// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bpf_helpers.h" #include "bpf_endian.h" int _version SEC("version") = 1; #define PROG(F) SEC(#F) int bpf_func_##F /* These are the identifiers of the BPF programs that will be used in tail * calls. Name is limited to 16 characters, with the terminating character and * bpf_func_ above, we have only 6 to work with, anything after will be cropped. */ enum { IP, IPV6, IPV6OP, /* Destination/Hop-by-Hop Options IPv6 Extension header */ IPV6FR, /* Fragmentation IPv6 Extension Header */ MPLS, VLAN, }; #define IP_MF 0x2000 #define IP_OFFSET 0x1FFF #define IP6_MF 0x0001 #define IP6_OFFSET 0xFFF8 struct vlan_hdr { __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; struct gre_hdr { __be16 flags; __be16 proto; }; struct frag_hdr { __u8 nexthdr; __u8 reserved; __be16 frag_off; __be32 identification; }; struct bpf_map_def SEC("maps") jmp_table = { .type = BPF_MAP_TYPE_PROG_ARRAY, .key_size = sizeof(__u32), .value_size = sizeof(__u32), .max_entries = 8 }; static __always_inline void *bpf_flow_dissect_get_header(struct __sk_buff *skb, __u16 hdr_size, void *buffer) { void *data_end = (void *)(long)skb->data_end; void *data = (void *)(long)skb->data; __u16 nhoff = skb->flow_keys->nhoff; __u8 *hdr; /* Verifies this variable offset does not overflow */ if (nhoff > (USHRT_MAX - hdr_size)) return NULL; hdr = data + nhoff; if (hdr + hdr_size <= data_end) return hdr; if (bpf_skb_load_bytes(skb, nhoff, buffer, hdr_size)) return NULL; return buffer; } /* Dispatches on ETHERTYPE */ static __always_inline int parse_eth_proto(struct __sk_buff *skb, __be16 proto) { struct bpf_flow_keys *keys = skb->flow_keys; keys->n_proto = proto; switch (proto) { case bpf_htons(ETH_P_IP): bpf_tail_call(skb, &jmp_table, IP); break; case bpf_htons(ETH_P_IPV6): bpf_tail_call(skb, &jmp_table, IPV6); break; case bpf_htons(ETH_P_MPLS_MC): case bpf_htons(ETH_P_MPLS_UC): bpf_tail_call(skb, &jmp_table, MPLS); break; case bpf_htons(ETH_P_8021Q): case bpf_htons(ETH_P_8021AD): bpf_tail_call(skb, &jmp_table, VLAN); break; default: /* Protocol not supported */ return BPF_DROP; } return BPF_DROP; } SEC("flow_dissector") int _dissect(struct __sk_buff *skb) { if (!skb->vlan_present) return parse_eth_proto(skb, skb->protocol); else return parse_eth_proto(skb, skb->vlan_proto); } /* Parses on IPPROTO_* */ static __always_inline int parse_ip_proto(struct __sk_buff *skb, __u8 proto) { struct bpf_flow_keys *keys = skb->flow_keys; void *data_end = (void *)(long)skb->data_end; struct icmphdr *icmp, _icmp; struct gre_hdr *gre, _gre; struct ethhdr *eth, _eth; struct tcphdr *tcp, _tcp; struct udphdr *udp, _udp; keys->ip_proto = proto; switch (proto) { case IPPROTO_ICMP: icmp = bpf_flow_dissect_get_header(skb, sizeof(*icmp), &_icmp); if (!icmp) return BPF_DROP; return BPF_OK; case IPPROTO_IPIP: keys->is_encap = true; return parse_eth_proto(skb, bpf_htons(ETH_P_IP)); case IPPROTO_IPV6: keys->is_encap = true; return parse_eth_proto(skb, bpf_htons(ETH_P_IPV6)); case IPPROTO_GRE: gre = bpf_flow_dissect_get_header(skb, sizeof(*gre), &_gre); if (!gre) return BPF_DROP; if (bpf_htons(gre->flags & GRE_VERSION)) /* Only inspect standard GRE packets with version 0 */ return BPF_OK; keys->nhoff += sizeof(*gre); /* Step over GRE Flags and Proto */ if (GRE_IS_CSUM(gre->flags)) keys->nhoff += 4; /* Step over chksum and Padding */ if (GRE_IS_KEY(gre->flags)) keys->nhoff += 4; /* Step over key */ if (GRE_IS_SEQ(gre->flags)) keys->nhoff += 4; /* Step over sequence number */ keys->is_encap = true; if (gre->proto == bpf_htons(ETH_P_TEB)) { eth = bpf_flow_dissect_get_header(skb, sizeof(*eth), &_eth); if (!eth) return BPF_DROP; keys->nhoff += sizeof(*eth); return parse_eth_proto(skb, eth->h_proto); } else { return parse_eth_proto(skb, gre->proto); } case IPPROTO_TCP: tcp = bpf_flow_dissect_get_header(skb, sizeof(*tcp), &_tcp); if (!tcp) return BPF_DROP; if (tcp->doff < 5) return