// SPDX-License-Identifier: GPL-2.0 #include #include "kprobe_multi.skel.h" #include "trace_helpers.h" #include "kprobe_multi_empty.skel.h" #include "bpf/libbpf_internal.h" #include "bpf/hashmap.h" static void kprobe_multi_test_run(struct kprobe_multi *skel, bool test_return) { LIBBPF_OPTS(bpf_test_run_opts, topts); int err, prog_fd; prog_fd = bpf_program__fd(skel->progs.trigger); err = bpf_prog_test_run_opts(prog_fd, &topts); ASSERT_OK(err, "test_run"); ASSERT_EQ(topts.retval, 0, "test_run"); ASSERT_EQ(skel->bss->kprobe_test1_result, 1, "kprobe_test1_result"); ASSERT_EQ(skel->bss->kprobe_test2_result, 1, "kprobe_test2_result"); ASSERT_EQ(skel->bss->kprobe_test3_result, 1, "kprobe_test3_result"); ASSERT_EQ(skel->bss->kprobe_test4_result, 1, "kprobe_test4_result"); ASSERT_EQ(skel->bss->kprobe_test5_result, 1, "kprobe_test5_result"); ASSERT_EQ(skel->bss->kprobe_test6_result, 1, "kprobe_test6_result"); ASSERT_EQ(skel->bss->kprobe_test7_result, 1, "kprobe_test7_result"); ASSERT_EQ(skel->bss->kprobe_test8_result, 1, "kprobe_test8_result"); if (test_return) { ASSERT_EQ(skel->bss->kretprobe_test1_result, 1, "kretprobe_test1_result"); ASSERT_EQ(skel->bss->kretprobe_test2_result, 1, "kretprobe_test2_result"); ASSERT_EQ(skel->bss->kretprobe_test3_result, 1, "kretprobe_test3_result"); ASSERT_EQ(skel->bss->kretprobe_test4_result, 1, "kretprobe_test4_result"); ASSERT_EQ(skel->bss->kretprobe_test5_result, 1, "kretprobe_test5_result"); ASSERT_EQ(skel->bss->kretprobe_test6_result, 1, "kretprobe_test6_result"); ASSERT_EQ(skel->bss->kretprobe_test7_result, 1, "kretprobe_test7_result"); ASSERT_EQ(skel->bss->kretprobe_test8_result, 1, "kretprobe_test8_result"); } } static void test_skel_api(void) { struct kprobe_multi *skel = NULL; int err; skel = kprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "kprobe_multi__open_and_load")) goto cleanup; skel->bss->pid = getpid(); err = kprobe_multi__attach(skel); if (!ASSERT_OK(err, "kprobe_multi__attach")) goto cleanup; kprobe_multi_test_run(skel, true); cleanup: kprobe_multi__destroy(skel); } static void test_link_api(struct bpf_link_create_opts *opts) { int prog_fd, link1_fd = -1, link2_fd = -1; struct kprobe_multi *skel = NULL; skel = kprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "fentry_raw_skel_load")) goto cleanup; skel->bss->pid = getpid(); prog_fd = bpf_program__fd(skel->progs.test_kprobe); link1_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, opts); if (!ASSERT_GE(link1_fd, 0, "link_fd")) goto cleanup; opts->kprobe_multi.flags = BPF_F_KPROBE_MULTI_RETURN; prog_fd = bpf_program__fd(skel->progs.test_kretprobe); link2_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, opts); if (!ASSERT_GE(link2_fd, 0, "link_fd")) goto cleanup; kprobe_multi_test_run(skel, true); cleanup: if (link1_fd != -1) close(link1_fd); if (link2_fd != -1) close(link2_fd); kprobe_multi__destroy(skel); } #define GET_ADDR(__sym, __addr) ({ \ __addr = ksym_get_addr(__sym); \ if (!ASSERT_NEQ(__addr, 0, "kallsyms load failed for " #__sym)) \ return; \ }) static void test_link_api_addrs(void) { LIBBPF_OPTS(bpf_link_create_opts, opts); unsigned long long addrs[8]; GET_ADDR("bpf_fentry_test1", addrs[0]); GET_ADDR("bpf_fentry_test2", addrs[1]); GET_ADDR("bpf_fentry_test3", addrs[2]); GET_ADDR("bpf_fentry_test4", addrs[3]); GET_ADDR("bpf_fentry_test5", addrs[4]); GET_ADDR("bpf_fentry_test6", addrs[5]); GET_ADDR("bpf_fentry_test7", addrs[6]); GET_ADDR("bpf_fentry_test8", addrs[7]); opts.kprobe_multi.addrs = (const unsigned long*) addrs; opts.kprobe_multi.cnt = ARRAY_SIZE(addrs); test_link_api(&opts); } static void test_link_api_syms(void) { LIBBPF_OPTS(bpf_link_create_opts, opts); const char *syms[8] = { "bpf_fentry_test1", "bpf_fentry_test2", "bpf_fentry_test3", "bpf_fentry_test4", "bpf_fentry_test5", "bpf_fentry_test6", "bpf_fentry_test7", "bpf_fentry_test8", }; opts.kprobe_multi.syms = syms; opts.kprobe_multi.cnt = ARRAY_SIZE(syms); test_link_api(&opts); } static void test_attach_api(const char *pattern, struct