// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2017 Facebook */ #define _GNU_SOURCE #include "test_progs.h" #include "cgroup_helpers.h" #include #include #include #include #include #include /* backtrace */ #include #include /* get_nprocs */ #include #include #include #include /* Adapted from perf/util/string.c */ static bool glob_match(const char *str, const char *pat) { while (*str && *pat && *pat != '*') { if (*str != *pat) return false; str++; pat++; } /* Check wild card */ if (*pat == '*') { while (*pat == '*') pat++; if (!*pat) /* Tail wild card matches all */ return true; while (*str) if (glob_match(str++, pat)) return true; } return !*str && !*pat; } #define EXIT_NO_TEST 2 #define EXIT_ERR_SETUP_INFRA 3 /* defined in test_progs.h */ struct test_env env = {}; struct prog_test_def { const char *test_name; int test_num; void (*run_test)(void); void (*run_serial_test)(void); bool force_log; int error_cnt; int skip_cnt; int sub_succ_cnt; bool should_run; bool tested; bool need_cgroup_cleanup; char *subtest_name; int subtest_num; /* store counts before subtest started */ int old_error_cnt; }; /* Override C runtime library's usleep() implementation to ensure nanosleep() * is always called. Usleep is frequently used in selftests as a way to * trigger kprobe and tracepoints. */ int usleep(useconds_t usec) { struct timespec ts = { .tv_sec = usec / 1000000, .tv_nsec = (usec % 1000000) * 1000, }; return syscall(__NR_nanosleep, &ts, NULL); } static bool should_run(struct test_selector *sel, int num, const char *name) { int i; for (i = 0; i < sel->blacklist.cnt; i++) { if (glob_match(name, sel->blacklist.strs[i])) return false; } for (i = 0; i < sel->whitelist.cnt; i++) { if (glob_match(name, sel->whitelist.strs[i])) return true; } if (!sel->whitelist.cnt && !sel->num_set) return true; return num < sel->num_set_len && sel->num_set[num]; } static void dump_test_log(const struct prog_test_def *test, bool failed) { if (stdout == env.stdout) return; /* worker always holds log */ if (env.worker_id != -1) return; fflush(stdout); /* exports env.log_buf & env.log_cnt */ if (env.verbosity > VERBOSE_NONE || test->force_log || failed) { if (env.log_cnt) { env.log_buf[env.log_cnt] = '\0'; fprintf(env.stdout, "%s", env.log_buf); if (env.log_buf[env.log_cnt - 1] != '\n') fprintf(env.stdout, "\n"); } } } static void skip_account(void) { if (env.test->skip_cnt) { env.skip_cnt++; env.test->skip_cnt = 0; } } static void stdio_restore(void); /* A bunch of tests set custom affinity per-thread and/or per-process. Reset * it after each test/sub-test. */ static void reset_affinity(void) { cpu_set_t cpuset; int i, err; CPU_ZERO(&cpuset); for (i = 0; i < env.nr_cpus; i++) CPU_SET(i, &cpuset); err = sched_setaffinity(0, sizeof(cpuset), &cpuset); if (err < 0) { stdio_restore(); fprintf(stderr, "Failed to reset process affinity: %d!\n", err); exit(EXIT_ERR_SETUP_INFRA); } err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset); if (err < 0) { stdio_restore(); fprintf(stderr, "Failed to reset thread affinity: %d!\n", err); exit(EXIT_ERR_SETUP_INFRA); } } static void save_netns(void) { env.saved_netns_fd = open("/proc/self/ns/net", O_RDONLY); if (env.saved_netns_fd == -1) { perror("open(/proc/self/ns/net)"); exit(EXIT_ERR_SETUP_INFRA); } } static void restore_netns(void) { if (setns(env.saved_netns_fd, CLONE_NEWNET) == -1) { stdio_restore(); perror("setns(CLONE_NEWNS)"); exit(EXIT_ERR_SETUP_INFRA); } } void test__end_subtest(void) { struct prog_test_def *test = env.test; int sub_error_cnt = test->error_cnt - test->old_error_cnt; dump_test_log(test, sub_error_cnt); fprintf(stdout, "#%d/%d %s/%s:%s\n", test->test_num, test->subtest_num, test->test_name, test->subtest_name, sub_error_cnt ? "FAIL" : (test->skip_cnt ? "SKIP" : "OK")); if (sub_error_cnt) test->error_cnt++; else if (test->skip_cnt == 0) test->sub_succ_cnt++; skip_account(); free(test->subtest_name); test->subtest_name = NULL; } bool test__start_subtest(const char *name) { struct prog_test_def *test = env.test; if (test->subtest_name) test__end_subtest(); test->subtest_num++; if (!name || !name[0]) { fprintf(env.stderr, "Subtest #%d didn't provide sub-test name!