsigned alloc; struct item *item; radix_tree_preload(GFP_KERNEL); assert(item_insert_order(&tree, 0, old_order) == 0); radix_tree_preload_end(); /* Wipe out the preloaded cache or it'll confuse check_mem() */ radix_tree_cpu_dead(0); item = radix_tree_tag_set(&tree, 0, 2); radix_tree_split_preload(old_order, new_order, GFP_KERNEL); alloc = nr_allocated; radix_tree_split(&tree, 0, new_order); check_mem(old_order, new_order, alloc); radix_tree_for_each_slot(slot, &tree, &iter, 0) { radix_tree_iter_replace(&tree, &iter, slot, item_create(iter.index, new_order)); } radix_tree_preload_end(); item_kill_tree(&tree); free(item); } static void __multiorder_split2(int old_order, int new_order) { RADIX_TREE(tree, GFP_KERNEL); void **slot; struct radix_tree_iter iter; struct radix_tree_node *node; void *item; __radix_tree_insert(&tree, 0, old_order, (void *)0x12); item = __radix_tree_lookup(&tree, 0, &node, NULL); assert(item == (void *)0x12); assert(node->exceptional > 0); radix_tree_split(&tree, 0, new_order); radix_tree_for_each_slot(slot, &tree, &iter, 0) { radix_tree_iter_replace(&tree, &iter, slot, item_create(iter.index, new_order)); } item = __radix_tree_lookup(&tree, 0, &node, NULL); assert(item != (void *)0x12); assert(node->exceptional == 0); item_kill_tree(&tree); } static void __multiorder_split3(int old_order, int new_order) { RADIX_TREE(tree, GFP_KERNEL); void **slot; struct radix_tree_iter iter; struct radix_tree_node *node; void *item; __radix_tree_insert(&tree, 0, old_order, (void *)0x12); item = __radix_tree_lookup(&tree, 0, &node, NULL); assert(item == (void *)0x12); assert(node->exceptional > 0); radix_tree_split(&tree, 0, new_order); radix_tree_for_each_slot(slot, &tree, &iter, 0) { radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16); } item = __radix_tree_lookup(&tree, 0, &node, NULL); assert(item == (void *)0x16); assert(node->exceptional > 0); item_kill_tree(&tree); __radix_tree_insert(&tree, 0, old_order, (void *)0x12); item = __radix_tree_lookup(&tree, 0, &node, NULL); assert(item == (void *)0x12); assert(node->exceptional > 0); radix_tree_split(&tree, 0, new_order); radix_tree_for_each_slot(slot, &tree, &iter, 0) { if (iter.index == (1 << new_order)) radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16); else radix_tree_iter_replace(&tree, &iter, slot, NULL); } item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL); assert(item == (void *)0x16); assert(node->count == node->exceptional); do { node = node->parent; if (!node) break; assert(node->count == 1); assert(node->exceptional == 0); } while (1); item_kill_tree(&tree); } static void multiorder_split(void) { int i, j; for (i = 3; i < 11; i++) for (j = 0; j < i; j++) { __multiorder_split(i, j); __multiorder_split2(i, j); __multiorder_split3(i, j); } } static void multiorder_account(void) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_node *node; void **slot; item_insert_order(&tree, 0, 5); __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); __radix_tree_lookup(&tree, 0, &node, NULL); assert(node->count == node->exceptional * 2); radix_tree_delete(&tree, 1 << 5); assert(node->exceptional == 0); __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); __radix_tree_lookup(&tree, 1 << 5, &node, &slot); assert(node->count == node->exceptional * 2); __radix_tree_replace(&tree, node, slot, NULL, NULL); assert(node->exceptional == 0); item_kill_tree(&tree); } bool stop_iteration = false; static void *creator_func(void *ptr) { /* 'order' is set up to ensure we have sibling entries */ unsigned int order = RADIX_TREE_MAP_SHIFT - 1; struct radix_tree_root *tree = ptr; int i; for (i = 0; i < 10000; i++) { item_insert_order(tree, 0, order); item_delete_rcu(tree, 0); } stop_iteration = true; return NULL; } static void *iterator_func(void *ptr) { struct radix_tree_root *tree = ptr; struct radix_tree_iter iter; struct item *item; void **slot; while (!stop_iteration) { rcu_read_lock(); radix_tree_for_each_slot(slot, tree, &iter, 0) { item = radix_tree_deref_slot(slot); if (!item) continue; if (radix_tree_deref_retry(item)) { slot = radix_tree_iter_retry(&iter); continue; } item_sanity(item, iter.index); } rcu_read_unlock(); } return NULL; } static void multiorder_iteration_race(void) { const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); pthread_t worker_thread[num_threads]; RADIX_TREE(tree, GFP_KERNEL); int i; pthread_create(&worker_thread[0], NULL, &creator_func, &tree); for (i = 1; i < num_threads; i++) pthread_create(&worker_thread[i], NULL, &iterator_func, &tree); for (i = 0; i < num_threads; i++) pthread_join(worker_thread[i], NULL); item_kill_tree(&tree); } void multiorder_checks(void) { int i; for (i = 0; i < 20; i++) { multiorder_check(200, i); multiorder_check(0, i); multiorder_check((1UL << i) + 1, i); } for (i = 0; i < 15; i++) multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i); multiorder_insert_bug(); multiorder_tag_tests(); multiorder_iteration(); multiorder_tagged_iteration(); multiorder_join(); multiorder_split(); multiorder_account(); multiorder_iteration_race(); radix_tree_cpu_dead(0); } int __weak main(void) { radix_tree_init(); multiorder_checks(); return 0; }