// SPDX-License-Identifier: GPL-2.0 /* * KVM demand paging test * Adapted from dirty_log_test.c * * Copyright (C) 2018, Red Hat, Inc. * Copyright (C) 2019, Google, Inc. */ #define _GNU_SOURCE /* for program_invocation_name */ #include #include #include #include #include #include #include #include #include #include #include #include "test_util.h" #include "kvm_util.h" #include "processor.h" #ifdef __NR_userfaultfd /* The memory slot index demand page */ #define TEST_MEM_SLOT_INDEX 1 /* Default guest test virtual memory offset */ #define DEFAULT_GUEST_TEST_MEM 0xc0000000 #define DEFAULT_GUEST_TEST_MEM_SIZE (1 << 30) /* 1G */ #ifdef PRINT_PER_PAGE_UPDATES #define PER_PAGE_DEBUG(...) printf(__VA_ARGS__) #else #define PER_PAGE_DEBUG(...) _no_printf(__VA_ARGS__) #endif #ifdef PRINT_PER_VCPU_UPDATES #define PER_VCPU_DEBUG(...) printf(__VA_ARGS__) #else #define PER_VCPU_DEBUG(...) _no_printf(__VA_ARGS__) #endif #define MAX_VCPUS 512 /* * Guest/Host shared variables. Ensure addr_gva2hva() and/or * sync_global_to/from_guest() are used when accessing from * the host. READ/WRITE_ONCE() should also be used with anything * that may change. */ static uint64_t host_page_size; static uint64_t guest_page_size; static char *guest_data_prototype; /* * Guest physical memory offset of the testing memory slot. * This will be set to the topmost valid physical address minus * the test memory size. */ static uint64_t guest_test_phys_mem; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; struct vcpu_args { uint64_t gva; uint64_t pages; /* Only used by the host userspace part of the vCPU thread */ int vcpu_id; struct kvm_vm *vm; }; static struct vcpu_args vcpu_args[MAX_VCPUS]; /* * Continuously write to the first 8 bytes of each page in the demand paging * memory region. */ static void guest_code(uint32_t vcpu_id) { uint64_t gva; uint64_t pages; int i; /* Make sure vCPU args data structure is not corrupt. */ GUEST_ASSERT(vcpu_args[vcpu_id].vcpu_id == vcpu_id); gva = vcpu_args[vcpu_id].gva; pages = vcpu_args[vcpu_id].pages; for (i = 0; i < pages; i++) { uint64_t addr = gva + (i * guest_page_size); addr &= ~(host_page_size - 1); *(uint64_t *)addr = 0x0123456789ABCDEF; } GUEST_SYNC(1); } static void *vcpu_worker(void *data) { int ret; struct vcpu_args *args = (struct vcpu_args *)data; struct kvm_vm *vm = args->vm; int vcpu_id = args->vcpu_id; struct kvm_run *run; struct timespec start, end, ts_diff; vcpu_args_set(vm, vcpu_id, 1, vcpu_id); run = vcpu_state(vm, vcpu_id); clock_gettime(CLOCK_MONOTONIC, &start); /* Let the guest access its memory */ ret = _vcpu_run(vm, vcpu_id); TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret); if (get_ucall(vm, vcpu_id, NULL) != UCALL_SYNC) { TEST_ASSERT(false, "Invalid guest sync status: exit_reason=%s\n", exit_reason_str(run->exit_reason)); } clock_gettime(CLOCK_MONOTONIC, &end); ts_diff = timespec_sub(end, start); PER_VCPU_DEBUG("vCPU %d execution time: %ld.%.9lds\n", vcpu_id, ts_diff.tv_sec, ts_diff.tv_nsec); return NULL; } #define PAGE_SHIFT_4K 12 #define PTES_PER_4K_PT 512 static struct kvm_vm *create_vm(enum vm_guest_mode mode, int vcpus, uint64_t vcpu_memory_bytes) { struct kvm_vm *vm; uint64_t pages = DEFAULT_GUEST_PHY_PAGES; /* Account for a few pages per-vCPU for stacks */ pages += DEFAULT_STACK_PGS * vcpus; /* * Reserve twice the ammount of memory needed to map the test region and * the page table / stacks region, at 4k, for page tables. Do the * calculation with 4K page size: the smallest of all archs. (e.g., 64K * page size guest will need even less memory for page tables). */ pages += (2 * pages) / PTES_PER_4K_PT; pages += ((2 * vcpus * vcpu_memory_bytes) >> PAGE_SHIFT_4K) / PTES_PER_4K_PT; pages = vm_adjust_num_guest_pages(mode, pages); pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); vm = _vm_create(mode, pages, O_RDWR); kvm_vm_elf_load(vm, program_invocation_name, 0, 0); #ifdef __x86_64__ vm_create_irqchip(vm); #endif return vm; } static int handle_uffd_page_request(int uffd, uint64_t addr) { pid_t tid; struct timespec start; struct timespec end; struct uffdio_copy copy; int r; tid = syscall(__NR_gettid); copy.src = (uint64_t)guest_data_prototype; copy.dst = addr; copy.len = host_page_size; copy.mode = 0; clock_gettime(CLOCK_MONOTONIC, &start); r = ioctl(uffd, UFFDIO_COPY, ©); if (r == -1) { pr_info("Failed Paged in 0x%lx from thread %d with errno: %d\n", addr, tid, errno); return r; } clock_gettime(CLOCK_MONOTONIC, &end); PER_PAGE_DEBUG("UFFDIO_COPY %d \t%ld ns\n", tid, timespec_to_ns(timespec_sub(end, start))); PER_PAGE_DEBUG("Paged in %ld bytes at 0x%lx from thread %d\n", host_page_size, addr, tid); return 0; } bool quit_uffd_thread; struct uffd_handler_args { int uffd; int pipefd; useconds_t delay; }; static void *uffd_handler_thread_fn(void *arg) { struct uffd_handler_args *uffd_args = (struct uffd_handler_args *)arg; int uffd = uffd_args->uffd; int pipefd = uffd_args->pipefd; useconds_t delay = uffd_args->delay; int64_t pages = 0; struct timespec start, end, ts_diff; clock_gettime(CLOCK_MONOTONIC, &start); while (!quit_uffd_thread) { struct uffd_msg msg; struct pollfd pollfd[2]; char tmp_chr; int r; uint64_t addr; pollfd[0].fd = uffd; pollfd[0].events = POLLIN; pollfd[1].fd = pipefd; pollfd[1].events = POLLIN; r = poll(pollfd, 2, -1); switch (r) { case -1: pr_info("poll err"); continue; case 0: continue; case 1: break; default: pr_info("Polling uffd returned %d", r); return NULL; } if (pollfd[0].revents & POLLERR) { pr_info("uffd revents has POLLERR"); return NULL; } if (pollfd[1].revents & POLLIN) { r = read(pollfd[1].fd, &tmp_chr, 1); TEST_ASSERT(r == 1, "Error reading pipefd in UFFD thread\n"); return NULL; } if (!pollfd[0].revents & POLLIN) continue; r = read(uffd, &msg, sizeof(msg)); if (r == -1) { if (errno == EAGAIN) continue; pr_info("Read of uffd gor errno %d", errno); return NULL; } if (r != sizeof(msg)) { pr_info("Read on uffd returned unexpected size: %d bytes", r); return NULL; } if (!(msg.event & UFFD_EVENT_PAGEFAULT)) continue; if (delay) usleep(delay); addr = msg.arg.pagefault.address; r = handle_uffd_page_request(uffd, addr); if (r < 0) return NULL; pages++; } clock_gettime(CLOCK_MONOTONIC, &end); ts_diff = timespec_sub(end, start); PER_VCPU_DEBUG("userfaulted %ld pages over %ld.%.9lds. (%f/sec)\n", pages, ts_diff.tv_sec, ts_diff.tv_nsec, pages / ((double)ts_diff.tv_sec + (double)ts_diff.tv_nsec / 100000000.0)); return NULL; } static int setup_demand_paging(struct kvm_vm *vm, pthread_t *uffd_handler_thread, int pipefd, useconds_t uffd_delay, struct uffd_handler_args *uffd_args, void *hva, uint64_t len) { int uffd; struct uffdio_api uffdio_api; struct uffdio_register uffdio_register; uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); if (uffd == -1) { pr_info("uffd creation failed\n"); return -1; } uffdio_api.api = UFFD_API; uffdio_api.features = 0; if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1) { pr_info("ioctl uffdio_api failed\n"); return -1; } uffdio_register.range.start = (uint64_t)hva; uffdio_register.range.len = len; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1) { pr_info("ioctl uffdio_register failed\n"); return -1; } if ((uffdio_register.ioctls & UFFD_API_RANGE_IOCTLS) != UFFD_API_RANGE_IOCTLS) { pr_info("unexpected userfaultfd ioctl set\n"); return -1; } uffd_args->uffd = uffd; uffd_args->pipefd = pipefd; uffd_args->delay = uffd_delay; pthread_create(uffd_handler_thread, NULL, uffd_handler_thread_fn, uffd_args); PER_VCPU_DEBUG("Created uffd thread for HVA range [%p, %p)\n", hva, hva + len); return 0; } static void run_test(enum vm_guest_mode mode, bool use_uffd, useconds_t uffd_delay, int vcpus, uint64_t vcpu_memory_bytes) { pthread_t *vcpu_threads; pthread_t *uffd_handler_threads = NULL; struct uffd_handler_args *uffd_args = NULL; struct timespec start, end, ts_diff; int *pipefds = NULL; struct kvm_vm *vm; uint64_t guest_num_pages; int vcpu_id; int r; vm = create_vm(mode, vcpus, vcpu_memory_bytes); guest_page_size = vm_get_page_size(vm); TEST_ASSERT(vcpu_memory_bytes % guest_page_size == 0, "Guest memory size is not guest page size aligned."); guest_num_pages = (vcpus * vcpu_memory_bytes) / guest_page_size; guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); /* * If there should be more memory in the guest test region than there * can be pages in the guest, it will definitely cause problems. */ TEST_ASSERT(guest_num_pages < vm_get_max_gfn(vm), "Requested more guest memory than address space allows.\n" " guest pages: %lx max gfn: %x vcpus: %d wss: %lx]\n", guest_num_pages, vm_get_max_gfn(vm), vcpus, vcpu_memory_bytes); host_page_size = getpagesize(); TEST_ASSERT(vcpu_memory_bytes % host_page_size == 0, "Guest memory size is not host page size aligned."); guest_test_phys_mem = (vm_get_max_gfn(vm) - guest_num_pages) * guest_page_size; guest_test_phys_mem &= ~(host_page_size - 1); #ifdef __s390x__ /* Align to 1M (segment size) */ guest_test_phys_mem &= ~((1 << 20) - 1); #endif pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem); /* Add an extra memory slot for testing demand paging */ vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, guest_test_phys_mem, TEST_MEM_SLOT_INDEX, guest_num_pages, 0); /* Do mapping for the demand paging memory slot */ virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages, 0); ucall_init(vm, NULL); guest_data_prototype = malloc(host_page_size); TEST_ASSERT(guest_data_prototype, "Failed to allocate buffer for guest data pattern"); memset(guest_data_prototype, 0xAB, host_page_size); vcpu_threads = malloc(vcpus * sizeof(*vcpu_threads)); TEST_ASSERT(vcpu_threads, "Memory allocation failed"); if (use_uffd) { uffd_handler_threads = malloc(vcpus * sizeof(*uffd_handler_threads)); TEST_ASSERT(uffd_handler_threads, "Memory allocation failed"); uffd_args = malloc(vcpus * sizeof(*uffd_args)); TEST_ASSERT(uffd_args, "Memory allocation failed"); pipefds = malloc(sizeof(int) * vcpus * 2); TEST_ASSERT(pipefds, "Unable to allocate memory for pipefd"); } for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++) { vm_paddr_t vcpu_gpa; void *vcpu_hva; vm_vcpu_add_default(vm, vcpu_id, guest_code); vcpu_gpa = guest_test_phys_mem + (vcpu_id * vcpu_memory_bytes); PER_VCPU_DEBUG("Added VCPU %d with test mem gpa [%lx, %lx)\n", vcpu_id, vcpu_gpa, vcpu_gpa + vcpu_memory_bytes); /* Cache the HVA pointer of the region */ vcpu_hva = addr_gpa2hva(vm, vcpu_gpa); if (use_uffd) { /* * Set up user fault fd to handle demand paging * requests. */ r = pipe2(&pipefds[vcpu_id * 2], O_CLOEXEC | O_NONBLOCK); TEST_ASSERT(!r, "Failed to set up pipefd"); r = setup_demand_paging(vm, &uffd_handler_threads[vcpu_id], pipefds[vcpu_id * 2], uffd_delay, &uffd_args[vcpu_id], vcpu_hva, vcpu_memory_bytes); if (r < 0) exit(-r); } #ifdef __x86_64__ vcpu_set_cpuid(vm, vcpu_id, kvm_get_supported_cpuid()); #endif vcpu_args[vcpu_id].vm = vm; vcpu_args[vcpu_id].vcpu_id = vcpu_id; vcpu_args[vcpu_id].gva = guest_test_virt_mem + (vcpu_id * vcpu_memory_bytes); vcpu_args[vcpu_id].pages = vcpu_memory_bytes / guest_page_size; } /* Export the shared variables to the guest */ sync_global_to_guest(vm, host_page_size); sync_global_to_guest(vm, guest_page_size); sync_global_to_guest(vm, vcpu_args); pr_info("Finished creating vCPUs and starting uffd threads\n"); clock_gettime(CLOCK_MONOTONIC, &start); for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++) { pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker, &vcpu_args[vcpu_id]); } pr_info("Started all vCPUs\n"); /* Wait for the vcpu threads to quit */ for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++) { pthread_join(vcpu_threads[vcpu_id], NULL); PER_VCPU_DEBUG("Joined thread for vCPU %d\n", vcpu_id); } pr_info("All vCPU threads joined\n"); clock_gettime(CLOCK_MONOTONIC, &end); if (use_uffd) { char c; /* Tell the user fault fd handler threads to quit */ for (vcpu_id = 0; vcpu_id < vcpus; vcpu_id++) { r = write(pipefds[vcpu_id * 2 + 1], &c, 1); TEST_ASSERT(r == 1, "Unable to write to pipefd"); pthread_join(uffd_handler_threads[vcpu_id], NULL); } } ts_diff = timespec_sub(end, start); pr_info("Total guest execution time: %ld.