\n", test->subtest_num); return false; } if (!should_run(&env.subtest_selector, test->subtest_num, name)) return false; test->subtest_name = strdup(name); if (!test->subtest_name) { fprintf(env.stderr, "Subtest #%d: failed to copy subtest name!\n", test->subtest_num); return false; } env.test->old_error_cnt = env.test->error_cnt; return true; } void test__force_log(void) { env.test->force_log = true; } void test__skip(void) { env.test->skip_cnt++; } void test__fail(void) { env.test->error_cnt++; } int test__join_cgroup(const char *path) { int fd; if (!env.test->need_cgroup_cleanup) { if (setup_cgroup_environment()) { fprintf(stderr, "#%d %s: Failed to setup cgroup environment\n", env.test->test_num, env.test->test_name); return -1; } env.test->need_cgroup_cleanup = true; } fd = create_and_get_cgroup(path); if (fd < 0) { fprintf(stderr, "#%d %s: Failed to create cgroup '%s' (errno=%d)\n", env.test->test_num, env.test->test_name, path, errno); return fd; } if (join_cgroup(path)) { fprintf(stderr, "#%d %s: Failed to join cgroup '%s' (errno=%d)\n", env.test->test_num, env.test->test_name, path, errno); return -1; } return fd; } int bpf_find_map(const char *test, struct bpf_object *obj, const char *name) { struct bpf_map *map; map = bpf_object__find_map_by_name(obj, name); if (!map) { fprintf(stdout, "%s:FAIL:map '%s' not found\n", test, name); test__fail(); return -1; } return bpf_map__fd(map); } static bool is_jit_enabled(void) { const char *jit_sysctl = "/proc/sys/net/core/bpf_jit_enable"; bool enabled = false; int sysctl_fd; sysctl_fd = open(jit_sysctl, 0, O_RDONLY); if (sysctl_fd != -1) { char tmpc; if (read(sysctl_fd, &tmpc, sizeof(tmpc)) == 1) enabled = (tmpc != '0'); close(sysctl_fd); } return enabled; } int compare_map_keys(int map1_fd, int map2_fd) { __u32 key, next_key; char val_buf[PERF_MAX_STACK_DEPTH * sizeof(struct bpf_stack_build_id)]; int err; err = bpf_map_get_next_key(map1_fd, NULL, &key); if (err) return err; err = bpf_map_lookup_elem(map2_fd, &key, val_buf); if (err) return err; while (bpf_map_get_next_key(map1_fd, &key, &next_key) == 0) { err = bpf_map_lookup_elem(map2_fd, &next_key, val_buf); if (err) return err; key = next_key; } if (errno != ENOENT) return -1; return 0; } int compare_stack_ips(int smap_fd, int amap_fd, int stack_trace_len) { __u32 key, next_key, *cur_key_p, *next_key_p; char *val_buf1, *val_buf2; int i, err = 0; val_buf1 = malloc(stack_trace_len); val_buf2 = malloc(stack_trace_len); cur_key_p = NULL; next_key_p = &key; while (bpf_map_get_next_key(smap_fd, cur_key_p, next_key_p) == 0) { err = bpf_map_lookup_elem(smap_fd, next_key_p, val_buf1); if (err) goto out; err = bpf_map_lookup_elem(amap_fd, next_key_p, val_buf2); if (err) goto out; for (i = 0; i < stack_trace_len; i++) { if (val_buf1[i] != val_buf2[i]) { err = -1; goto out; } } key = *next_key_p; cur_key_p = &key; next_key_p = &next_key; } if (errno != ENOENT) err = -1; out: free(val_buf1); free(val_buf2); return err; } int extract_build_id(char *build_id, size_t size) { FILE *fp; char *line = NULL; size_t len = 0; fp = popen("readelf -n ./urandom_read | grep 'Build ID'", "r"); if (fp == NULL) return -1; if (getline(&line, &len, fp) == -1) goto err; pclose(fp); if (len > size) len = size; memcpy(build_id, line, len); build_id[len] = '\0'; free(line); return 0; err: pclose(fp); return -1; } static int finit_module(int fd, const char *param_values, int flags) { return syscall(__NR_finit_module, fd, param_values, flags); } static int delete_module(const char *name, int flags) { return syscall(__NR_delete_module, name, flags); } /* * Trigger synchronize_rcu() in kernel. */ int kern_sync_rcu(void) { return syscall(__NR_membarrier, MEMBARRIER_CMD_SHARED, 0, 0); } static void unload_bpf_testmod(void) { if (kern_sync_rcu()) fprintf(env.stderr, "Failed to trigger kernel-side RCU sync!