bpf_kprobe_multi_opts *opts) { struct bpf_link *link1 = NULL, *link2 = NULL; struct kprobe_multi *skel = NULL; skel = kprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "fentry_raw_skel_load")) goto cleanup; skel->bss->pid = getpid(); link1 = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_manual, pattern, opts); if (!ASSERT_OK_PTR(link1, "bpf_program__attach_kprobe_multi_opts")) goto cleanup; if (opts) { opts->retprobe = true; link2 = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kretprobe_manual, pattern, opts); if (!ASSERT_OK_PTR(link2, "bpf_program__attach_kprobe_multi_opts")) goto cleanup; } kprobe_multi_test_run(skel, !!opts); cleanup: bpf_link__destroy(link2); bpf_link__destroy(link1); kprobe_multi__destroy(skel); } static void test_attach_api_pattern(void) { LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); test_attach_api("bpf_fentry_test*", &opts); test_attach_api("bpf_fentry_test?", NULL); } static void test_attach_api_addrs(void) { LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); unsigned long long addrs[8]; GET_ADDR("bpf_fentry_test1", addrs[0]); GET_ADDR("bpf_fentry_test2", addrs[1]); GET_ADDR("bpf_fentry_test3", addrs[2]); GET_ADDR("bpf_fentry_test4", addrs[3]); GET_ADDR("bpf_fentry_test5", addrs[4]); GET_ADDR("bpf_fentry_test6", addrs[5]); GET_ADDR("bpf_fentry_test7", addrs[6]); GET_ADDR("bpf_fentry_test8", addrs[7]); opts.addrs = (const unsigned long *) addrs; opts.cnt = ARRAY_SIZE(addrs); test_attach_api(NULL, &opts); } static void test_attach_api_syms(void) { LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); const char *syms[8] = { "bpf_fentry_test1", "bpf_fentry_test2", "bpf_fentry_test3", "bpf_fentry_test4", "bpf_fentry_test5", "bpf_fentry_test6", "bpf_fentry_test7", "bpf_fentry_test8", }; opts.syms = syms; opts.cnt = ARRAY_SIZE(syms); test_attach_api(NULL, &opts); } static void test_attach_api_fails(void) { LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); struct kprobe_multi *skel = NULL; struct bpf_link *link = NULL; unsigned long long addrs[2]; const char *syms[2] = { "bpf_fentry_test1", "bpf_fentry_test2", }; __u64 cookies[2]; addrs[0] = ksym_get_addr("bpf_fentry_test1"); addrs[1] = ksym_get_addr("bpf_fentry_test2"); if (!ASSERT_FALSE(!addrs[0] || !addrs[1], "ksym_get_addr")) goto cleanup; skel = kprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "fentry_raw_skel_load")) goto cleanup; skel->bss->pid = getpid(); /* fail_1 - pattern and opts NULL */ link = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_manual, NULL, NULL); if (!ASSERT_ERR_PTR(link, "fail_1")) goto cleanup; if (!ASSERT_EQ(libbpf_get_error(link), -EINVAL, "fail_1_error")) goto cleanup; /* fail_2 - both addrs and syms set */ opts.addrs = (const unsigned long *) addrs; opts.syms = syms; opts.cnt = ARRAY_SIZE(syms); opts.cookies = NULL; link = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_manual, NULL, &opts); if (!ASSERT_ERR_PTR(link, "fail_2")) goto cleanup; if (!ASSERT_EQ(libbpf_get_error(link), -EINVAL, "fail_2_error")) goto cleanup; /* fail_3 - pattern and addrs set */ opts.addrs = (const unsigned long *) addrs; opts.syms = NULL; opts.cnt = ARRAY_SIZE(syms); opts.cookies = NULL; link = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_manual, "ksys_*", &opts); if (!ASSERT_ERR_PTR(link, "fail_3")) goto cleanup; if (!ASSERT_EQ(libbpf_get_error(link), -EINVAL, "fail_3_error")) goto cleanup; /* fail_4 - pattern and cnt set */ opts.addrs = NULL; opts.syms = NULL; opts.cnt = ARRAY_SIZE(syms); opts.cookies = NULL; link = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_manual, "ksys_*", &opts); if (!ASSERT_ERR_PTR(link, "fail_4")) goto cleanup; if (!ASSERT_EQ(libbpf_get_error(link), -EINVAL, "fail_4_error")) goto cleanup; /* fail_5 - pattern and cookies */ opts.addrs = NULL; opts.syms = NULL; opts.cnt = 0; opts.cookies = cookies; link = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_manual, "ksys_*", &opts); if (!ASSERT_ERR_PTR(link, "fail_5")) goto cleanup; if (!ASSERT_EQ(libbpf_get_error(link), -EINVAL, "fail_5_error")) goto cleanup; cleanup: bpf_link__destroy(link); kprobe_multi__destroy(skel); } static inline __u64 get_time_ns(void) { struct timespec t; clock_gettime(CLOCK_MONOTONIC, &t); return (__u64) t.tv_sec * 1000000000 + t.tv_nsec; } static size_t symbol_hash(const void *key, void *ctx __maybe_unused) { return str_hash((const char *) key); } static bool symbol_equal(const void *key1, const void *key2, void *ctx __maybe_unused) { return strcmp((const char *) key1, (const char *) key2) == 0; } static int get_syms(char ***symsp, size_t *cntp) { size_t cap = 0, cnt = 0, i; char *name, **syms = NULL; struct hashmap *map; char buf[256]; FILE *f; int err = 0; /* * The available_filter_functions contains many duplicates, * but other than that all symbols are usable in kprobe multi * interface. * Filtering out duplicates by using hashmap__add, which won't * add existing entry. */ f = fopen("/sys/kernel/debug/tracing/available_filter_functions", "r"); if (!f) return -EINVAL; map = hashmap__new(symbol_hash, symbol_equal, NULL); if (IS_ERR(map)) { err = libbpf_get_error(map); goto error; } while (fgets(buf, sizeof(buf), f)) { /* skip modules */ if (strchr(buf, '[')) continue; if (sscanf(buf, "%ms$*[^\n]\n", &name) != 1) continue; /* * We attach to almost all kernel functions and some of them * will cause 'suspicious RCU usage' when fprobe is attached * to them. Filter out the current culprits - arch_cpu_idle * and rcu_* functions. */ if (!strcmp(name, "arch_cpu_idle")) continue; if (!strncmp(name, "rcu_", 4)) continue; if (!strcmp(name, "bpf_dispatcher_xdp_func")) continue; if (!strncmp(name, "__ftrace_invalid_address__", sizeof("__ftrace_invalid_address__") - 1)) continue; err = hashmap__add(map, name, NULL); if (err) { free(name); if (err == -EEXIST) continue; goto error; } err = libbpf_ensure_mem((void **) &syms, &cap, sizeof(*syms), cnt + 1); if (err) { free(name); goto error; } syms[cnt] = name; cnt++; } *symsp = syms; *cntp = cnt; error: fclose(f); hashmap__free(map); if (err) { for (i = 0; i < cnt; i++) free(syms[cnt]); free(syms); } return err; } static void test_bench_attach(void) { LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); struct kprobe_multi_empty *skel = NULL; long attach_start_ns, attach_end_ns; long detach_start_ns, detach_end_ns; double attach_delta, detach_delta; struct bpf_link *link = NULL; char **syms = NULL; size_t cnt = 0, i; if (!ASSERT_OK(get_syms(&syms, &cnt), "get_syms")) return; skel = kprobe_multi_empty__open_and_load(); if (!ASSERT_OK_PTR(skel, "kprobe_multi_empty__open_and_load")) goto cleanup; opts.syms = (const char **) syms; opts.cnt = cnt; attach_start_ns = get_time_ns(); link = bpf_program__attach_kprobe_multi_opts(skel->progs.test_kprobe_empty, NULL, &opts); attach_end_ns = get_time_ns(); if (!ASSERT_OK_PTR(link, "bpf_program__attach_kprobe_multi_opts")) goto cleanup; detach_start_ns = get_time_ns(); bpf_link__destroy(link); detach_end_ns = get_time_ns(); attach_delta = (attach_end_ns - attach_start_ns) / 1000000000.0; detach_delta = (detach_end_ns - detach_start_ns) / 1000000000.0; printf("%s: found %lu functions\n", __func__, cnt); printf("%s: attached in %7.3lfs\n", __func__, attach_delta); printf("%s: detached in %7.3lfs\n", __func__, detach_delta); cleanup: kprobe_multi_empty__destroy(skel); if (syms) { for (i = 0; i < cnt; i++) free(syms[i]); free(syms); } } void test_kprobe_multi_test(void) { if (!ASSERT_OK(load_kallsyms(), "load_kallsyms")) return; if (test__start_subtest("skel_api")) test_skel_api(); if (test__start_subtest("link_api_addrs")) test_link_api_syms(); if (test__start_subtest("link_api_syms")) test_link_api_addrs(); if (test__start_subtest("attach_api_pattern")) test_attach_api_pattern(); if (test__start_subtest("attach_api_addrs")) test_attach_api_addrs(); if (test__start_subtest("attach_api_syms")) test_attach_api_syms(); if (test__start_subtest("attach_api_fails")) test_attach_api_fails(); if (test__start_subtest("bench_attach")) test_bench_attach(); }