%.9lds\n", ts_diff.tv_sec, ts_diff.tv_nsec); pr_info("Overall demand paging rate: %f pgs/sec\n", guest_num_pages / ((double)ts_diff.tv_sec + (double)ts_diff.tv_nsec / 100000000.0)); ucall_uninit(vm); kvm_vm_free(vm); free(guest_data_prototype); free(vcpu_threads); if (use_uffd) { free(uffd_handler_threads); free(uffd_args); free(pipefds); } } struct guest_mode { bool supported; bool enabled; }; static struct guest_mode guest_modes[NUM_VM_MODES]; #define guest_mode_init(mode, supported, enabled) ({ \ guest_modes[mode] = (struct guest_mode){ supported, enabled }; \ }) static void help(char *name) { int i; puts(""); printf("usage: %s [-h] [-m mode] [-u] [-d uffd_delay_usec]\n" " [-b memory] [-v vcpus]\n", name); printf(" -m: specify the guest mode ID to test\n" " (default: test all supported modes)\n" " This option may be used multiple times.\n" " Guest mode IDs:\n"); for (i = 0; i < NUM_VM_MODES; ++i) { printf(" %d: %s%s\n", i, vm_guest_mode_string(i), guest_modes[i].supported ? " (supported)" : ""); } printf(" -u: use User Fault FD to handle vCPU page\n" " faults.\n"); printf(" -d: add a delay in usec to the User Fault\n" " FD handler to simulate demand paging\n" " overheads. Ignored without -u.\n"); printf(" -b: specify the size of the memory region which should be\n" " demand paged by each vCPU. e.g. 10M or 3G.\n" " Default: 1G\n"); printf(" -v: specify the number of vCPUs to run.\n"); puts(""); exit(0); } int main(int argc, char *argv[]) { bool mode_selected = false; uint64_t vcpu_memory_bytes = DEFAULT_GUEST_TEST_MEM_SIZE; int vcpus = 1; unsigned int mode; int opt, i; bool use_uffd = false; useconds_t uffd_delay = 0; #ifdef __x86_64__ guest_mode_init(VM_MODE_PXXV48_4K, true, true); #endif #ifdef __aarch64__ guest_mode_init(VM_MODE_P40V48_4K, true, true); guest_mode_init(VM_MODE_P40V48_64K, true, true); { unsigned int limit = kvm_check_cap(KVM_CAP_ARM_VM_IPA_SIZE); if (limit >= 52) guest_mode_init(VM_MODE_P52V48_64K, true, true); if (limit >= 48) { guest_mode_init(VM_MODE_P48V48_4K, true, true); guest_mode_init(VM_MODE_P48V48_64K, true, true); } } #endif #ifdef __s390x__ guest_mode_init(VM_MODE_P40V48_4K, true, true); #endif while ((opt = getopt(argc, argv, "hm:ud:b:v:")) != -1) { switch (opt) { case 'm': if (!mode_selected) { for (i = 0; i < NUM_VM_MODES; ++i) guest_modes[i].enabled = false; mode_selected = true; } mode = strtoul(optarg, NULL, 10); TEST_ASSERT(mode < NUM_VM_MODES, "Guest mode ID %d too big", mode); guest_modes[mode].enabled = true; break; case 'u': use_uffd = true; break; case 'd': uffd_delay = strtoul(optarg, NULL, 0); TEST_ASSERT(uffd_delay >= 0, "A negative UFFD delay is not supported."); break; case 'b': vcpu_memory_bytes = parse_size(optarg); break; case 'v': vcpus = atoi(optarg); TEST_ASSERT(vcpus > 0, "Must have a positive number of vCPUs"); TEST_ASSERT(vcpus <= MAX_VCPUS, "This test does not currently support\n" "more than %d vCPUs.", MAX_VCPUS); break; case 'h': default: help(argv[0]); break; } } for (i = 0; i < NUM_VM_MODES; ++i) { if (!guest_modes[i].enabled) continue; TEST_ASSERT(guest_modes[i].supported, "Guest mode ID %d (%s) not supported.", i, vm_guest_mode_string(i)); run_test(i, use_uffd, uffd_delay, vcpus, vcpu_memory_bytes); } return 0; } #else /* __NR_userfaultfd */ #warning "missing __NR_userfaultfd definition" int main(void) { print_skip("__NR_userfaultfd must be present for userfaultfd test"); return KSFT_SKIP; } #endif /* __NR_userfaultfd */