\n"); if (delete_module("bpf_testmod", 0)) { if (errno == ENOENT) { if (env.verbosity > VERBOSE_NONE) fprintf(stdout, "bpf_testmod.ko is already unloaded.\n"); return; } fprintf(env.stderr, "Failed to unload bpf_testmod.ko from kernel: %d\n", -errno); return; } if (env.verbosity > VERBOSE_NONE) fprintf(stdout, "Successfully unloaded bpf_testmod.ko.\n"); } static int load_bpf_testmod(void) { int fd; /* ensure previous instance of the module is unloaded */ unload_bpf_testmod(); if (env.verbosity > VERBOSE_NONE) fprintf(stdout, "Loading bpf_testmod.ko...\n"); fd = open("bpf_testmod.ko", O_RDONLY); if (fd < 0) { fprintf(env.stderr, "Can't find bpf_testmod.ko kernel module: %d\n", -errno); return -ENOENT; } if (finit_module(fd, "", 0)) { fprintf(env.stderr, "Failed to load bpf_testmod.ko into the kernel: %d\n", -errno); close(fd); return -EINVAL; } close(fd); if (env.verbosity > VERBOSE_NONE) fprintf(stdout, "Successfully loaded bpf_testmod.ko.\n"); return 0; } /* extern declarations for test funcs */ #define DEFINE_TEST(name) \ extern void test_##name(void) __weak; \ extern void serial_test_##name(void) __weak; #include #undef DEFINE_TEST static struct prog_test_def prog_test_defs[] = { #define DEFINE_TEST(name) { \ .test_name = #name, \ .run_test = &test_##name, \ .run_serial_test = &serial_test_##name, \ }, #include #undef DEFINE_TEST }; static const int prog_test_cnt = ARRAY_SIZE(prog_test_defs); const char *argp_program_version = "test_progs 0.1"; const char *argp_program_bug_address = ""; static const char argp_program_doc[] = "BPF selftests test runner"; enum ARG_KEYS { ARG_TEST_NUM = 'n', ARG_TEST_NAME = 't', ARG_TEST_NAME_BLACKLIST = 'b', ARG_VERIFIER_STATS = 's', ARG_VERBOSE = 'v', ARG_GET_TEST_CNT = 'c', ARG_LIST_TEST_NAMES = 'l', ARG_TEST_NAME_GLOB_ALLOWLIST = 'a', ARG_TEST_NAME_GLOB_DENYLIST = 'd', ARG_NUM_WORKERS = 'j', ARG_DEBUG = -1, }; static const struct argp_option opts[] = { { "num", ARG_TEST_NUM, "NUM", 0, "Run test number NUM only " }, { "name", ARG_TEST_NAME, "NAMES", 0, "Run tests with names containing any string from NAMES list" }, { "name-blacklist", ARG_TEST_NAME_BLACKLIST, "NAMES", 0, "Don't run tests with names containing any string from NAMES list" }, { "verifier-stats", ARG_VERIFIER_STATS, NULL, 0, "Output verifier statistics", }, { "verbose", ARG_VERBOSE, "LEVEL", OPTION_ARG_OPTIONAL, "Verbose output (use -vv or -vvv for progressively verbose output)" }, { "count", ARG_GET_TEST_CNT, NULL, 0, "Get number of selected top-level tests " }, { "list", ARG_LIST_TEST_NAMES, NULL, 0, "List test names that would run (without running them) " }, { "allow", ARG_TEST_NAME_GLOB_ALLOWLIST, "NAMES", 0, "Run tests with name matching the pattern (supports '*' wildcard)." }, { "deny", ARG_TEST_NAME_GLOB_DENYLIST, "NAMES", 0, "Don't run tests with name matching the pattern (supports '*' wildcard)." }, { "workers", ARG_NUM_WORKERS, "WORKERS", OPTION_ARG_OPTIONAL, "Number of workers to run in parallel, default to number of cpus." }, { "debug", ARG_DEBUG, NULL, 0, "print extra debug information for test_progs." }, {}, }; static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) { if (env.verbosity < VERBOSE_VERY && level == LIBBPF_DEBUG) return 0; vfprintf(stdout, format, args); return 0; } static void free_str_set(const struct str_set *set) { int i; if (!set) return; for (i = 0; i < set->cnt; i++) free((void *)set->strs[i]); free(set->strs); } static int parse_str_list(const char *s, struct str_set *set, bool is_glob_pattern) { char *input, *state = NULL, *next, **tmp, **strs = NULL; int i, cnt = 0; input = strdup(s); if (!input) return -ENOMEM; while ((next = strtok_r(state ? NULL : input, ",", &state))) { tmp = realloc(strs, sizeof(*strs) * (cnt + 1)); if (!tmp) goto err; strs = tmp; if (is_glob_pattern) { strs[cnt] = strdup(next); if (!strs[cnt]) goto err; } else { strs[cnt] = malloc(strlen(next) + 2 + 1); if (!strs[cnt]) goto err; sprintf(strs[cnt], "*%s*", next); } cnt++; } tmp = realloc(set->strs, sizeof(*strs) * (cnt + set->cnt)); if (!tmp) goto err; memcpy(tmp + set->cnt, strs, sizeof(*strs) * cnt); set->strs = (const char **)tmp; set->cnt += cnt; free(input); free(strs); return 0; err: for (i = 0; i < cnt; i++) free(strs[i]); free(strs); free(input); return -ENOMEM; } extern int extra_prog_load_log_flags; static error_t parse_arg(int key, char *arg, struct argp_state *state) { struct test_env *env = state->input; switch (key) { case ARG_TEST_NUM: { char *subtest_str = strchr(arg, '/'); if (subtest_str) { *subtest_str = '\0'; if (parse_num_list(subtest_str + 1, &env->subtest_selector.num_set, &env->subtest_selector.num_set_len)) { fprintf(stderr, "Failed to parse subtest numbers.\n"); return -EINVAL; } } if (parse_num_list(arg, &env->test_selector.num_set, &env->test_selector.num_set_len)) { fprintf(stderr, "Failed to parse test numbers.\n"); return -EINVAL; } break; } case ARG_TEST_NAME_GLOB_ALLOWLIST: case ARG_TEST_NAME: { char *subtest_str = strchr(arg, '/'); if (subtest_str) { *subtest_str = '\0'; if (parse_str_list(subtest_str + 1, &env->subtest_selector.whitelist, key == ARG_TEST_NAME_GLOB_ALLOWLIST)) return -ENOMEM; } if (parse_str_list(arg, &env->test_selector.whitelist, key == ARG_TEST_NAME_GLOB_ALLOWLIST)) return -ENOMEM; break; } case ARG_TEST_NAME_GLOB_DENYLIST: case ARG_TEST_NAME_BLACKLIST: { char *subtest_str = strchr(arg, '/'); if (subtest_str) { *subtest_str = '\0'; if (parse_str_list(subtest_str + 1, &env->subtest_selector.blacklist, key == ARG_TEST_NAME_GLOB_DENYLIST)) return -ENOMEM; } if (parse_str_list(arg, &env->test_selector.blacklist, key == ARG_TEST_NAME_GLOB_DENYLIST)) return -ENOMEM; break; } case ARG_VERIFIER_STATS: env->verifier_stats = true; break; case ARG_VERBOSE: env->verbosity = VERBOSE_NORMAL; if (arg) { if (strcmp(arg, "v") == 0) { env->verbosity = VERBOSE_VERY; extra_prog_load_log_flags = 1; } else if (strcmp(arg, "vv") == 0) { env->verbosity = VERBOSE_SUPER; extra_prog_load_log_flags = 2; } else { fprintf(stderr, "Unrecognized verbosity setting ('%s'), only -v and -vv are supported\n", arg); return -EINVAL; } } if (env->verbosity > VERBOSE_NONE) { if (setenv("SELFTESTS_VERBOSE", "1", 1) == -1) { fprintf(stderr, "Unable to setenv SELFTESTS_VERBOSE=1 (errno=%d)", errno); return -EINVAL; } } break; case ARG_GET_TEST_CNT: env->get_test_cnt = true; break; case ARG_LIST_TEST_NAMES: env->list_test_names = true; break; case ARG_NUM_WORKERS: if (arg) { env->workers = atoi(arg); if (!env->workers) { fprintf(stderr, "Invalid number of worker: %s.", arg); return -EINVAL; } } else { env->workers = get_nprocs(); } break; case ARG_DEBUG: env->debug = true; break; case ARGP_KEY_ARG: argp_usage(state); break; case ARGP_KEY_END: break; default: return ARGP_ERR_UNKNOWN; } return 0; } static void stdio_hijack(void) { #ifdef __GLIBC__ env.stdout = stdout; env.stderr = stderr; if (env.verbosity > VERBOSE_NONE && env.worker_id == -1) { /* nothing to do, output to stdout by default */ return; } /* stdout and stderr -> buffer */ fflush(stdout); stdout = open_memstream(&env.log_buf, &env.log_cnt); if (!stdout) { stdout = env.stdout; perror("open_memstream"); return; } stderr = stdout; #endif } static void stdio_restore(void) { #ifdef __GLIBC__ if (stdout == env.stdout) return; fclose(stdout); stdout = env.stdout; stderr = env.stderr; #endif } /* * Determine if test_progs