// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020, Google LLC. */ #include #include "kvm_util.h" #include "perf_test_util.h" #include "processor.h" struct perf_test_args perf_test_args; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; struct vcpu_thread { /* The index of the vCPU. */ int vcpu_idx; /* The pthread backing the vCPU. */ pthread_t thread; /* Set to true once the vCPU thread is up and running. */ bool running; }; /* The vCPU threads involved in this test. */ static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS]; /* The function run by each vCPU thread, as provided by the test. */ static void (*vcpu_thread_fn)(struct perf_test_vcpu_args *); /* Set to true once all vCPU threads are up and running. */ static bool all_vcpu_threads_running; static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; /* * Continuously write to the first 8 bytes of each page in the * specified region. */ void perf_test_guest_code(uint32_t vcpu_idx) { struct perf_test_args *pta = &perf_test_args; struct perf_test_vcpu_args *vcpu_args = &pta->vcpu_args[vcpu_idx]; uint64_t gva; uint64_t pages; int i; gva = vcpu_args->gva; pages = vcpu_args->pages; /* Make sure vCPU args data structure is not corrupt. */ GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx); while (true) { for (i = 0; i < pages; i++) { uint64_t addr = gva + (i * pta->guest_page_size); if (i % pta->wr_fract == 0) *(uint64_t *)addr = 0x0123456789ABCDEF; else READ_ONCE(*(uint64_t *)addr); } GUEST_SYNC(1); } } void perf_test_setup_vcpus(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu *vcpus[], uint64_t vcpu_memory_bytes, bool partition_vcpu_memory_access) { struct perf_test_args *pta = &perf_test_args; struct perf_test_vcpu_args *vcpu_args; int i; for (i = 0; i < nr_vcpus; i++) { vcpu_args = &pta->vcpu_args[i]; vcpu_args->vcpu = vcpus[i]; vcpu_args->vcpu_idx = i; if (partition_vcpu_memory_access) { vcpu_args->gva = guest_test_virt_mem + (i * vcpu_memory_bytes); vcpu_args->pages = vcpu_memory_bytes / pta->guest_page_size; vcpu_args->gpa = pta->gpa + (i * vcpu_memory_bytes); } else { vcpu_args->gva = guest_test_virt_mem; vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) / pta->guest_page_size; vcpu_args->gpa = pta->gpa; } vcpu_args_set(vcpus[i], 1, i); pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n", i, vcpu_args->gpa, vcpu_args->gpa + (vcpu_args->pages * pta->guest_page_size)); } } struct kvm_vm *perf_test_create_vm(enum vm_guest_mode mode, int nr_vcpus, uint64_t vcpu_memory_bytes, int slots, enum vm_mem_backing_src_type backing_src, bool partition_vcpu_memory_access) { struct perf_test_args *pta = &perf_test_args; struct kvm_vm *vm; uint64_t guest_num_pages, slot0_pages = 0; uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src); uint64_t region_end_gfn; int i; pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); /* By default vCPUs will write to memory. */ pta->wr_fract = 1; /* * Snapshot the non-huge page size. This is used by the guest code to * access/dirty pages at the logging granularity. */ pta->guest_page_size = vm_guest_mode_params[mode].page_size; guest_num_pages = vm_adjust_num_guest_pages(mode, (nr_vcpus * vcpu_memory_bytes) / pta->guest_page_size); TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0, "Guest memory size is not host page size aligned."); TEST_ASSERT(vcpu_memory_bytes % pta->guest_page_size == 0, "Guest memory size is not guest page size aligned."); TEST_ASSERT(guest_num_pages % slots == 0, "Guest memory cannot be evenly divided into %d slots.", slots); /* * If using nested, allocate extra pages for the nested page tables and * in-memory data structures. */ if (pta->nested) slot0_pages += perf_test_nested_pages(nr_vcpus); /* * Pass