BPF_DROP; if ((__u8 *)tcp + (tcp->doff << 2) > data_end) return BPF_DROP; keys->thoff = keys->nhoff; keys->sport = tcp->source; keys->dport = tcp->dest; return BPF_OK; case IPPROTO_UDP: case IPPROTO_UDPLITE: udp = bpf_flow_dissect_get_header(skb, sizeof(*udp), &_udp); if (!udp) return BPF_DROP; keys->thoff = keys->nhoff; keys->sport = udp->source; keys->dport = udp->dest; return BPF_OK; default: return BPF_DROP; } return BPF_DROP; } static __always_inline int parse_ipv6_proto(struct __sk_buff *skb, __u8 nexthdr) { struct bpf_flow_keys *keys = skb->flow_keys; keys->ip_proto = nexthdr; switch (nexthdr) { case IPPROTO_HOPOPTS: case IPPROTO_DSTOPTS: bpf_tail_call(skb, &jmp_table, IPV6OP); break; case IPPROTO_FRAGMENT: bpf_tail_call(skb, &jmp_table, IPV6FR); break; default: return parse_ip_proto(skb, nexthdr); } return BPF_DROP; } PROG(IP)(struct __sk_buff *skb) { void *data_end = (void *)(long)skb->data_end; struct bpf_flow_keys *keys = skb->flow_keys; void *data = (void *)(long)skb->data; struct iphdr *iph, _iph; bool done = false; iph = bpf_flow_dissect_get_header(skb, sizeof(*iph), &_iph); if (!iph) return BPF_DROP; /* IP header cannot be smaller than 20 bytes */ if (iph->ihl < 5) return BPF_DROP; keys->addr_proto = ETH_P_IP; keys->ipv4_src = iph->saddr; keys->ipv4_dst = iph->daddr; keys->nhoff += iph->ihl << 2; if (data + keys->nhoff > data_end) return BPF_DROP; if (iph->frag_off & bpf_htons(IP_MF | IP_OFFSET)) { keys->is_frag = true; if (iph->frag_off & bpf_htons(IP_OFFSET)) /* From second fragment on, packets do not have headers * we can parse. */ done = true; else keys->is_first_frag = true; } if (done) return BPF_OK; return parse_ip_proto(skb, iph->protocol); } PROG(IPV6)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct ipv6hdr *ip6h, _ip6h; ip6h = bpf_flow_dissect_get_header(skb, sizeof(*ip6h), &_ip6h); if (!ip6h) return BPF_DROP; keys->addr_proto = ETH_P_IPV6; memcpy(&keys->ipv6_src, &ip6h->saddr, 2*sizeof(ip6h->saddr)); keys->nhoff += sizeof(struct ipv6hdr); return parse_ipv6_proto(skb, ip6h->nexthdr); } PROG(IPV6OP)(struct __sk_buff *skb) { struct ipv6_opt_hdr *ip6h, _ip6h; ip6h = bpf_flow_dissect_get_header(skb, sizeof(*ip6h), &_ip6h); if (!ip6h) return BPF_DROP; /* hlen is in 8-octets and does not include the first 8 bytes * of the header */ skb->flow_keys->nhoff += (1 + ip6h->hdrlen) << 3; return parse_ipv6_proto(skb, ip6h->nexthdr); } PROG(IPV6FR)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct frag_hdr *fragh, _fragh; fragh = bpf_flow_dissect_get_header(skb, sizeof(*fragh), &_fragh); if (!fragh) return BPF_DROP; keys->nhoff += sizeof(*fragh); keys->is_frag = true; if (!(fragh->frag_off & bpf_htons(IP6_OFFSET))) keys->is_first_frag = true; return parse_ipv6_proto(skb, fragh->nexthdr); } PROG(MPLS)(struct __sk_buff *skb) { struct mpls_label *mpls, _mpls; mpls = bpf_flow_dissect_get_header(skb, sizeof(*mpls), &_mpls); if (!mpls) return BPF_DROP; return BPF_OK; } PROG(VLAN)(struct __sk_buff *skb) { struct bpf_flow_keys *keys = skb->flow_keys; struct vlan_hdr *vlan, _vlan; __be16 proto; /* Peek back to see if single or double-tagging */ if (bpf_skb_load_bytes(skb, keys->nhoff - sizeof(proto), &proto, sizeof(proto))) return BPF_DROP; /* Account for double-tagging */ if (proto == bpf_htons(ETH_P_8021AD)) { vlan = bpf_flow_dissect_get_header(skb, sizeof(*vlan), &_vlan); if (!vlan) return BPF_DROP; if (vlan->h_vlan_encapsulated_proto != bpf_htons(ETH_P_8021Q)) return BPF_DROP; keys->nhoff += sizeof(*vlan); } vlan = bpf_flow_dissect_get_header(skb, sizeof(*vlan), &_vlan); if (!vlan) return BPF_DROP; keys->nhoff += sizeof(*vlan); /* Only allow 8021AD + 8021Q double tagging and no triple tagging.*/ if (vlan->h_vlan_encapsulated_proto == bpf_htons(ETH_P_8021AD) || vlan->h_vlan_encapsulated_proto == bpf_htons(ETH_P_8021Q)) return BPF_DROP; return parse_eth_proto(skb, vlan->h_vlan_encapsulated_proto); } char __license[] SEC("license") = "GPL";