is running as a "flavored" test runner and switch * into corresponding sub-directory to load correct BPF objects. * * This is done by looking at executable name. If it contains "-flavor" * suffix, then we are running as a flavored test runner. */ int cd_flavor_subdir(const char *exec_name) { /* General form of argv[0] passed here is: * some/path/to/test_progs[-flavor], where -flavor part is optional. * First cut out "test_progs[-flavor]" part, then extract "flavor" * part, if it's there. */ const char *flavor = strrchr(exec_name, '/'); if (!flavor) return 0; flavor++; flavor = strrchr(flavor, '-'); if (!flavor) return 0; flavor++; if (env.verbosity > VERBOSE_NONE) fprintf(stdout, "Switching to flavor '%s' subdirectory...\n", flavor); return chdir(flavor); } int trigger_module_test_read(int read_sz) { int fd, err; fd = open(BPF_TESTMOD_TEST_FILE, O_RDONLY); err = -errno; if (!ASSERT_GE(fd, 0, "testmod_file_open")) return err; read(fd, NULL, read_sz); close(fd); return 0; } int trigger_module_test_write(int write_sz) { int fd, err; char *buf = malloc(write_sz); if (!buf) return -ENOMEM; memset(buf, 'a', write_sz); buf[write_sz-1] = '\0'; fd = open(BPF_TESTMOD_TEST_FILE, O_WRONLY); err = -errno; if (!ASSERT_GE(fd, 0, "testmod_file_open")) { free(buf); return err; } write(fd, buf, write_sz); close(fd); free(buf); return 0; } #define MAX_BACKTRACE_SZ 128 void crash_handler(int signum) { void *bt[MAX_BACKTRACE_SZ]; size_t sz; sz = backtrace(bt, ARRAY_SIZE(bt)); if (env.test) dump_test_log(env.test, true); if (env.stdout) stdio_restore(); if (env.worker_id != -1) fprintf(stderr, "[%d]: ", env.worker_id); fprintf(stderr, "Caught signal #%d!\nStack trace:\n", signum); backtrace_symbols_fd(bt, sz, STDERR_FILENO); } static void sigint_handler(int signum) { int i; for (i = 0; i < env.workers; i++) if (env.worker_socks[i] > 0) close(env.worker_socks[i]); } static int current_test_idx; static pthread_mutex_t current_test_lock; static pthread_mutex_t stdout_output_lock; struct test_result { int error_cnt; int skip_cnt; int sub_succ_cnt; size_t log_cnt; char *log_buf; }; static struct test_result test_results[ARRAY_SIZE(prog_test_defs)]; static inline const char *str_msg(const struct msg *msg, char *buf) { switch (msg->type) { case MSG_DO_TEST: sprintf(buf, "MSG_DO_TEST %d", msg->do_test.test_num); break; case MSG_TEST_DONE: sprintf(buf, "MSG_TEST_DONE %d (log: %d)", msg->test_done.test_num, msg->test_done.have_log); break; case MSG_TEST_LOG: sprintf(buf, "MSG_TEST_LOG (cnt: %ld, last: %d)", strlen(msg->test_log.log_buf), msg->test_log.is_last); break; case MSG_EXIT: sprintf(buf, "MSG_EXIT"); break; default: sprintf(buf, "UNKNOWN"); break; } return buf; } static int send_message(int sock, const struct msg *msg) { char buf[256]; if (env.debug) fprintf(stderr, "Sending msg: %s\n", str_msg(msg, buf)); return send(sock, msg, sizeof(*msg), 0); } static int recv_message(int sock, struct msg *msg) { int ret; char buf[256]; memset(msg, 0, sizeof(*msg)); ret = recv(sock, msg, sizeof(*msg), 0); if (ret >= 0) { if (env.debug) fprintf(stderr, "Received msg: %s\n", str_msg(msg, buf)); } return ret; } static void run_one_test(int test_num) { struct prog_test_def *test = &prog_test_defs[test_num]; env.test = test; if (test->run_test) test->run_test(); else if (test->run_serial_test) test->run_serial_test(); /* ensure last sub-test is finalized properly */ if (test->subtest_name) test__end_subtest(); test->tested = true; dump_test_log(test, test->error_cnt); reset_affinity(); restore_netns(); if (test->need_cgroup_cleanup) cleanup_cgroup_environment(); } struct dispatch_data { int worker_id; int sock_fd; }; static void *dispatch_thread(void *ctx) { struct dispatch_data *data = ctx; int sock_fd; FILE *log_fp = NULL; sock_fd = data->sock_fd; while (true) { int test_to_run = -1; struct prog_test_def *test; struct test_result *result; /* grab a test */ { pthread_mutex_lock(¤t_test_lock); if (current_test_idx >= prog_test_cnt) { pthread_mutex_unlock(¤t_test_lock); goto done; } test = &prog_test_defs[current_test_idx]; test_to_run = current_test_idx; current_test_idx++; pthread_mutex_unlock(¤t_test_lock); } if (!test->should_run || test->run_serial_test) continue; /* run test through worker */ { struct msg msg_do_test; msg_do_test.type = MSG_DO_TEST; msg_do_test.do_test.test_num = test_to_run; if (send_message(sock_fd, &msg_do_test) < 0) { perror("Fail to send command"); goto done; } env.worker_current_test[data->worker_id] = test_to_run; } /* wait for test done */ { int err; struct msg msg_test_done; err = recv_message(sock_fd, &msg_test_done); if (err < 0) goto error; if (msg_test_done.type != MSG_TEST_DONE) goto error; if (test_to_run != msg_test_done.test_done.test_num) goto error; test->tested = true; result = &test_results[test_to_run]; result->error_cnt = msg_test_done.test_done.error_cnt; result->skip_cnt = msg_test_done.test_done.skip_cnt; result->sub_succ_cnt = msg_test_done.test_done.sub_succ_cnt; /* collect all logs */ if (msg_test_done.test_done.have_log) { log_fp = open_memstream(&result->log_buf, &result->log_cnt); if (!log_fp) goto error; while (true) { struct msg msg_log; if (recv_message(sock_fd, &msg_log) < 0) goto error; if (msg_log.type != MSG_TEST_LOG) goto error; fprintf(log_fp, "%s", msg_log.test_log.log_buf); if (msg_log.test_log.is_last) break; } fclose(log_fp); log_fp = NULL; } /* output log */ { pthread_mutex_lock(&stdout_output_lock); if (result->log_cnt) { result->log_buf[result->log_cnt] = '\0'; fprintf(stdout, "%s", result->log_buf); if (result->log_buf[result->log_cnt - 1] != '\n') fprintf(stdout, "\n"); } fprintf(stdout, "#%d %s:%s\n", test->test_num, test->test_name, result->error_cnt ? "FAIL" : (result->skip_cnt ? "SKIP" : "OK")); pthread_mutex_unlock(&stdout_output_lock); } } /* wait for test done */ } /* while (true) */ error: if (env.debug) fprintf(stderr, "[%d]: Protocol/IO error: %s.\n", data->worker_id, strerror(errno)); if (log_fp) fclose(log_fp); done: { struct msg msg_exit; msg_exit.type = MSG_EXIT; if (send_message(sock_fd, &msg_exit) < 0) { if (env.debug) fprintf(stderr, "[%d]: send_message msg_exit: %s.\n", data->worker_id, strerror(errno)); } } return NULL; } static void print_all_error_logs(void) { int i; if (env.fail_cnt) fprintf(stdout, "\nAll error logs:\n"); /* print error logs again */ for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test; struct test_result *result; test = &prog_test_defs[i]; result = &test_results[i]; if (!test->tested || !result->error_cnt) continue; fprintf(stdout, "\n#%d %s:%s\n", test->test_num, test->test_name, result->error_cnt ? "FAIL" : (result->skip_cnt ? "SKIP" : "OK")); if (result->log_cnt) { result->log_buf[result->log_cnt] = '\0'; fprintf(stdout, "%s", result->log_buf); if (result->log_buf[result->log_cnt - 1] != '\n') fprintf(stdout, "\n"); } } } static int server_main(void) { pthread_t *dispatcher_threads; struct dispatch_data *data; struct sigaction sigact_int = { .sa_handler = sigint_handler, .sa_flags = SA_RESETHAND, }; int i; sigaction(SIGINT, &sigact_int, NULL); dispatcher_threads = calloc(sizeof(pthread_t), env.workers); data = calloc(sizeof(struct dispatch_data), env.workers); env.worker_current_test = calloc(sizeof(int), env.workers); for (i = 0; i < env.workers; i++) { int rc; data[i].worker_id = i; data[i].sock_fd = env.worker_socks[i]; rc = pthread_create(&dispatcher_threads[i], NULL, dispatch_thread, &data[i]); if (rc < 0) { perror("Failed to launch dispatcher thread"); exit(EXIT_ERR_SETUP_INFRA); } } /* wait for all dispatcher to finish */ for (i = 0; i < env.workers; i++) { while (true) { int ret = pthread_tryjoin_np(dispatcher_threads[i], NULL); if (!ret) { break; } else if (ret == EBUSY) { if (env.debug) fprintf(stderr, "Still waiting for thread %d (test %d).