guest_num_pages to populate the page tables for test memory. * The memory is also added to memslot 0, but that's a benign side * effect as KVM allows aliasing HVAs in meslots. */ vm = __vm_create_with_vcpus(mode, nr_vcpus, slot0_pages + guest_num_pages, perf_test_guest_code, vcpus); pta->vm = vm; /* Put the test region at the top guest physical memory. */ region_end_gfn = vm->max_gfn + 1; #ifdef __x86_64__ /* * When running vCPUs in L2, restrict the test region to 48 bits to * avoid needing 5-level page tables to identity map L2. */ if (pta->nested) region_end_gfn = min(region_end_gfn, (1UL << 48) / pta->guest_page_size); #endif /* * If there should be more memory in the guest test region than there * can be pages in the guest, it will definitely cause problems. */ TEST_ASSERT(guest_num_pages < region_end_gfn, "Requested more guest memory than address space allows.\n" " guest pages: %" PRIx64 " max gfn: %" PRIx64 " nr_vcpus: %d wss: %" PRIx64 "]\n", guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes); pta->gpa = (region_end_gfn - guest_num_pages - 1) * pta->guest_page_size; pta->gpa = align_down(pta->gpa, backing_src_pagesz); #ifdef __s390x__ /* Align to 1M (segment size) */ pta->gpa = align_down(pta->gpa, 1 << 20); #endif pta->size = guest_num_pages * pta->guest_page_size; pr_info("guest physical test memory: [0x%lx, 0x%lx)\n", pta->gpa, pta->gpa + pta->size); /* Add extra memory slots for testing */ for (i = 0; i < slots; i++) { uint64_t region_pages = guest_num_pages / slots; vm_paddr_t region_start = pta->gpa + region_pages * pta->guest_page_size * i; vm_userspace_mem_region_add(vm, backing_src, region_start, PERF_TEST_MEM_SLOT_INDEX + i, region_pages, 0); } /* Do mapping for the demand paging memory slot */ virt_map(vm, guest_test_virt_mem, pta->gpa, guest_num_pages); perf_test_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes, partition_vcpu_memory_access); if (pta->nested) { pr_info("Configuring vCPUs to run in L2 (nested).\n"); perf_test_setup_nested(vm, nr_vcpus, vcpus); } ucall_init(vm, NULL); /* Export the shared variables to the guest. */ sync_global_to_guest(vm, perf_test_args); return vm; } void perf_test_destroy_vm(struct kvm_vm *vm) { ucall_uninit(vm); kvm_vm_free(vm); } void perf_test_set_wr_fract(struct kvm_vm *vm, int wr_fract) { perf_test_args.wr_fract = wr_fract; sync_global_to_guest(vm, perf_test_args); } uint64_t __weak perf_test_nested_pages(int nr_vcpus) { return 0; } void __weak perf_test_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus) { pr_info("%s() not support on this architecture, skipping.\n", __func__); exit(KSFT_SKIP); } static void *vcpu_thread_main(void *data) { struct vcpu_thread *vcpu = data; WRITE_ONCE(vcpu->running, true); /* * Wait for all vCPU threads to be up and running before calling the test- * provided vCPU thread function. This prevents thread creation (which * requires taking the mmap_sem in write mode) from interfering with the * guest faulting in its memory. */ while (!READ_ONCE(all_vcpu_threads_running)) ; vcpu_thread_fn(&perf_test_args.vcpu_args[vcpu->vcpu_idx]); return NULL; } void perf_test_start_vcpu_threads(int nr_vcpus, void (*vcpu_fn)(struct perf_test_vcpu_args *)) { int i; vcpu_thread_fn = vcpu_fn; WRITE_ONCE(all_vcpu_threads_running, false); for (i = 0; i < nr_vcpus; i++) { struct vcpu_thread *vcpu = &vcpu_threads[i]; vcpu->vcpu_idx = i; WRITE_ONCE(vcpu->running, false); pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu); } for (i = 0; i < nr_vcpus; i++) { while (!READ_ONCE(vcpu_threads[i].running)) ; } WRITE_ONCE(all_vcpu_threads_running, true); } void perf_test_join_vcpu_threads(int nr_vcpus) { int i; for (i = 0; i < nr_vcpus; i++) pthread_join(vcpu_threads[i].thread, NULL); }