// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Facebook */ /* WARNING: This implemenation is not necessarily the same * as the tcp_dctcp.c. The purpose is mainly for testing * the kernel BPF logic. */ #include #include #include #include "bpf_trace_helpers.h" #include "bpf_tcp_helpers.h" char _license[] SEC("license") = "GPL"; #define DCTCP_MAX_ALPHA 1024U struct dctcp { __u32 old_delivered; __u32 old_delivered_ce; __u32 prior_rcv_nxt; __u32 dctcp_alpha; __u32 next_seq; __u32 ce_state; __u32 loss_cwnd; }; static unsigned int dctcp_shift_g = 4; /* g = 1/2^4 */ static unsigned int dctcp_alpha_on_init = DCTCP_MAX_ALPHA; static __always_inline void dctcp_reset(const struct tcp_sock *tp, struct dctcp *ca) { ca->next_seq = tp->snd_nxt; ca->old_delivered = tp->delivered; ca->old_delivered_ce = tp->delivered_ce; } SEC("struct_ops/dctcp_init") void BPF_PROG(dctcp_init, struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct dctcp *ca = inet_csk_ca(sk); ca->prior_rcv_nxt = tp->rcv_nxt; ca->dctcp_alpha = min(dctcp_alpha_on_init, DCTCP_MAX_ALPHA); ca->loss_cwnd = 0; ca->ce_state = 0; dctcp_reset(tp, ca); } SEC("struct_ops/dctcp_ssthresh") __u32 BPF_PROG(dctcp_ssthresh, struct sock *sk) { struct dctcp *ca = inet_csk_ca(sk); struct tcp_sock *tp = tcp_sk(sk); ca->loss_cwnd = tp->snd_cwnd; return max(tp->snd_cwnd - ((tp->snd_cwnd * ca->dctcp_alpha) >> 11U), 2U); } SEC("struct_ops/dctcp_update_alpha") void BPF_PROG(dctcp_update_alpha, struct sock *sk, __u32 flags) { const struct tcp_sock *tp = tcp_sk(sk); struct dctcp *ca = inet_csk_ca(sk); /* Expired RTT */ if (!before(tp->snd_una, ca->next_seq)) { __u32 delivered_ce = tp->delivered_ce - ca->old_delivered_ce; __u32 alpha = ca->dctcp_alpha; /* alpha = (1 - g) * alpha + g * F */ alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g); if (delivered_ce) { __u32 delivered = tp->delivered - ca->old_delivered; /* If dctcp_shift_g == 1, a 32bit value would overflow * after 8 M packets. */ delivered_ce <<= (10 - dctcp_shift_g); delivered_ce /= max(1U, delivered); alpha = min(alpha + delivered_ce, DCTCP_MAX_ALPHA); } ca->dctcp_alpha = alpha; dctcp_reset(tp, ca); } } static __always_inline void dctcp_react_to_loss(struct sock *sk) { struct dctcp *ca = inet_csk_ca(sk); struct tcp_sock *tp = tcp_sk(sk); ca->loss_cwnd = tp->snd_cwnd; tp->snd_ssthresh = max(tp->snd_cwnd >> 1U, 2U); } SEC("struct_ops/dctcp_state") void BPF_PROG(dctcp_state, struct sock *sk, __u8 new_state) { if (new_state == TCP_CA_Recovery && new_state != BPF_CORE_READ_BITFIELD(inet_csk(sk), icsk_ca_state)) dctcp_react_to_loss(sk); /* We handle RTO in dctcp_cwnd_event to ensure that we perform only * one loss-adjustment per RTT. */ } static __always_inline void dctcp_ece_ack_cwr(struct sock *sk, __u32 ce_state) { struct tcp_sock *tp = tcp_sk(sk); if (ce_state == 1) tp->ecn_flags |= TCP_ECN_DEMAND_CWR; else tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; } /* Minimal DCTP CE state machine: * * S: 0 <- last pkt was non-CE * 1 <- last pkt was CE */ static __always_inline void dctcp_ece_ack_update(struct sock *sk, enum tcp_ca_event evt, __u32 *prior_rcv_nxt, __u32 *ce_state) { __u32 new_ce_state = (evt == CA_EVENT_ECN_IS_CE) ? 1 : 0; if (*ce_state != new_ce_state) { /* CE state has changed, force an immediate ACK to * reflect the new CE state. If an ACK was delayed, * send that first to reflect the prior CE state. */ if (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_TIMER) { dctcp_ece_ack_cwr(sk, *ce_state); bpf_tcp_send_ack(sk, *prior_rcv_nxt); } inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; } *prior_rcv_nxt = tcp_sk(sk)->rcv_nxt; *ce_state = new_ce_state; dctcp_ece_ack_cwr(sk, new_ce_state); } SEC("struct_ops/dctcp_cwnd_event") void BPF_PROG(dctcp_cwnd_event, struct sock *sk, enum tcp_ca_event ev) { struct dctcp *ca = inet_csk_ca(sk); switch (ev) { case CA_EVENT_ECN_IS_CE: case CA_EVENT_ECN_NO_CE: dctcp_ece_ack_update(sk, ev, &ca->prior_rcv_nxt, &ca->ce_state); break; case CA_EVENT_LOSS: dctcp_react_to_loss(sk); break; default: /* Don't care for the rest. */ break; } } SEC("struct_ops/dctcp_cwnd_undo") __u32 BPF_PROG(dctcp_cwnd_undo, struct sock *sk) { const struct dctcp *ca = inet_csk_ca(sk); return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd); } SEC("struct_ops/tcp_reno_cong_avoid") void BPF_PROG(tcp_reno_cong_avoid, struct sock *sk, __u32 ack, __u32 acked) { struct tcp_sock *tp = tcp_sk(sk); if (!tcp_is_cwnd_limited(sk)) return; /* In "safe" area, increase. */ if (tcp_in_slow_start(tp)) { acked = tcp_slow_start(tp, acked); if (!acked) return; } /* In dangerous area, increase slowly. */ tcp_cong_avoid_ai(tp, tp->snd_cwnd, acked); } SEC(".struct_ops") struct tcp_congestion_ops dctcp_nouse = { .init = (void *)dctcp_init, .set_state = (void *)dctcp_state, .flags = TCP_CONG_NEEDS_ECN, .name = "bpf_dctcp_nouse", }; SEC(".struct_ops") struct tcp_congestion_ops dctcp = { .init = (void *)dctcp_init, .in_ack_event = (void *)dctcp_update_alpha, .cwnd_event = (void *)dctcp_cwnd_event, .ssthresh = (void *)dctcp_ssthresh, .cong_avoid = (void *)tcp_reno_cong_avoid, .undo_cwnd = (void *)dctcp_cwnd_undo, .set_state = (void *)dctcp_state, .flags = TCP_CONG_NEEDS_ECN, .name = "bpf_dctcp", };