\n", i, env.worker_current_test[i] + 1); usleep(1000 * 1000); continue; } else { fprintf(stderr, "Unexpected error joining dispatcher thread: %d", ret); break; } } } free(dispatcher_threads); free(env.worker_current_test); free(data); /* run serial tests */ save_netns(); for (int i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; struct test_result *result = &test_results[i]; if (!test->should_run || !test->run_serial_test) continue; stdio_hijack(); run_one_test(i); stdio_restore(); if (env.log_buf) { result->log_cnt = env.log_cnt; result->log_buf = strdup(env.log_buf); free(env.log_buf); env.log_buf = NULL; env.log_cnt = 0; } restore_netns(); fprintf(stdout, "#%d %s:%s\n", test->test_num, test->test_name, test->error_cnt ? "FAIL" : (test->skip_cnt ? "SKIP" : "OK")); result->error_cnt = test->error_cnt; result->skip_cnt = test->skip_cnt; result->sub_succ_cnt = test->sub_succ_cnt; } /* generate summary */ fflush(stderr); fflush(stdout); for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *current_test; struct test_result *result; current_test = &prog_test_defs[i]; result = &test_results[i]; if (!current_test->tested) continue; env.succ_cnt += result->error_cnt ? 0 : 1; env.skip_cnt += result->skip_cnt; if (result->error_cnt) env.fail_cnt++; env.sub_succ_cnt += result->sub_succ_cnt; } print_all_error_logs(); fprintf(stdout, "Summary: %d/%d PASSED, %d SKIPPED, %d FAILED\n", env.succ_cnt, env.sub_succ_cnt, env.skip_cnt, env.fail_cnt); /* reap all workers */ for (i = 0; i < env.workers; i++) { int wstatus, pid; pid = waitpid(env.worker_pids[i], &wstatus, 0); if (pid != env.worker_pids[i]) perror("Unable to reap worker"); } return 0; } static int worker_main(int sock) { save_netns(); while (true) { /* receive command */ struct msg msg; if (recv_message(sock, &msg) < 0) goto out; switch (msg.type) { case MSG_EXIT: if (env.debug) fprintf(stderr, "[%d]: worker exit.\n", env.worker_id); goto out; case MSG_DO_TEST: { int test_to_run; struct prog_test_def *test; struct msg msg_done; test_to_run = msg.do_test.test_num; test = &prog_test_defs[test_to_run]; if (env.debug) fprintf(stderr, "[%d]: #%d:%s running.\n", env.worker_id, test_to_run + 1, test->test_name); stdio_hijack(); run_one_test(test_to_run); stdio_restore(); memset(&msg_done, 0, sizeof(msg_done)); msg_done.type = MSG_TEST_DONE; msg_done.test_done.test_num = test_to_run; msg_done.test_done.error_cnt = test->error_cnt; msg_done.test_done.skip_cnt = test->skip_cnt; msg_done.test_done.sub_succ_cnt = test->sub_succ_cnt; msg_done.test_done.have_log = false; if (env.verbosity > VERBOSE_NONE || test->force_log || test->error_cnt) { if (env.log_cnt) msg_done.test_done.have_log = true; } if (send_message(sock, &msg_done) < 0) { perror("Fail to send message done"); goto out; } /* send logs */ if (msg_done.test_done.have_log) { char *src; size_t slen; src = env.log_buf; slen = env.log_cnt; while (slen) { struct msg msg_log; char *dest; size_t len; memset(&msg_log, 0, sizeof(msg_log)); msg_log.type = MSG_TEST_LOG; dest = msg_log.test_log.log_buf; len = slen >= MAX_LOG_TRUNK_SIZE ? MAX_LOG_TRUNK_SIZE : slen; memcpy(dest, src, len); src += len; slen -= len; if (!slen) msg_log.test_log.is_last = true; assert(send_message(sock, &msg_log) >= 0); } } if (env.log_buf) { free(env.log_buf); env.log_buf = NULL; env.log_cnt = 0; } if (env.debug) fprintf(stderr, "[%d]: #%d:%s done.\n", env.worker_id, test_to_run + 1, test->test_name); break; } /* case MSG_DO_TEST */ default: if (env.debug) fprintf(stderr, "[%d]: unknown message.\n", env.worker_id); return -1; } } out: return 0; } int main(int argc, char **argv) { static const struct argp argp = { .options = opts, .parser = parse_arg, .doc = argp_program_doc, }; struct sigaction sigact = { .sa_handler = crash_handler, .sa_flags = SA_RESETHAND, }; int err, i; sigaction(SIGSEGV, &sigact, NULL); err = argp_parse(&argp, argc, argv, 0, NULL, &env); if (err) return err; err = cd_flavor_subdir(argv[0]); if (err) return err; /* Use libbpf 1.0 API mode */ libbpf_set_strict_mode(LIBBPF_STRICT_ALL); libbpf_set_print(libbpf_print_fn); srand(time(NULL)); env.jit_enabled = is_jit_enabled(); env.nr_cpus = libbpf_num_possible_cpus(); if (env.nr_cpus < 0) { fprintf(stderr, "Failed to get number of CPUs: %d!\n", env.nr_cpus); return -1; } env.stdout = stdout; env.stderr = stderr; env.has_testmod = true; if (!env.list_test_names && load_bpf_testmod()) { fprintf(env.stderr, "WARNING! Selftests relying on bpf_testmod.ko will be skipped.\n"); env.has_testmod = false; } /* initializing tests */ for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; test->test_num = i + 1; if (should_run(&env.test_selector, test->test_num, test->test_name)) test->should_run = true; else test->should_run = false; if ((test->run_test == NULL && test->run_serial_test == NULL) || (test->run_test != NULL && test->run_serial_test != NULL)) { fprintf(stderr, "Test %d:%s must have either test_%s() or serial_test_%sl() defined.\n", test->test_num, test->test_name, test->test_name, test->test_name); exit(EXIT_ERR_SETUP_INFRA); } } /* ignore workers if we are just listing */ if (env.get_test_cnt || env.list_test_names) env.workers = 0; /* launch workers if requested */ env.worker_id = -1; /* main process */ if (env.workers) { env.worker_pids = calloc(sizeof(__pid_t), env.workers); env.worker_socks = calloc(sizeof(int), env.workers); if (env.debug) fprintf(stdout, "Launching %d workers.\n", env.workers); for (i = 0; i < env.workers; i++) { int sv[2]; pid_t pid; if (socketpair(AF_UNIX, SOCK_SEQPACKET | SOCK_CLOEXEC, 0, sv) < 0) { perror("Fail to create worker socket"); return -1; } pid = fork(); if (pid < 0) { perror("Failed to fork worker"); return -1; } else if (pid != 0) { /* main process */ close(sv[1]); env.worker_pids[i] = pid; env.worker_socks[i] = sv[0]; } else { /* inside each worker process */ close(sv[0]); env.worker_id = i; return worker_main(sv[1]); } } if (env.worker_id == -1) { server_main(); goto out; } } /* The rest of the main process */ /* on single mode */ save_netns(); for (i = 0; i < prog_test_cnt; i++) { struct prog_test_def *test = &prog_test_defs[i]; struct test_result *result; if (!test->should_run) continue; if (env.get_test_cnt) { env.succ_cnt++; continue; } if (env.list_test_names) { fprintf(env.stdout, "%s\n", test->test_name); env.succ_cnt++; continue; } stdio_hijack(); run_one_test(i); stdio_restore(); fprintf(env.stdout, "#%d %s:%s\n", test->test_num, test->test_name, test->error_cnt ? "FAIL" : (test->skip_cnt ? "SKIP" : "OK")); result = &test_results[i]; result->error_cnt = test->error_cnt; if (env.log_buf) { result->log_buf = strdup(env.log_buf); result->log_cnt = env.log_cnt; free(env.log_buf); env.log_buf = NULL; env.log_cnt = 0; } if (test->error_cnt) env.fail_cnt++; else env.succ_cnt++; skip_account(); env.sub_succ_cnt += test->sub_succ_cnt; } if (env.get_test_cnt) { printf("%d\n", env.succ_cnt); goto out; } if (env.list_test_names) goto out; print_all_error_logs(); fprintf(stdout, "Summary: %d/%d PASSED, %d SKIPPED, %d FAILED\n", env.succ_cnt, env.sub_succ_cnt, env.skip_cnt, env.fail_cnt); close(env.saved_netns_fd); out: if (!env.list_test_names && env.has_testmod) unload_bpf_testmod(); free_str_set(&env.test_selector.blacklist); free_str_set(&env.test_selector.whitelist); free(env.test_selector.num_set); free_str_set(&env.subtest_selector.blacklist); free_str_set(&env.subtest_selector.whitelist); free(env.subtest_selector.num_set); if (env.succ_cnt + env.fail_cnt + env.skip_cnt == 0) return EXIT_NO_TEST; return env.fail_cnt ? EXIT_FAILURE : EXIT_SUCCESS; }